On the hereditary character of certain spectral properties and some applications

In this paper we study the behavior of certain spectral properties of an operator T on a proper closed and T-invariant subspace W ⊆ X such that T n(X) ⊆ W, for some n ≥ 1, where T ∈ L(X) and X is an infinite-dimensional complex Banach space. We prove that for these subspaces a large number of spectr...

Full description

Autores:
Carpintero, Rafael
ROSAS, ENNIS
García, Orlando
Sanabria, José
Malaver, Andrés
Tipo de recurso:
Article of journal
Fecha de publicación:
2021
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/8836
Acceso en línea:
https://hdl.handle.net/11323/8836
https://doi.org/10.22199/issn.0717-6279-3678
https://repositorio.cuc.edu.co/
Palabra clave:
Weyl type theorems
Restrictions of operators
Integral operators
Spectral properties
Semi-Fredholm theory
Rights
openAccess
License
CC0 1.0 Universal
id RCUC2_878c953dcbd77e3ab08529e3acc81d29
oai_identifier_str oai:repositorio.cuc.edu.co:11323/8836
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.spa.fl_str_mv On the hereditary character of certain spectral properties and some applications
title On the hereditary character of certain spectral properties and some applications
spellingShingle On the hereditary character of certain spectral properties and some applications
Weyl type theorems
Restrictions of operators
Integral operators
Spectral properties
Semi-Fredholm theory
title_short On the hereditary character of certain spectral properties and some applications
title_full On the hereditary character of certain spectral properties and some applications
title_fullStr On the hereditary character of certain spectral properties and some applications
title_full_unstemmed On the hereditary character of certain spectral properties and some applications
title_sort On the hereditary character of certain spectral properties and some applications
dc.creator.fl_str_mv Carpintero, Rafael
ROSAS, ENNIS
García, Orlando
Sanabria, José
Malaver, Andrés
dc.contributor.author.spa.fl_str_mv Carpintero, Rafael
ROSAS, ENNIS
García, Orlando
Sanabria, José
Malaver, Andrés
dc.subject.spa.fl_str_mv Weyl type theorems
Restrictions of operators
Integral operators
Spectral properties
Semi-Fredholm theory
topic Weyl type theorems
Restrictions of operators
Integral operators
Spectral properties
Semi-Fredholm theory
description In this paper we study the behavior of certain spectral properties of an operator T on a proper closed and T-invariant subspace W ⊆ X such that T n(X) ⊆ W, for some n ≥ 1, where T ∈ L(X) and X is an infinite-dimensional complex Banach space. We prove that for these subspaces a large number of spectral properties are transmitted from T to its restriction on W and vice-versa. As consequence of our results, we give conditions for which semi-Fredholm spectral properties, as well as Weyl type theorems, are equivalent for two given operators. Additionally, we give conditions under which an operator acting on a subspace can be extended on the entire space preserving the Weyl type theorems. In particular, we give some applications of these results for integral operators acting on certain functions spaces.
publishDate 2021
dc.date.accessioned.none.fl_str_mv 2021-11-05T13:58:44Z
dc.date.available.none.fl_str_mv 2021-11-05T13:58:44Z
dc.date.issued.none.fl_str_mv 2021
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_6501
status_str acceptedVersion
dc.identifier.issn.spa.fl_str_mv 0716-0917
0717-6279
dc.identifier.uri.spa.fl_str_mv https://hdl.handle.net/11323/8836
dc.identifier.doi.spa.fl_str_mv https://doi.org/10.22199/issn.0717-6279-3678
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
identifier_str_mv 0716-0917
0717-6279
Corporación Universidad de la Costa
REDICUC - Repositorio CUC
url https://hdl.handle.net/11323/8836
https://doi.org/10.22199/issn.0717-6279-3678
https://repositorio.cuc.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.references.spa.fl_str_mv [1] P. Aiena, Fredholm and local spectral theory, with application to multipliers. Dordrecht: Springer, 2004.
[2] P. Aiena, “Quasi-Fredholm operators and localized SVEP”, Acta scientiarum mathematicarum, vol. 73, no. 1, pp. 251-263, 2007.
[3] P. Aiena, M. T. Biondi, and C. Carpintero, “On Drazin invertibility”, Proceeding of the American Mathematical Society, vol. 136, no. 8, pp. 2839-2848, 2008.
