Indoor nanoparticle characterization in construction waste recycling companies over time
Building activity is a significant source of atmospheric contamination by ultrafine dust. Cognizant of this fact, those active in the use and recycling of construction materials must be aware of the risks associated with exposure to nanoparticles (NPs) and ultra-fine particles (UFPs), as well as the...
- Autores:
-
Pinto, Diana
Neckel, Alcindo
Dotto, Guilherme Luiz
Adelodun, Bashir
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2021
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/9002
- Acceso en línea:
- https://hdl.handle.net/11323/9002
https://doi.org/10.3390/su132414071
https://repositorio.cuc.edu.co/
- Palabra clave:
- Air pollution
Construction waste recycling
Nanoparticles
Human health
- Rights
- openAccess
- License
- CC0 1.0 Universal
id |
RCUC2_8800e80cf62c92a8dffda6945c0cb64f |
---|---|
oai_identifier_str |
oai:repositorio.cuc.edu.co:11323/9002 |
network_acronym_str |
RCUC2 |
network_name_str |
REDICUC - Repositorio CUC |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Indoor nanoparticle characterization in construction waste recycling companies over time |
title |
Indoor nanoparticle characterization in construction waste recycling companies over time |
spellingShingle |
Indoor nanoparticle characterization in construction waste recycling companies over time Air pollution Construction waste recycling Nanoparticles Human health |
title_short |
Indoor nanoparticle characterization in construction waste recycling companies over time |
title_full |
Indoor nanoparticle characterization in construction waste recycling companies over time |
title_fullStr |
Indoor nanoparticle characterization in construction waste recycling companies over time |
title_full_unstemmed |
Indoor nanoparticle characterization in construction waste recycling companies over time |
title_sort |
Indoor nanoparticle characterization in construction waste recycling companies over time |
dc.creator.fl_str_mv |
Pinto, Diana Neckel, Alcindo Dotto, Guilherme Luiz Adelodun, Bashir |
dc.contributor.author.spa.fl_str_mv |
Pinto, Diana Neckel, Alcindo Dotto, Guilherme Luiz Adelodun, Bashir |
dc.subject.spa.fl_str_mv |
Air pollution Construction waste recycling Nanoparticles Human health |
topic |
Air pollution Construction waste recycling Nanoparticles Human health |
description |
Building activity is a significant source of atmospheric contamination by ultrafine dust. Cognizant of this fact, those active in the use and recycling of construction materials must be aware of the risks associated with exposure to nanoparticles (NPs) and ultra-fine particles (UFPs), as well as the associated health impacts. This work analyzed NPs and UFPs generated in a small building-material recycling company using high-resolution electron microscopes and X-ray Diffraction. A self-made passive sampler (LSPS) that can obtain particulate samples without physical and morphological changes, especially where there is a suspension of particulate material, was used in this study. A total of 96 particulate samples, using the LSPS for three months in four seasons, were collected during the study. Thus, the dry deposition of the particles, which are considered highly harmful to human health, was found in each of the four seasons of the year. It is suggested that for future research, the toxicological evaluations of the particulates in the construction industry should be investigated through the consideration of measures to control and mitigate the health risks of workers regarding exposure to NPs and UFPs. |
publishDate |
2021 |
dc.date.issued.none.fl_str_mv |
2021-12-20 |
dc.date.accessioned.none.fl_str_mv |
2022-01-22T21:50:47Z |
dc.date.available.none.fl_str_mv |
2022-01-22T21:50:47Z |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
acceptedVersion |
dc.identifier.issn.spa.fl_str_mv |
2071-1050 |
dc.identifier.uri.spa.fl_str_mv |
https://hdl.handle.net/11323/9002 |
dc.identifier.doi.spa.fl_str_mv |
https://doi.org/10.3390/su132414071 |
dc.identifier.instname.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.identifier.reponame.spa.fl_str_mv |
REDICUC - Repositorio CUC |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.cuc.edu.co/ |
identifier_str_mv |
2071-1050 Corporación Universidad de la Costa REDICUC - Repositorio CUC |
url |
https://hdl.handle.net/11323/9002 https://doi.org/10.3390/su132414071 https://repositorio.cuc.edu.co/ |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.references.spa.fl_str_mv |
1. Lima, B.D.; Teixeira, E.C.; Hower, J.C.; Civeira, M.S.; Ramírez, O.; Yang, C.; Oliveira, M.L.S.; Silva, L.F.O. Metal-enriched nanoparticles and black carbon: A perspective from the Brazil railway system air pollution. Geosci. Front. 2021, 12, 101129. [CrossRef] 2. Neckel, A.; Oliveira, M.L.S.; Bolaño, L.J.C.; Maculan, L.S.; Dal Moro, L.; Bodah, E.T.; Moreno-Ríos, A.L.; Bodah, B.W.; Silva, L.F.O. Biophysical matter in a marine estuary identified by the Sentinel-3B OLCI satellite and the presence of terrestrial iron (Fe) nanoparticles. Mar. Pollut. Bull. 2021, 173, 112925. [CrossRef] [PubMed] 3. Oliveira, M.L.S.; Flores, E.M.M.; Dotto, G.L.; Neckel, A.; Silva, L.F.O. Nanomineralogy of mortars and ceramics from the Forum of Caesar and Nerva (Rome, Italy): The protagonist of black crusts produced on historic buildings. J. Clean. Prod. 2021, 278, 123982. [CrossRef] 4. Trejos, E.M.; Silva, L.F.O.; Hower, J.C.; Flores, E.M.M.; González, C.M.; Pachón, J.E.; Aristizábal, B.H. Volcanic emissions and atmospheric pollution: A study of nanoparticles. Geosci. Front. 2021, 12, 746–755. [CrossRef] 5. WHO. How Air Pollution Is Destroying Our Health. 2018. Available online: https://www.who.int/air-pollution/news-andevents/how-air-pollution-is-destroying-our-health (accessed on 18 April 2021). 6. Chojer, H.; Branco, P.T.B.S.; Martins, F.G.; Alvim-Ferraz, M.C.M.; Sousa, S.I.V. Development of low-cost indoor air quality monitoring devices: Recent advancements. Sci. Total Environ. 2020, 727, 138385. [CrossRef] 7. Schneider, I.L.; Teixeira, E.C.; Dotto, G.L.; Pinto, D.; Yang, C.-X.; Silva, L.F.O. Geochemical study of submicron particulate matter (PM1) in a metropolitan area. Geosci. Front. 2020, 13, 101130. [CrossRef] 8. Silva, L.F.O.; Pinto, D.; Neckel, A.; Dotto, G.L.; Oliveira, M.L.S. The impact of air pollution on the rate of degradation of the fortress of Florianópolis Island, Brazil. Chemosphere 2020, 251, 126838. [CrossRef] 9. Dotto, G.L.; De Souza, V.C.; De Moura, J.M.; de Moura, C.M.; de Pinto, L.A.A. Influence of Drying Techniques on the Characteristics of Chitosan and the Quality of Biopolymer Films. Dry. Technol. 2011, 29, 1784–1791. [CrossRef] 10. Dotto, G.L.; Cadaval, T.R.S.; Pinto, L.A.A. Use of Spirulina platensis micro and nanoparticles for the removal synthetic dyes from aqueous solutions by biosorption. Process. Biochem. 2012, 47, 1335–1343. [CrossRef] 11. Dotto, G.L.; Cunha, J.M.; Calgaro, C.O.; Tanabe, E.H.; Bertuol, D.A. Surface modification of chitin using ultrasound-assisted and supercritical CO2 technologies for cobalt adsorption. J. Hazard. Mater. 2015, 295, 29–36. [CrossRef] 12. Dotto, G.L.; Rodrigues, F.K.; Tanabe, E.H.; Fröhlich, R.; Bertuol, D.A.; Martins, T.R.; Foletto, E.L. Development of chitosan/bentonite hybrid composite to remove hazardous anionic and cationic dyes from colored effluents. J. Environ. Chem. Eng. 2016, 4, 3230–3239. [CrossRef] 13. Peres, E.C.; Slaviero, J.C.; Cunha, A.M.; Hosseini–Bandegharaei, A.; Dotto, G.L. Microwave synthesis of silica nanoparticles and its application for methylene blue adsorption. J. Environ. Chem. Eng. 2018, 6, 649–659. [CrossRef] 14. Oliveira, M.L.S.; Dotto, G.L.; Pinto, D.; Neckel, A.; Silva, L.F.O. Nanoparticles as vectors of other contaminants in estuarine suspended sediments: Natural and real conditions. Mar. Pollut. Bull. 2021, 168, 112429. [CrossRef] 15. Sveikauskas, L.; Rowe, S.; Mildenberger, J.; Price, J.; Young, A. Productivity Growth in Construction. J. Constr. Eng. Manag. 2016, 142, 04016045. [CrossRef] 16. European Union. Resource Efficient Use of Mixed Wastes Improving Management of Construction and Demolition Waste, 1st ed.; Final Report; Lisbon, Portugal, 2017; pp. 1–223. Available online: https://op.europa.eu/en/publication-detail/-/publication/78e42e6 c-d8a6-11e7-a506-01aa75ed71a1/language-en (accessed on 7 October 2021). 17. Oliveira, M.L.S.; Izquierdo, M.; Querol, X.; Lieberman, R.N.; Saikia, B.K.; Silva, L.F.O. Nanoparticles from construction wastes: A problem to health and the environment. J. Clean. Prod. 2019, 219, 236–243. [CrossRef] 18. Oliveira, M.L.; Neckel, A.; Pinto, D.; Maculan, L.S.; Zanchett, M.R.D.; Silva, L.F.O. Air pollutants and their degradation of a historic building in the largest metropolitan area in Latin America. Chemosphere 2021, 277, 130286. [CrossRef] 19. Sampaio, C.H.; Cazacliu, B.G.; Miltzarek, G.L.; Huchet, F.; Guen, L.L.; Petter, C.O.; Paranhos, R.; Ambrós, W.M.; Oliveira, M.L.S. Stratification in air jigs of concrete/brick/gypsum particles. Constr. Build. Mater. 2016, 109, 63–72. [CrossRef] 20. Wu, Z.; Zhang, X.; Wu, M. Mitigating construction dust pollution: State of the art and the way forward. J. Clean. Prod. 2016, 112, 1658–1666. [CrossRef] 21. Gálvez-Martos, J.-L.; Styles, D.; Schoenberger, H.; Zeschmar-Lahl, B. Construction and demolition waste best management practice in Europe. Resour. Conserv. Recycl. 