[4] F. Astudillo-Villalba and J. Ramos-Fernández, “Multiplication operators on the space of functions of bounded variation”, Demonstratio mathematica, vol. 50, no. 1, pp. 105-115, 2017
[5] B. Barnes, “The spectral and Fredholm theory of extensions of bounded linear operators”, Proceeding of the American Mathematical Society, vol. 105, no. 4, pp. 941-949, 1989.
[6] B. Barnes, “Restrictions of bounded linear operators: closed range”, Proceeding of the American Mathematical Society, vol. 135, no. 6, pp. 1735-1740, 2007.
[7] M. Berkani, “Restriction of an operator to the range of its powers”, Studia mathematica, vol. 140, no. 2, pp. 163-175, 2000.
[8] M. Berkani, “On a class of quasi-Fredholm operators”, Integral equations and operator theory, vol. 34, no. 1, pp. 244-249, 1999.
[9] M. Berkani and M. Sarih, “On semi B-Fredholm operators”, Glasgow mathematical journal, vol. 43, no. 3, pp. 457-465, 2001.
[10] M. Berkani and H. Zariouh, “Extended Weyl type theorems”, Mathematica bohemica, vol. 134, no. 4, pp. 369-378, 2009.
[11] M. Berkani and J. Koliha, “Weyl type theorems for bounded linear operators”, Acta scientiarum mathematicarum, vol. 69, no. 1-2, pp. 359-376, 2003.
[12] M. Berkani and H. Zariouh, “New extended Weyl type theorems”, Matematički vesnik, vol. 62, no. 2, pp. 145-154, 2010.
[13] M. Berkani, M. Sarih, and H. Zariouh, “Browder-type theorems and SVEP”, Mediterranean journal of mathematics, vol. 8, pp. 399-409, 2011.
[14] C. Carpintero, A. Gutiérrez, E. Rosas, y J. Sanabria, “A note on preservation of generalized Fredholm spectra in Berkani’s sense”, Filomat, vol. 32, no. 18, pp. 6431-6440, 2018.
[15] L. A. Coburn, “Weyl’s theorem for nonnormal operators”, Michigan mathematical journal, vol. 13, no. 3, pp. 285-288, 1966.
[16] L. Chen and W. Su, “A note on Weyl-type theorems and restrictions”, Annals of functional analysis, vol. 8, no. 2, pp. 190-198, 2017.
[17] J. K. Finch, “The single valued extension property on a Banach space”, Pacific journal of mathematics, vol. 58, no. 1, pp. 61-69, 1975.
[18] A. Gupta and K. Mamtani, “Weyl-type theorems for restrictions of closed linear unbounded operators”, Acta Universitatis Matthiae Belii. Series mathematics, no. 2015, pp. 72-79, 2015.
[19] R. E. Harte and W. Y. Lee, “Another note on Weyl’s theorem”, Transactions of the American Mathematical Society, vol. 349, no. 5, pp. 2115-2124, 1997.
[20] H. Heuser, Functional analysis. New York, NY: Marcel Dekker, 1982.
[21] E. Hewitt and K. A. Ross, Abstract harmonic analysis, vol. 1. Berlin: Springer, 1963.
[22] K. Jörgens, Linear integral operator. Boston, MA: Pitman, 1982.
[23] V. Rakočević, “Operators obeying a-Weyl’s theorem”, Revue Roumaine de Mathématique Pures et Appliquées, vol. 34, no. 10, pp. 915-919, 1989.
[24] V. Rakočević, “On a class of operators”, Matematički vesnik, vol. 37, no. 4, pp. 423-425, 1985.
[25] J. Sanabria, C. Carpintero, E. Rosas, and O. García, “On generalized property (v) for bounded linear operators”, Studia mathematica, vol. 212, pp. 141-154, 2012.
[26] H. Zariouh, “Property (gz) for bounded linear operators”, Matematički vesnik, vol. 65, no. 1, pp. 94-103, 2013.
[27] H. Zariouh, “New version of property (az)”, Matematički vesnik, vol. 66, no. 3, pp. 317-322, 2014.