2018, 136, 166–178. [CrossRef] 22. Ma, Z.; Tang, Q.; Yang, D.; Ba, G. Durability Studies on the Recycled Aggregate Concrete in China over the Past Decade: A Review. Adv. Civ. Eng. 2019, 2019, 4073130. [CrossRef] 23. Wang, B.; Yan, L.; Fu, Q.; Kasal, B. A Comprehensive Review on Recycled Aggregate and Recycled Aggregate Concrete. Resour. Conserv. Recycl. 2021, 171, 105565. [CrossRef] 24. Cheriyan, D.; Choi, J.-H. A review of research on particulate matter pollution in the construction industry. J. Clean. Prod. 2020, 254, 120077. [CrossRef] 25. Curto, A.; Donaire-Gonzalez, D.; Barrera-Gómez, J.; Marshall, J.D.; Nieuwenhuijsen, M.J.; Wellenius, G.A.; Tonne, C. Performance of low-cost monitors to assess household air pollution. Environ. Res. 2018, 163, 53–63. [CrossRef] [PubMed] 26. Silva, L.F.O.; Pinto, D.; Neckel, A.; Oliveira, M.L.; Sampaio, C.H. Atmospheric nanocompounds on Lanzarote Island: Vehicular exhaust and igneous geologic formation interactions. Chemosphere 2020, 254, 126822. [CrossRef] [PubMed] 27. Silva, L.F.O.; Pinto, D.; Neckel, A.; Oliveira, M.L.S. An analysis of vehicular exhaust derived nanoparticles and historical Belgium fortress building interfaces. Geosci. Front. 2020, 11, 2053–2060. [CrossRef] 28. dos Reis, G.S.; Cazacliu, B.G.; Cothenet, A.; Poullain, P.; Wilhelm, M.; Sampaio, C.H.; Lima, E.C.; Ambrós, W.; Torrenti, J.-M. Fabrication, microstructure, and properties of fired clay bricks using construction and demolition waste sludge as the main additive. J. Clean. Prod. 2020, 258, 120733. [CrossRef] 29. Oliveira, M.L.S.; Neckel, A.; Pinto, D.; Maculan, L.S.; Dotto, G.L.; Silva, L.F.O. The impact of air pollutants on the degradation of two historic buildings in Bordeaux, France. Urban Clim. 2021, 39, 100927. [CrossRef] 30. Li, P.; Li, L.; Yang, K.; Zheng, T.; Liu, J.; Wang, Y. Characteristics of microbial aerosol particles dispersed downwind from rural sanitation facilities: Size distribution, source tracking and exposure risk. Environ. Res. 2021, 195, 110798. [CrossRef] 31. Li, T.-Y.; Xie, M.-Y.; Bao, L.-J.; Wu, C.-C.; Zeng, E.Y. Emissions of polycyclic aromatic hydrocarbons from primitive e-waste recycling: Particle size dependence and potential health risk. Sci. Total Environ. 2021, 781, 146814. [CrossRef] 32. Zhang, Y.; Guo, Z.; Peng, C.; Deng, H.; Xiao, X. A questionnaire based probabilistic risk assessment (PRA) of heavy metals in urban and suburban soils under different land uses and receptor populations. Sci. Total Environ. 2021, 793, 148525. [CrossRef] 33. Shao, L.; Ge, S.; Jones, T.; Santosh, M.; Silva, L.F.O.; Cao, Y.; Oliveira, M.L.S.; Zhang, M.; Bérubé, K. The role of airborne particles and environmental considerations in the transmission of SARS-CoV-2. Geosci. Front. 2021, 12, 101189. [CrossRef] 34. Toscan, P.C.; Neckel, A.; Maculan, L.S.; Korcelski, C.; Oliveira, M.L.S.; Bodah, E.T.; Bodah, B.W.; Kujawa, H.A.; Gonçalves, A.C. Use of Geospatial Tools to Predict the Risk of Contamination by SARS-CoV-2 in Urban Cemeteries. Available online: https://www.sciencedirect.com/science/article/pii/S1674987121001742 (accessed on 18 April 2021). 35. Zorzi, C.G.C.; Neckel, A.; Maculan, L.S.; Cardoso, G.T.; Dal Moro, L.; Del Savio, A.A.; Carrasco, L.D.Z.; Oliveira, M.L.S.; Bodah, E.T.; Bodah, B.W. Geo-Environmental Parametric 3D Models of SARS-CoV-2 Virus Circulation in Hospital Ventilation Systems. Available online: https://www.sciencedirect.com/science/article/pii/S1674987121001432 (accessed on 18 April 2021). 36. Morillas, H.; García-Florentino, C.; Marcaida, I.; Maguregui, M.; Arana, G.; Silva, L.F.O.; Madariaga, J.M. In-situ analytical study of bricks exposed to marine environment using hand-held X-ray fluorescence spectrometry and related laboratory techniques. Spectrochim. Acta Part B At. Spectrosc. 2018, 146, 28–35. [CrossRef] 37. Morillas, H.; Vazquez, P.; Maguregui, M.; Marcaida, I.; Silva, L.F.O. Composition and porosity study of original and restoration materials included in a coastal historical construction. Constr. Build. Mater. 2018, 178, 384–392. [CrossRef] 38. Morillas, H.; Maguregui, M.; Gallego-Cartagena, E.; Huallparimachi, G.; Marcaida, I.; Salcedo, I.; Silva, L.F.O.; Astete, F. Evaluation of the role of biocolonizations in the conservation state of Machu Picchu (Peru): The Sacred Rock. Sci. Total Environ. 2019, 654, 1379–1388. [CrossRef] [PubMed] 39. Henriques, M. Will COVID-19 Have a Lasting Impact on The Environment? BBC Future: New York, NY, USA, 2020. 40. Tong, R.; Cheng, M.; Zhang, L.; Liu, M.; Yang, X.; Li, X.; Yin, W. The construction dust-induced occupational health risk using Monte-Carlo simulation. J. Clean. Prod. 2018, 184, 598–608. [CrossRef] 41. Cheriyan, D.; Choi, J.-H. Estimation of particulate matter exposure to construction workers using low-cost dust sensors. Sustain. Cities Soc. 2020, 59, 102197. [CrossRef] 42. Silva, L.F.O.; Milanes, C.; Pinto, D.; Ramirez, O.; Lima, B.D. Multiple hazardous elements in nanoparticulate matter from a Caribbean industrialized atmosphere. Chemosphere 2020, 239, 124776. [CrossRef] [PubMed] 43. Civeira, M.; Oliveira, M.; Hower, J.; Agudelo-Castañeda, D.; Taffarel, S.; Ramos, C.; Kautzmann, R.; Silva, L.F. Modification, adsorption, and geochemistry processes on altered minerals and amorphous phases on the nanometer scale: Examples from copper mining refuse, Touro, Spain. Environ. Sci. Pollut. Res. 2015, 23, 6535–6545. [CrossRef] 44. Civeira, M.S.; Ramos, C.G.; Oliveira, M.L.S.; Kautzmann, R.M.; Taffarel, S.R.; Teixeira, E.C.; Silva, L.F. Nano-mineralogy of suspended sediment during the beginning of coal rejects spill. Chemosphere 2016, 145, 142–147. [CrossRef] [PubMed] 45. Dalmora, A.C.; Ramos, C.G.; Querol, X.; Kautzmann, R.M.; Oliveira, M.L.S.; Taffarel, S.R.; Moreno, T.; Silva, L.F. Nanoparticulate mineral matter from basalt dust wastes. Chemosphere 2016, 144, 2013–2017. [CrossRef] 46. León-Mejía, G.; Silva, L.F.O.; Civeira, M.S.; Oliveira, M.; Machado, M.; Villela, I.V.; Hartmann, A.; Premoli, S.; Corrêa, D.S.; da Silva, J.; et al. Cytotoxicity and genotoxicity induced by coal and coal fly ash particles samples in V79 cells. Environ. Sci. Pollut. Res. 2016, 23, 24019–24031. [CrossRef] 47. Sehn, J.; De Leão, F.; Da Boit, K.; Oliveira, M.; Hidalgo, G.; Sampaio, C.; Silva, L.F. Nanomineralogy in the real world: A perspective on nanoparticles in the environmental impacts of coal fire. Chemosphere 2016, 147, 439–443. [CrossRef] 48. Rodriguez-Iruretagoiena, A.; de Vallejuelo, S.; de Diego, A.; de Leão, F.; de Medeiros, D.; Oliveira, M.; Tafarel, S.; Arana, G.; Madariaga, J.; Silva, L.F. The mobilization of hazardous elements after a tropical storm event in a polluted estuary. Sci. Total Environ. 2016, 565, 721–729. [CrossRef] 49. Ramos, C.G.; Querol, X.; Dalmora, A.C.; de Pires, K.C.J.; Schneider, I.A.H.; Oliveira, L.F.S.; Kautzmann, R.M. Evaluation of the potential of volcanic rock waste from southern Brazil as a natural soil fertilizer. J. Clean. Prod. 2017, 142, 2700–2706. [CrossRef] 50. Gasparotto, J.; Chaves, P.R.; Martinello, K.D.B.; da Rosa-Siva, H.T.; Bortolin, R.C.; Silva, L.F.O.; Rabelo, T.K.; da Silva, J.; da Silva, F.R.; Nordin, A.P.; et al. Obese rats are more vulnerable to inflammation, genotoxicity and oxidative stress induced by coal dust inhalation than non-obese rats. Ecotoxicol. Environ. Saf. 2018, 165, 44–51. [CrossRef] 51. Rodriguez, A.; de Vallejuelo, S.F.-O.; Gredilla, A.; Ramos, C.G.; Oliveira, M.L.S.; Arana, G.; de Diego, A.; Madariaga, J.M.; Silva, L.F.O. Fate of hazardous elements in agricultural soils surrounding a coal power plant complex from Santa Catarina (Brazil). Sci. Total Environ. 2015, 508, 374–382. [CrossRef] [PubMed] 52. Ribeiro, J.; Daboit, K.; Flores, D.; Kronbauer, M.A.; Silva, L.F.O. Extensive FE-SEM/EDS, HR-TEM/EDS and ToF-SIMS studies of micron- to nano-particles in anthracite fly ash. Sci. Total Environ. 2013, 452, 98–107. [CrossRef] [PubMed] 53. Dias, C.L.; Oliveira, M.L.S.; Hower, J.C.; Taffarel, S.R.; Kautzmann, R.M.; Silva, L.F.O. Nanominerals and ultrafine particles from coal fires from Santa Catarina, South Brazil. Int. J. Coal Geol. 2014, 122, 50–60. [CrossRef] 54. Silva, L.F.O.; Izquierdo, M.; Querol, X.; Finkelman, R.B.; Oliveira, M.L.S.; Wollenschlager, M.; Towler, M.; Pérez-López, R.; Macias, F. Leaching of potential hazardous elements of coal cleaning rejects. Environ. Monit. Assess. 2010, 175, 109–126. [CrossRef] 55. Silva, L.F.O.; Pinto, D.; Dotto, G.L.; Hower, J.C. Nanomineralogy of evaporative precipitation of efflorescent compounds from coal mine drainage. Geosci. Front. 2020, 12, 101003. [CrossRef] 56. Cao, P.; Zhang, B. Research and implementation of suppression method of dust pollution environment in large-scale construction. Ekoloji 2019, 28, 2813–2823. 57. De Paoli, F.; Agudelo-Castañeda, D.M.; Teixeira, E.C.; Silva, L.F.O.; Kumar, P. Number concentrations and size distributions of nanoparticles during the use of hand tools in refurbishment activities. J. Nanoparticle Res. 2018, 20, 264. [CrossRef] 58. Yang, C.; Liu, Y.; Sun, X.; Zhang, Y.; Hou, L.; Zhang, Q.; Yuan, C. In-situ construction of hierarchical accordion-like TiO2/Ti3C2 nanohybrid as anode material for lithium and sodium ion batteries. Electrochim. Acta 2018, 271, 165–172. [CrossRef] 59. Yu, Y.; Liu, S.; Wang, W.; Shang, Q.; Han, J.; Liu, C.; Tian, Z.; Chen, J. Eco-friendly utilization of sawdust: Ionic liquid-modified biochar for enhanced Li+ storage of TiO2. Sci. Total Environ. 2021, 794, 148688. [CrossRef] [PubMed] |
dc.rights.spa.fl_str_mv |
CC0 1.0 Universal |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/publicdomain/zero/1.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
CC0 1.0 Universal http://creativecommons.org/publicdomain/zero/1.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.source.spa.fl_str_mv |
Sustainability |
institution |
Corporación Universidad de la Costa |
dc.source.url.spa.fl_str_mv |
https://www.mdpi.com/2071-1050/13/24/14071 |
bitstream.url.fl_str_mv |
https://repositorio.cuc.edu.co/bitstreams/72c96e9f-c1e4-4f12-ba5a-413c9a54c903/download https://repositorio.cuc.edu.co/bitstreams/d4e5bb10-d07c-4dd8-bfec-073958ff3e60/download https://repositorio.cuc.edu.co/bitstreams/b9fc177e-7da0-4dac-8fa4-491a7f30a103/download https://repositorio.cuc.edu.co/bitstreams/328bb12c-0aab-47e5-89aa-6d6e5464e649/download https://repositorio.cuc.edu.co/bitstreams/c66f8152-b512-4719-9c63-61d3f024debc/download |
bitstream.checksum.fl_str_mv |
11e0a4e0db9d2dd04ccd4632b8b3e152 42fd4ad1e89814f5e4a476b409eb708c e30e9215131d99561d40d6b0abbe9bad d3412d9237dd18275e117ae38ce7e913 47beed53789ba2789afd7f31abe28c50 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad de la Costa CUC |
repository.mail.fl_str_mv |
repdigital@cuc.edu.co |
_version_ |
1828166839166828544 |
spelling |
Pinto, DianaNeckel, AlcindoDotto, Guilherme LuizAdelodun, Bashir2022-01-22T21:50:47Z2022-01-22T21:50:47Z2021-12-202071-1050https://hdl.handle.net/11323/9002https://doi.org/10.3390/su132414071Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/Building activity is a significant source of atmospheric contamination by ultrafine dust. Cognizant of this fact, those active in the use and recycling of construction materials must be aware of the risks associated with exposure to nanoparticles (NPs) and ultra-fine particles (UFPs), as well as the associated health impacts. This work analyzed NPs and UFPs generated in a small building-material recycling company using high-resolution electron microscopes and X-ray Diffraction. A self-made passive sampler (LSPS) that can obtain particulate samples without physical and morphological changes, especially where there is a suspension of particulate material, was used in this study. A total of 96 particulate samples, using the LSPS for three months in four seasons, were collected during the study. Thus, the dry deposition of the particles, which are considered highly harmful to human health, was found in each of the four seasons of the year. It is suggested that for future research, the toxicological evaluations of the particulates in the construction industry should be investigated through the consideration of measures to control and mitigate the health risks of workers regarding exposure to NPs and UFPs.Pinto, Diana-will be generated-orcid-0000-0002-5958-6216-600Neckel, AlcindoDotto, Guilherme Luiz-will be generated-orcid-0000-0002-4413-8138-600Adelodun, Bashir-will be generated-orcid-0000-0002-1533-5319-600application/pdfengCorporación Universidad de la CostaCC0 1.0 Universalhttp://creativecommons.org/publicdomain/zero/1.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Sustainabilityhttps://www.mdpi.com/2071-1050/13/24/14071Air pollutionConstruction waste recyclingNanoparticlesHuman healthIndoor nanoparticle characterization in construction waste recycling companies over timeArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersion1. Lima, B.D.; Teixeira, E.C.; Hower, J.C.; Civeira, M.S.; Ramírez, O.; Yang, C.; Oliveira, M.L.S.; Silva, L.F.O. Metal-enriched nanoparticles and black carbon: A perspective from the Brazil railway system air pollution. Geosci. Front. 2021, 12, 101129. [CrossRef]2. Neckel, A.; Oliveira, M.L.S.; Bolaño, L.J.C.; Maculan, L.S.; Dal Moro, L.; Bodah, E.T.; Moreno-Ríos, A.L.; Bodah, B.W.; Silva, L.F.O. Biophysical matter in a marine estuary identified by the Sentinel-3B OLCI satellite and the presence of terrestrial iron (Fe) nanoparticles. Mar. Pollut. Bull. 2021, 173, 112925. [CrossRef] [PubMed]3. Oliveira, M.L.S.; Flores, E.M.M.; Dotto, G.L.; Neckel, A.; Silva, L.F.O. Nanomineralogy of mortars and ceramics from the Forum of Caesar and Nerva (Rome, Italy): The protagonist of black crusts produced on historic buildings. J. Clean. Prod. 2021, 278, 123982. [CrossRef]4. Trejos, E.M.; Silva, L.F.O.; Hower, J.C.; Flores, E.M.M.; González, C.M.; Pachón, J.E.; Aristizábal, B.H. Volcanic emissions and atmospheric pollution: A study of nanoparticles. Geosci. Front. 2021, 12, 746–755. [CrossRef]5. WHO. How Air Pollution Is Destroying Our Health. 2018. Available online: https://www.who.int/air-pollution/news-andevents/how-air-pollution-is-destroying-our-health (accessed on 18 April 2021).6. Chojer, H.; Branco, P.T.B.S.; Martins, F.G.; Alvim-Ferraz, M.C.M.; Sousa, S.I.V. Development of low-cost indoor air quality monitoring devices: Recent advancements. Sci. Total Environ. 2020, 727, 138385. [CrossRef]7. Schneider, I.L.; Teixeira, E.C.; Dotto, G.L.; Pinto, D.; Yang, C.-X.; Silva, L.F.O. Geochemical study of submicron particulate matter (PM1) in a metropolitan area. Geosci. Front. 2020, 13, 101130. [CrossRef]8. Silva, L.F.O.; Pinto, D.; Neckel, A.; Dotto, G.L.; Oliveira, M.L.S. The impact of air pollution on the rate of degradation of the fortress of Florianópolis Island, Brazil. Chemosphere 2020, 251, 126838. [CrossRef]9. Dotto, G.L.; De Souza, V.C.; De Moura, J.M.; de Moura, C.M.; de Pinto, L.A.A. Influence of Drying Techniques on the Characteristics of Chitosan and the Quality of Biopolymer Films. Dry. Technol. 2011, 29, 1784–1791. [CrossRef]10. Dotto, G.L.; Cadaval, T.R.S.; Pinto, L.A.A. Use of Spirulina platensis micro and nanoparticles for the removal synthetic dyes from aqueous solutions by biosorption. Process. Biochem. 2012, 47, 1335–1343. [CrossRef]11. Dotto, G.L.; Cunha, J.M.; Calgaro, C.O.; Tanabe, E.H.; Bertuol, D.A. Surface modification of chitin using ultrasound-assisted and supercritical CO2 technologies for cobalt adsorption. J. Hazard. Mater. 2015, 295, 29–36. [CrossRef]12. Dotto, G.L.; Rodrigues, F.K.; Tanabe, E.H.; Fröhlich, R.; Bertuol, D.A.; Martins, T.R.; Foletto, E.L. Development of chitosan/bentonite hybrid composite to remove hazardous anionic and cationic dyes from colored effluents. J. Environ. Chem. Eng. 2016, 4, 3230–3239. [CrossRef]13. Peres, E.C.; Slaviero, J.C.; Cunha, A.M.; Hosseini–Bandegharaei, A.; Dotto, G.L. Microwave synthesis of silica nanoparticles and its application for methylene blue adsorption. J. Environ. Chem. Eng. 2018, 6, 649–659. [CrossRef]14. Oliveira, M.L.S.; Dotto, G.L.; Pinto, D.; Neckel, A.; Silva, L.F.O. Nanoparticles as vectors of other contaminants in estuarine suspended sediments: Natural and real conditions. Mar. Pollut. Bull. 2021, 168, 112429. [CrossRef]15. Sveikauskas, L.; Rowe, S.; Mildenberger, J.; Price, J.; Young, A. Productivity Growth in Construction. J. Constr. Eng. Manag. 2016, 142, 04016045. [CrossRef]16. European Union. Resource Efficient Use of Mixed Wastes Improving Management of Construction and Demolition Waste, 1st ed.; Final Report; Lisbon, Portugal, 2017; pp. 1–223. Available online: https://op.europa.eu/en/publication-detail/-/publication/78e42e6 c-d8a6-11e7-a506-01aa75ed71a1/language-en (accessed on 7 October 2021).17. Oliveira, M.L.S.; Izquierdo, M.; Querol, X.; Lieberman, R.N.; Saikia, B.K.; Silva, L.F.O. Nanoparticles from construction wastes: A problem to health and the environment. J. Clean. Prod. 2019, 219, 236–243. [CrossRef]18. Oliveira, M.L.; Neckel, A.; Pinto, D.; Maculan, L.S.; Zanchett, M.R.D.; Silva, L.F.O. Air pollutants and their degradation of a historic building in the largest metropolitan area in Latin America. Chemosphere 2021, 277, 130286. [CrossRef]19. Sampaio, C.H.; Cazacliu, B.G.; Miltzarek, G.L.; Huchet, F.; Guen, L.L.; Petter, C.O.; Paranhos, R.; Ambrós, W.M.; Oliveira, M.L.S. Stratification in air jigs of concrete/brick/gypsum particles. Constr. Build. Mater. 2016, 109, 63–72. [CrossRef]20. Wu, Z.; Zhang, X.; Wu, M. Mitigating construction dust pollution: State of the art and the way forward. J. Clean. Prod. 2016, 112, 1658–1666. [CrossRef]21. Gálvez-Martos, J.-L.; Styles, D.; Schoenberger, H.; Zeschmar-Lahl, B. Construction and demolition waste best management practice in Europe. Resour. Conserv. Recycl. 2018, 136, 166–178. [CrossRef]22. Ma, Z.; Tang, Q.; Yang, D.; Ba, G. Durability Studies on the Recycled Aggregate Concrete in China over the Past Decade: A Review. Adv. Civ. Eng. 2019, 2019, 4073130. [CrossRef]23. Wang, B.; Yan, L.; Fu, Q.; Kasal, B. A Comprehensive Review on Recycled Aggregate and Recycled Aggregate Concrete. Resour. Conserv. Recycl. 2021, 171, 105565. [CrossRef]24. Cheriyan, D.; Choi, J.-H. A review of research on particulate matter pollution in the construction industry. J. Clean. Prod. 2020, 254, 120077. [CrossRef]25. Curto, A.; Donaire-Gonzalez, D.; Barrera-Gómez, J.; Marshall, J.D.; Nieuwenhuijsen, M.J.; Wellenius, G.A.; Tonne, C. Performance of low-cost monitors to assess household air pollution. Environ. Res. 2018, 163, 53–63. [CrossRef] [PubMed]26. Silva, L.F.O.; Pinto, D.; Neckel, A.; Oliveira, M.L.; Sampaio, C.H. Atmospheric nanocompounds on Lanzarote Island: Vehicular exhaust and igneous geologic formation interactions. Chemosphere 2020, 254, 126822. [CrossRef] [PubMed]27. Silva, L.F.O.; Pinto, D.; Neckel, A.; Oliveira, M.L.S. An analysis of vehicular exhaust derived nanoparticles and historical Belgium fortress building interfaces. Geosci. Front. 2020, 11, 2053–2060. [CrossRef]28. dos Reis, G.S.; Cazacliu, B.G.; Cothenet, A.; Poullain, P.; Wilhelm, M.; Sampaio, C.H.; Lima, E.C.; Ambrós, W.; Torrenti, J.