[28] H. Weyl, “Über beschränkte quadratische formen, deren differenz vollstetig ist”, Rendiconti del Circolo Matematico di Palermo, vol. 27, pp. 373-392, 1909.
dc.rights.spa.fl_str_mv CC0 1.0 Universal
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/publicdomain/zero/1.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv CC0 1.0 Universal
http://creativecommons.org/publicdomain/zero/1.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Corporación Universidad de la Costa
dc.source.spa.fl_str_mv Proyecciones
institution Corporación Universidad de la Costa
dc.source.url.spa.fl_str_mv https://www.revistaproyecciones.cl/article/view/3678
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/22a1ca35-2b30-4c4a-907f-0ab7b0d57312/download
https://repositorio.cuc.edu.co/bitstreams/3bf6fae6-d77a-46fe-be71-26d8f702d08b/download
https://repositorio.cuc.edu.co/bitstreams/3127eecc-b21f-456d-ab2d-7a84a611540f/download
https://repositorio.cuc.edu.co/bitstreams/b4a3e11d-bf5c-4c23-9e0a-8d8a5483a9ed/download
https://repositorio.cuc.edu.co/bitstreams/0253872c-4b84-4ddb-b930-d299a05dc997/download
bitstream.checksum.fl_str_mv a42eeb7431dbc7aacdceb8ced0b2f33e
42fd4ad1e89814f5e4a476b409eb708c
e30e9215131d99561d40d6b0abbe9bad
35f44070f307c303c260620172c2b46c
55100d06b1c7b2371f930ab58d855ade
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1811760676272603136
spelling Carpintero, RafaelROSAS, ENNISGarcía, OrlandoSanabria, JoséMalaver, Andrés2021-11-05T13:58:44Z2021-11-05T13:58:44Z20210716-09170717-6279https://hdl.handle.net/11323/8836https://doi.org/10.22199/issn.0717-6279-3678Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/In this paper we study the behavior of certain spectral properties of an operator T on a proper closed and T-invariant subspace W ⊆ X such that T n(X) ⊆ W, for some n ≥ 1, where T ∈ L(X) and X is an infinite-dimensional complex Banach space. We prove that for these subspaces a large number of spectral properties are transmitted from T to its restriction on W and vice-versa. As consequence of our results, we give conditions for which semi-Fredholm spectral properties, as well as Weyl type theorems, are equivalent for two given operators. Additionally, we give conditions under which an operator acting on a subspace can be extended on the entire space preserving the Weyl type theorems. In particular, we give some applications of these results for integral operators acting on certain functions spaces.Carpintero, Rafael-will be generated-orcid-0000-0003-2790-5160-600ROSAS, ENNIS-will be generated-orcid-0000-0001-8123-9344-600García, Orlando-will be generated-orcid-0000-0001-7235-2847-600Sanabria, José-will be generated-orcid-0000-0002-9749-4099-600Malaver, Andrés-will be generated-orcid-0000-0001-9986-5116-600application/pdfengCorporación Universidad de la CostaCC0 1.0 Universalhttp://creativecommons.org/publicdomain/zero/1.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Proyeccioneshttps://www.revistaproyecciones.cl/article/view/3678Weyl type theoremsRestrictions of operatorsIntegral operatorsSpectral propertiesSemi-Fredholm theoryOn the hereditary character of certain spectral properties and some applicationsArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersion[1] P. Aiena, Fredholm and local spectral theory, with application to multipliers. Dordrecht: Springer, 2004.[2] P. Aiena, “Quasi-Fredholm operators and localized SVEP”, Acta scientiarum mathematicarum, vol. 73, no. 1, pp. 251-263, 2007.[3] P. Aiena, M. T. Biondi, and C. Carpintero, “On Drazin invertibility”, Proceeding of the American Mathematical Society, vol. 136, no. 8, pp. 2839-2848, 2008.[4] F. Astudillo-Villalba and J. Ramos-Fernández, “Multiplication operators on the space of functions of bounded variation”, Demonstratio mathematica, vol. 50, no. 1, pp. 105-115, 2017[5] B. Barnes, “The spectral and Fredholm theory of extensions of bounded linear operators”, Proceeding of the American Mathematical Society, vol. 105, no. 4, pp. 941-949, 1989.[6] B. Barnes, “Restrictions of bounded linear operators: closed range”, Proceeding of the American Mathematical Society, vol. 135, no. 6, pp. 1735-1740, 2007.[7] M. Berkani, “Restriction of an operator to the range of its powers”, Studia mathematica, vol. 140, no. 2, pp. 163-175, 2000.