-M. Fabrication, microstructure, and properties of fired clay bricks using construction and demolition waste sludge as the main additive. J. Clean. Prod. 2020, 258, 120733. [CrossRef]29. Oliveira, M.L.S.; Neckel, A.; Pinto, D.; Maculan, L.S.; Dotto, G.L.; Silva, L.F.O. The impact of air pollutants on the degradation of two historic buildings in Bordeaux, France. Urban Clim. 2021, 39, 100927. [CrossRef]30. Li, P.; Li, L.; Yang, K.; Zheng, T.; Liu, J.; Wang, Y. Characteristics of microbial aerosol particles dispersed downwind from rural sanitation facilities: Size distribution, source tracking and exposure risk. Environ. Res. 2021, 195, 110798. [CrossRef]31. Li, T.-Y.; Xie, M.-Y.; Bao, L.-J.; Wu, C.-C.; Zeng, E.Y. Emissions of polycyclic aromatic hydrocarbons from primitive e-waste recycling: Particle size dependence and potential health risk. Sci. Total Environ. 2021, 781, 146814. [CrossRef]32. Zhang, Y.; Guo, Z.; Peng, C.; Deng, H.; Xiao, X. A questionnaire based probabilistic risk assessment (PRA) of heavy metals in urban and suburban soils under different land uses and receptor populations. Sci. Total Environ. 2021, 793, 148525. [CrossRef]33. Shao, L.; Ge, S.; Jones, T.; Santosh, M.; Silva, L.F.O.; Cao, Y.; Oliveira, M.L.S.; Zhang, M.; Bérubé, K. The role of airborne particles and environmental considerations in the transmission of SARS-CoV-2. Geosci. Front. 2021, 12, 101189. [CrossRef]34. Toscan, P.C.; Neckel, A.; Maculan, L.S.; Korcelski, C.; Oliveira, M.L.S.; Bodah, E.T.; Bodah, B.W.; Kujawa, H.A.; Gonçalves, A.C. Use of Geospatial Tools to Predict the Risk of Contamination by SARS-CoV-2 in Urban Cemeteries. Available online: https://www.sciencedirect.com/science/article/pii/S1674987121001742 (accessed on 18 April 2021).35. Zorzi, C.G.C.; Neckel, A.; Maculan, L.S.; Cardoso, G.T.; Dal Moro, L.; Del Savio, A.A.; Carrasco, L.D.Z.; Oliveira, M.L.S.; Bodah, E.T.; Bodah, B.W. Geo-Environmental Parametric 3D Models of SARS-CoV-2 Virus Circulation in Hospital Ventilation Systems. Available online: https://www.sciencedirect.com/science/article/pii/S1674987121001432 (accessed on 18 April 2021).36. Morillas, H.; García-Florentino, C.; Marcaida, I.; Maguregui, M.; Arana, G.; Silva, L.F.O.; Madariaga, J.M. In-situ analytical study of bricks exposed to marine environment using hand-held X-ray fluorescence spectrometry and related laboratory techniques. Spectrochim. Acta Part B At. Spectrosc. 2018, 146, 28–35. [CrossRef]37. Morillas, H.; Vazquez, P.; Maguregui, M.; Marcaida, I.; Silva, L.F.O. Composition and porosity study of original and restoration materials included in a coastal historical construction. Constr. Build. Mater. 2018, 178, 384–392. [CrossRef]38. Morillas, H.; Maguregui, M.; Gallego-Cartagena, E.; Huallparimachi, G.; Marcaida, I.; Salcedo, I.; Silva, L.F.O.; Astete, F. Evaluation of the role of biocolonizations in the conservation state of Machu Picchu (Peru): The Sacred Rock. Sci. Total Environ. 2019, 654, 1379–1388. [CrossRef] [PubMed]39. Henriques, M. Will COVID-19 Have a Lasting Impact on The Environment? BBC Future: New York, NY, USA, 2020.40. Tong, R.; Cheng, M.; Zhang, L.; Liu, M.; Yang, X.; Li, X.; Yin, W. The construction dust-induced occupational health risk using Monte-Carlo simulation. J. Clean. Prod. 2018, 184, 598–608. [CrossRef]41. Cheriyan, D.; Choi, J.-H. Estimation of particulate matter exposure to construction workers using low-cost dust sensors. Sustain. Cities Soc. 2020, 59, 102197. [CrossRef]42. Silva, L.F.O.; Milanes, C.; Pinto, D.; Ramirez, O.; Lima, B.D. Multiple hazardous elements in nanoparticulate matter from a Caribbean industrialized atmosphere. Chemosphere 2020, 239, 124776. [CrossRef] [PubMed]43. Civeira, M.; Oliveira, M.; Hower, J.; Agudelo-Castañeda, D.; Taffarel, S.; Ramos, C.; Kautzmann, R.; Silva, L.F. Modification, adsorption, and geochemistry processes on altered minerals and amorphous phases on the nanometer scale: Examples from copper mining refuse, Touro, Spain. Environ. Sci. Pollut. Res. 2015, 23, 6535–6545. [CrossRef]44. Civeira, M.S.; Ramos, C.G.; Oliveira, M.L.S.; Kautzmann, R.M.; Taffarel, S.R.; Teixeira, E.C.; Silva, L.F. Nano-mineralogy of suspended sediment during the beginning of coal rejects spill. Chemosphere 2016, 145, 142–147. [CrossRef] [PubMed]45. Dalmora, A.C.; Ramos, C.G.; Querol, X.; Kautzmann, R.M.; Oliveira, M.L.S.; Taffarel, S.R.; Moreno, T.; Silva, L.F. Nanoparticulate mineral matter from basalt dust wastes. Chemosphere 2016, 144, 2013–2017. [CrossRef]46. León-Mejía, G.; Silva, L.F.O.; Civeira, M.S.; Oliveira, M.; Machado, M.; Villela, I.V.; Hartmann, A.; Premoli, S.; Corrêa, D.S.; da Silva, J.; et al. Cytotoxicity and genotoxicity induced by coal and coal fly ash particles samples in V79 cells. Environ. Sci. Pollut. Res. 2016, 23, 24019–24031. [CrossRef]47. Sehn, J.; De Leão, F.; Da Boit, K.; Oliveira, M.; Hidalgo, G.; Sampaio, C.; Silva, L.F. Nanomineralogy in the real world: A perspective on nanoparticles in the environmental impacts of coal fire. Chemosphere 2016, 147, 439–443. [CrossRef]48. Rodriguez-Iruretagoiena, A.; de Vallejuelo, S.; de Diego, A.; de Leão, F.; de Medeiros, D.; Oliveira, M.; Tafarel, S.; Arana, G.; Madariaga, J.; Silva, L.F. The mobilization of hazardous elements after a tropical storm event in a polluted estuary. Sci. Total Environ. 2016, 565, 721–729. [CrossRef]49. Ramos, C.G.; Querol, X.; Dalmora, A.C.; de Pires, K.C.J.; Schneider, I.A.H.; Oliveira, L.F.S.; Kautzmann, R.M. Evaluation of the potential of volcanic rock waste from southern Brazil as a natural soil fertilizer. J. Clean. Prod. 2017, 142, 2700–2706. [CrossRef]50. Gasparotto, J.; Chaves, P.R.; Martinello, K.D.B.; da Rosa-Siva, H.T.; Bortolin, R.C.; Silva, L.F.O.; Rabelo, T.K.; da Silva, J.; da Silva, F.R.; Nordin, A.P.; et al. Obese rats are more vulnerable to inflammation, genotoxicity and oxidative stress induced by coal dust inhalation than non-obese rats. Ecotoxicol. Environ. Saf. 2018, 165, 44–51. [CrossRef]51. Rodriguez, A.; de Vallejuelo, S.F.-O.; Gredilla, A.; Ramos, C.G.; Oliveira, M.L.S.; Arana, G.; de Diego, A.; Madariaga, J.M.; Silva, L.F.O. Fate of hazardous elements in agricultural soils surrounding a coal power plant complex from Santa Catarina (Brazil). Sci. Total Environ. 2015, 508, 374–382. [CrossRef] [PubMed]52. Ribeiro, J.; Daboit, K.; Flores, D.; Kronbauer, M.A.; Silva, L.F.O. Extensive FE-SEM/EDS, HR-TEM/EDS and ToF-SIMS studies of micron- to nano-particles in anthracite fly ash. Sci. Total Environ. 2013, 452, 98–107. [CrossRef] [PubMed]53. Dias, C.L.; Oliveira, M.L.S.; Hower, J.C.; Taffarel, S.R.; Kautzmann, R.M.; Silva, L.F.O. Nanominerals and ultrafine particles from coal fires from Santa Catarina, South Brazil. Int. J. Coal Geol. 2014, 122, 50–60. [CrossRef]54. Silva, L.F.O.; Izquierdo, M.; Querol, X.; Finkelman, R.B.; Oliveira, M.L.S.; Wollenschlager, M.; Towler, M.; Pérez-López, R.; Macias, F. Leaching of potential hazardous elements of coal cleaning rejects. Environ. Monit. Assess. 2010, 175, 109–126. [CrossRef]55. Silva, L.F.O.; Pinto, D.; Dotto, G.L.; Hower, J.C. Nanomineralogy of evaporative precipitation of efflorescent compounds from coal mine drainage. Geosci. Front. 2020, 12, 101003. [CrossRef]56. Cao, P.; Zhang, B. Research and implementation of suppression method of dust pollution environment in large-scale construction. Ekoloji 2019, 28, 2813–2823.57. De Paoli, F.; Agudelo-Castañeda, D.M.; Teixeira, E.C.; Silva, L.F.O.; Kumar, P. Number concentrations and size distributions of nanoparticles during the use of hand tools in refurbishment activities. J. Nanoparticle Res. 2018, 20, 264. [CrossRef]58. Yang, C.; Liu, Y.; Sun, X.; Zhang, Y.; Hou, L.; Zhang, Q.; Yuan, C. In-situ construction of hierarchical accordion-like TiO2/Ti3C2 nanohybrid as anode material for lithium and sodium ion batteries. Electrochim. Acta 2018, 271, 165–172. [CrossRef]59. Yu, Y.; Liu, S.; Wang, W.; Shang, Q.; Han, J.; Liu, C.; Tian, Z.; Chen, J. Eco-friendly utilization of sawdust: Ionic liquid-modified biochar for enhanced Li+ storage of TiO2. Sci. Total Environ. 2021, 794, 148688. [CrossRef] [PubMed]PublicationORIGINALIndoor nanoparticle characterization in construction waste recycling companies over time.pdfIndoor nanoparticle characterization in construction waste recycling companies over time.pdfapplication/pdf6751741https://repositorio.cuc.edu.co/bitstreams/72c96e9f-c1e4-4f12-ba5a-413c9a54c903/download11e0a4e0db9d2dd04ccd4632b8b3e152MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8701https://repositorio.cuc.edu.co/bitstreams/d4e5bb10-d07c-4dd8-bfec-073958ff3e60/download42fd4ad1e89814f5e4a476b409eb708cMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/b9fc177e-7da0-4dac-8fa4-491a7f30a103/downloade30e9215131d99561d40d6b0abbe9badMD53THUMBNAILIndoor nanoparticle characterization in construction waste recycling companies over time.pdf.jpgIndoor nanoparticle characterization in construction waste recycling companies over time.pdf.jpgimage/jpeg73503https://repositorio.cuc.edu.co/bitstreams/328bb12c-0aab-47e5-89aa-6d6e5464e649/downloadd3412d9237dd18275e117ae38ce7e913MD54TEXTIndoor nanoparticle characterization in construction waste recycling companies over time.pdf.txtIndoor nanoparticle characterization in construction waste recycling companies over time.pdf.txttext/plain41813https://repositorio.cuc.edu.co/bitstreams/c66f8152-b512-4719-9c63-61d3f024debc/download47beed53789ba2789afd7f31abe28c50MD5511323/9002oai:repositorio.cuc.edu.co:11323/90022024-09-17 14:16:34.809http://creativecommons.org/publicdomain/zero/1.0/CC0 1.0 Universalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA== |