[8] M. Berkani, “On a class of quasi-Fredholm operators”, Integral equations and operator theory, vol. 34, no. 1, pp. 244-249, 1999.[9] M. Berkani and M. Sarih, “On semi B-Fredholm operators”, Glasgow mathematical journal, vol. 43, no. 3, pp. 457-465, 2001.[10] M. Berkani and H. Zariouh, “Extended Weyl type theorems”, Mathematica bohemica, vol. 134, no. 4, pp. 369-378, 2009.[11] M. Berkani and J. Koliha, “Weyl type theorems for bounded linear operators”, Acta scientiarum mathematicarum, vol. 69, no. 1-2, pp. 359-376, 2003.[12] M. Berkani and H. Zariouh, “New extended Weyl type theorems”, Matematički vesnik, vol. 62, no. 2, pp. 145-154, 2010.[13] M. Berkani, M. Sarih, and H. Zariouh, “Browder-type theorems and SVEP”, Mediterranean journal of mathematics, vol. 8, pp. 399-409, 2011.[14] C. Carpintero, A. Gutiérrez, E. Rosas, y J. Sanabria, “A note on preservation of generalized Fredholm spectra in Berkani’s sense”, Filomat, vol. 32, no. 18, pp. 6431-6440, 2018.[15] L. A. Coburn, “Weyl’s theorem for nonnormal operators”, Michigan mathematical journal, vol. 13, no. 3, pp. 285-288, 1966.[16] L. Chen and W. Su, “A note on Weyl-type theorems and restrictions”, Annals of functional analysis, vol. 8, no. 2, pp. 190-198, 2017.[17] J. K. Finch, “The single valued extension property on a Banach space”, Pacific journal of mathematics, vol. 58, no. 1, pp. 61-69, 1975.[18] A. Gupta and K. Mamtani, “Weyl-type theorems for restrictions of closed linear unbounded operators”, Acta Universitatis Matthiae Belii. Series mathematics, no. 2015, pp. 72-79, 2015.[19] R. E. Harte and W. Y. Lee, “Another note on Weyl’s theorem”, Transactions of the American Mathematical Society, vol. 349, no. 5, pp. 2115-2124, 1997.[20] H. Heuser, Functional analysis. New York, NY: Marcel Dekker, 1982.[21] E. Hewitt and K. A. Ross, Abstract harmonic analysis, vol. 1. Berlin: Springer, 1963.[22] K. Jörgens, Linear integral operator. Boston, MA: Pitman, 1982.[23] V. Rakočević, “Operators obeying a-Weyl’s theorem”, Revue Roumaine de Mathématique Pures et Appliquées, vol. 34, no. 10, pp. 915-919, 1989.[24] V. Rakočević, “On a class of operators”, Matematički vesnik, vol. 37, no. 4, pp. 423-425, 1985.[25] J. Sanabria, C. Carpintero, E. Rosas, and O. García, “On generalized property (v) for bounded linear operators”, Studia mathematica, vol. 212, pp. 141-154, 2012.[26] H. Zariouh, “Property (gz) for bounded linear operators”, Matematički vesnik, vol. 65, no. 1, pp. 94-103, 2013.[27] H. Zariouh, “New version of property (az)”, Matematički vesnik, vol. 66, no. 3, pp. 317-322, 2014.[28] H. Weyl, “Über beschränkte quadratische formen, deren differenz vollstetig ist”, Rendiconti del Circolo Matematico di Palermo, vol. 27, pp. 373-392, 1909.PublicationORIGINALOn the hereditary character of certain spectral properties and some applications.pdfOn the hereditary character of certain spectral properties and some applications.pdfapplication/pdf234996https://repositorio.cuc.edu.co/bitstreams/22a1ca35-2b30-4c4a-907f-0ab7b0d57312/downloada42eeb7431dbc7aacdceb8ced0b2f33eMD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8701https://repositorio.cuc.edu.co/bitstreams/3bf6fae6-d77a-46fe-be71-26d8f702d08b/download42fd4ad1e89814f5e4a476b409eb708cMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/3127eecc-b21f-456d-ab2d-7a84a611540f/downloade30e9215131d99561d40d6b0abbe9badMD53THUMBNAILOn the hereditary character of certain spectral properties and some applications.pdf.jpgOn the hereditary character of certain spectral properties and some applications.pdf.jpgimage/jpeg35936https://repositorio.cuc.edu.co/bitstreams/b4a3e11d-bf5c-4c23-9e0a-8d8a5483a9ed/download35f44070f307c303c260620172c2b46cMD54TEXTOn the hereditary character of certain spectral properties and some applications.pdf.txtOn the hereditary character of certain spectral properties and some applications.pdf.txttext/plain28452https://repositorio.cuc.edu.co/bitstreams/0253872c-4b84-4ddb-b930-d299a05dc997/download55100d06b1c7b2371f930ab58d855adeMD5511323/8836oai:repositorio.cuc.edu.co:11323/88362024-09-16 16:43:32.808http://creativecommons.org/publicdomain/zero/1.0/CC0 1.0 Universalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA==