KOH activated carbons from Brazil nut shell: preparation, characterization, and their application in phenol adsorption

Activated carbons named AC105 and AC11 were prepared from Brazil nut shells using the weight ratios of Brazil nut shells: KOH of 1:0.5 and 1:1, respectively. The prepared materials were characterized using different techniques and applied to remove phenol from the aqueous solution through adsorption...

Full description

Autores:
da Silva, Maria C.F.
Schnorr, Carlos Eduardo
Frantz Lütke, Sabrina
Knani, Salah
Nascimento, Victoria X.
Lima, Éder C.
Thue, Pascal S.
Vieillard, Julien
Silva Oliveira, Luis Felipe
Dotto, Guilherme Luiz
Tipo de recurso:
Article of investigation
Fecha de publicación:
2022
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/10780
Acceso en línea:
https://hdl.handle.net/11323/10780
https://repositorio.cuc.edu.co/
Palabra clave:
Adsorption
Activated carbon
Chemical activation
Kinetic and isotherm models
Phenol
Simulated effluent
Rights
embargoedAccess
License
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
id RCUC2_878b7724f4537b9067d492929efecb4d
oai_identifier_str oai:repositorio.cuc.edu.co:11323/10780
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.eng.fl_str_mv KOH activated carbons from Brazil nut shell: preparation, characterization, and their application in phenol adsorption
title KOH activated carbons from Brazil nut shell: preparation, characterization, and their application in phenol adsorption
spellingShingle KOH activated carbons from Brazil nut shell: preparation, characterization, and their application in phenol adsorption
Adsorption
Activated carbon
Chemical activation
Kinetic and isotherm models
Phenol
Simulated effluent
title_short KOH activated carbons from Brazil nut shell: preparation, characterization, and their application in phenol adsorption
title_full KOH activated carbons from Brazil nut shell: preparation, characterization, and their application in phenol adsorption
title_fullStr KOH activated carbons from Brazil nut shell: preparation, characterization, and their application in phenol adsorption
title_full_unstemmed KOH activated carbons from Brazil nut shell: preparation, characterization, and their application in phenol adsorption
title_sort KOH activated carbons from Brazil nut shell: preparation, characterization, and their application in phenol adsorption
dc.creator.fl_str_mv da Silva, Maria C.F.
Schnorr, Carlos Eduardo
Frantz Lütke, Sabrina
Knani, Salah
Nascimento, Victoria X.
Lima, Éder C.
Thue, Pascal S.
Vieillard, Julien
Silva Oliveira, Luis Felipe
Dotto, Guilherme Luiz
dc.contributor.author.none.fl_str_mv da Silva, Maria C.F.
Schnorr, Carlos Eduardo
Frantz Lütke, Sabrina
Knani, Salah
Nascimento, Victoria X.
Lima, Éder C.
Thue, Pascal S.
Vieillard, Julien
Silva Oliveira, Luis Felipe
Dotto, Guilherme Luiz
dc.subject.proposal.eng.fl_str_mv Adsorption
Activated carbon
Chemical activation
Kinetic and isotherm models
Phenol
Simulated effluent
topic Adsorption
Activated carbon
Chemical activation
Kinetic and isotherm models
Phenol
Simulated effluent
description Activated carbons named AC105 and AC11 were prepared from Brazil nut shells using the weight ratios of Brazil nut shells: KOH of 1:0.5 and 1:1, respectively. The prepared materials were characterized using different techniques and applied to remove phenol from the aqueous solution through adsorption. The characterization data showed that both materials presented similar properties, with AC11 exhibiting a slightly higher specific surface area (332.2 m2 g–1) than AC105 (314.3 m2 g–1). The kinetic study showed that AC11 reached the process equilibrium faster than AC105, and the Elovich model was best suited to the kinetic data for both adsorbents. The equilibrium data followed the Sips model; the maximum adsorption capacities were 55.16 and 68.52 mg g–1 for AC105 and AC11, respectively. The application of the materials in the treatment of a simulated industrial effluent showed removal efficiencies of 28.05% and 48.20% for AC105 and AC11, respectively. Therefore, through the adsorption results, AC11 proved to be more efficient towards phenol removal and is a promising alternative for treating wastewater containing this contaminant.
publishDate 2022
dc.date.issued.none.fl_str_mv 2022-11
dc.date.available.none.fl_str_mv 2023-11
2024-02-23T15:41:02Z
dc.date.accessioned.none.fl_str_mv 2024-02-23T15:41:02Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
format http://purl.org/coar/resource_type/c_2df8fbb1
status_str publishedVersion
dc.identifier.citation.spa.fl_str_mv Maria C.F. da Silva, Carlos Schnorr, Sabrina F. Lütke, Salah Knani, Victoria X. Nascimento, Éder C. Lima, Pascal S. Thue, Julien Vieillard, Luis F.O. Silva, Guilherme L. Dotto, KOH activated carbons from Brazil nut shell: Preparation, characterization, and their application in phenol adsorption, Chemical Engineering Research and Design, Volume 187, 2022, Pages 387-396, ISSN 0263-8762, https://doi.org/10.1016/j.cherd.2022.09.012
dc.identifier.issn.spa.fl_str_mv 0263-8762
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/11323/10780
dc.identifier.doi.none.fl_str_mv 10.1016/j.cherd.2022.09.012
dc.identifier.eissn.spa.fl_str_mv 1744-3563
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC – Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
identifier_str_mv Maria C.F. da Silva, Carlos Schnorr, Sabrina F. Lütke, Salah Knani, Victoria X. Nascimento, Éder C. Lima, Pascal S. Thue, Julien Vieillard, Luis F.O. Silva, Guilherme L. Dotto, KOH activated carbons from Brazil nut shell: Preparation, characterization, and their application in phenol adsorption, Chemical Engineering Research and Design, Volume 187, 2022, Pages 387-396, ISSN 0263-8762, https://doi.org/10.1016/j.cherd.2022.09.012
0263-8762
10.1016/j.cherd.2022.09.012
1744-3563
Corporación Universidad de la Costa
REDICUC – Repositorio CUC
url https://hdl.handle.net/11323/10780
https://repositorio.cuc.edu.co/
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.ispartofjournal.spa.fl_str_mv Chemical Engineering Research and Design
dc.relation.references.spa.fl_str_mv Ahmaruzzaman, M., 2008. Adsorption of phenolic compounds on low-cost adsorbents: a review. Adv. Colloid Interface Sci. 143, 48–67. https://doi.org/10.1016/j.cis.2008.07.002
Al-Obaidi, M.A., Kara-Zaïtri, C., Mujtaba, I.M., 2017. Removal of phenol from wastewater using spiral-wound reverse osmosis process: model development based on experiment and simulation. J. Water Process Eng. 18, 20–28. https://doi.org/10. 1016/j.jwpe.2017.05.005
Alvarez, J., Lopez, G., Amutio, M., Bilbao, J., Olazar, M., 2015. Physical activation of rice husk pyrolysis char for the production of high surface area activated carbons. Ind. Eng. Chem. Res 54, 7241–7250. https://doi.org/10.1021/acs.iecr. 5b01589
Baldonia, A.B., Teodoro, L.P.R., Teodorob, P.E., Toninic, H., Tardind, F.D., Botin, A.A., Hoogerheide, E.S.S., Botelho, S.C.C., Lulu, J., de Farias Neto, A.L., Azevedo, V.C.R., 2020. Genetic diversity of Brazil nut tree (Bertholletia excelsa Bonpl.) in southern Brazilian Amazon. Ecol. Manag. 458, 117795. https:// doi.org/10.1016/j.foreco.2019.117795
Chiang, Y.C., Juang, R.S., 2017. Surface modifications of carbonaceous materials for carbon dioxide adsorption: a review. J. Taiwan Inst. Chem. Eng. 71, 214–234. https://doi.org/10.1016/j. jtice.2016.12.014
CONAMA (2005) Resolução CONAMA n° 357, de 17 de março de 2005. Conselho Nacional do Meio Ambiente (CONAMA).
Diel, J.C., Franco, D.S.P., Nunes, I.S., Pereira, H.A., Moreira, K.S., Burgo, T.A.L., Foletto, E.L., Dotto, G.L., 2021. Carbon nanotubes impregnated with metallic nanoparticles and their application as an adsorbent for the glyphosate removal in an aqueous matrix. J. Environ. Chem. Eng. 9, 105178. https://doi.org/10. 1016/j.jece.2021.105178
Du, W., Sun, J., Zan, Y., Zhang, Z., Ji, J., Wang, F., 2017. Biomassderived nitrogen-doped hierarchically porous carbon networks as efficient absorbents for phenol removal from wastewater over a wide pH range. RSC Adv. 7, 46629–46635. https://doi.org/10.1039/C7RA08374B
Duan, S., Ma, W., Pan, Y., Meng, F., Yu, S., Wu, L., 2017. Synthesis of magnetic biochar from iron sludge for the enhancement of Cr(VI) removal from solution. J. Taiwan Inst. Chem. Eng. 80, 835–841. https://doi.org/10.1016/j.jtice.2017.07.002
Duan, W., Meng, F., Cui, H., Lin, Y., Wang, G., Wu, J., 2018. Ecotoxicity of phenol and cresols to aquatic organisms: a review. Ecotoxicol. Environ. Saf. 157, 441–456. https://doi.org/10. 1016/j.ecoenv.2018.03.089
Ferreira, M.P., Lotte, R.G., D'Elia, F.V., Stamatopoulos, C., Kim, D.H., Benjamin, A.R., 2021. Accurate mapping of Brazil nut trees (Bertholletia excelsa) in Amazonian forests using WorldView-3 satellite images and convolutional neural networks. Ecol. Inf. 63, 101302. https://doi.org/10.1016/j.ecoinf. 2021.101302
Ferreira, S.D., Altafini, C.R., Perondi, D., Godinho, M., 2015. Pyrolysis of medium density fiberboard (MDF) wastes in a screw reactor. Energy Convers. Manag 92, 223–233. https://doi. org/10.1016/j.enconman.2014.12.032
Franco, D.S.P., Georgin, J., Netto, M.S., Allasia, D., Oliveira, M.L.S., Foletto, E.L., Dotto, G.L., 2021. Highly effective adsorption of synthetic phenol effluent by a novel activated carbon prepared from fruit wastes of the Ceiba speciosa forest species. J. Environ. Chem. Eng. 9, 105927. https://doi.org/10.1016/j.jece. 2021.105927
Fu, Y., Shen, Y., Zhang, Z., Ge, X., Chen, M., 2019. Activated biochars derived from rice husk via one- and two-step KOHcatalyzed pyrolysis for phenol adsorption. Sci. Total Environ. 646, 1567–1577. https://doi.org/10.1016/j.scitotenv.2018.07.423
Georgin, J., Marques, B.S., Peres, E.C., Allasia, D., Dotto, G.L., 2018. Biosorption of cationic dyes by Pará chestnut husk (Bertholletia excelsa. Water Sci. Technol. 77, 1612–1621. https://doi.org/10.2166/wst.2018.041
Giles, C.H., Smith, D., Huitson, A., 1974. A general treatment and classification of the solute adsorption isotherm. J. Colloid Interface Sci. 47, 755–765. https://doi.org/10.1016/0021- 9797(74)90252-5
Hameed, B.H., Rahman, A.A., 2008. Removal of phenol from aqueous solutions by adsorption onto activated carbon prepared from biomass material. J. Hazard Mater. 160, 576–581. https://doi.org/10.1016/j.jhazmat.2008.03.028
Hussain, S.N., Roberts, E.P.L., Asghar, H.M.A., Campen, A.K., Brown, N.W., 2013. Oxidation of phenol and the adsorption of breakdown products using a graphite adsorbent with electrochemical regeneration. Electro Acta 92, 20–30. https://doi. org/10.1016/j.electacta.2013.01.020
IBGE (2021) Produção da Extração Vegetal e da Silvicultura 2020. Instituto Brasileiro de Geografia e Estatística (IBGE).
Kalderis, D., Koutoulakis, D., Paraskeva, P., Diamadopoulos, E., Otal, E., del Valle, J.O., Fernández-Pereira, C., 2008. Adsorption of polluting substances on activated carbons prepared from rice husk and sugarcane bagasse. Chem. Eng. J. 144, 42–50. https://doi.org/10.1016/j.cej.2008.01.007
Kamiński, W., Kuśmierek, K., Świątkowski, A., Tomczak, E., 2020. Simultaneous adsorption of phenol derivatives from water onto spherical activated carbon. Ecol. Chem. Eng. S 27, 403–413. https://doi.org/10.2478/eces-2020-0026
Kumar, M., Upadhyay, S.N., Mishra, P.K., 2019. A comparative study of thermochemical characteristics of lignocellulosic biomasses. Bioresour. Technol. Rep. 8, 100186. https://doi.org/ 10.1016/j.biteb.2019.100186
Larasati, A., Fowler, G.D., Graham, N.J.D., 2020. Chemical regeneration of granular activated carbon: preliminary evaluation of alternative regenerant solutions. Environ. Sci. Water Res Technol. 6, 2043–2056. https://doi.org/10.1039/d0ew00328j
Lima, É.C., Adebayo, M.A., Machado, F.M., 2015. Kinetic and Equilibrium Models of Adsorption. In: Bergmann, C.P., Machado, F.M. (Eds.), Carbon Nanomaterials as Adsorbents for Environmental and Biological Applications. Springer International Publishing, Switzerland, pp. 33–69.
Lütke, S.F., Igansi, A.V., Pegoraro, L., Dotto, G.L., Pinto, L.A.A., Cadaval, T.R.S., 2019. Preparation of activated carbon from black wattle bark waste and its application for phenol adsorption. J. Environ. Chem. Eng. 7, 103396. https://doi.org/10. 1016/j.jece.2019.103396
Machado, L.M.M., Lütke, S.F., Perondi, D., Godinho, M., Oliveira, M.L.S., Collazzo, G.C., Dotto, G.L., 2020. Simultaneous production of mesoporous biochar and palmitic acid by pyrolysis of brewing industry wastes. Waste Manag 113, 96–104. https:// doi.org/10.1016/j.wasman.2020.05.038
Martins, A.C., Pezoti, O., Cazetta, A.L., Bedin, K.C., Yamazaki, D.A.S., Bandoch, G.F.G., Asefa, T., Visentainer, J.V., Almeida, V.C., 2015. Removal of tetracycline by NaOH-activated carbon produced from macadamia nut shells: kinetic and equilibrium studies. Chem. Eng. J. 260, 291–299. https://doi.org/10.1016/j. cej.2014.09.017
Mohammadi, S., Kargari, A., Sanaeepur, H., Abbassian, K., Najafi, A., Mofarrah, E., 2015. Phenol removal from industrial wastewaters: a short review. Desalin. Water Treat. 53, 2215–2234. https://doi.org/10.1080/19443994.2014.883327
Mohammadi, S.Z., Darijani, Z., Karimi, M.A., 2020. Fast and efficient removal of phenol by magnetic activated carbon-cobalt nanoparticles. J. Alloy. Compd. 832, 154942. https://doi.org/10. 1016/j.jallcom.2020.154942
Muniandy, L., Adam, F., Rahman, A., Mohamed, A.R., Ng, E.P., 2014. The synthesis and characterization of high purity mixed microporous/mesoporous activated carbon from rice husk using chemical activation with NaOH and KOH. Microporous Mesoporous Mater. 197, 316–323. https://doi.org/10.1016/j. micromeso.2014.06.020
Pradeep, N.V., Anupama, S., Navya, K., Shalini, H.N., Idris, M., Hampannavar, U.S., 2015. Biological removal of phenol from wastewaters: a mini-review. Appl. Water Sci. 5, 105–112. https://doi.org/10.1007/s13201-014-0176-8
Prauchner, M.J., Sapag, K., Rodríguez-Reinoso, F., 2016. Tailoring biomass-based activated carbon for CH4 storage by combining chemical activation with H3PO4 or ZnCl2 and physical activation with CO2. Carbon 110, 138–147. https://doi.org/10.1016/ j.carbon.2016.08.092
Raza, W., Lee, J., Raza, N., Luo, Y., Kim, K., Yang, J., 2019. Removal of phenolic compounds from industrial wastewater based on membrane-based technologies. J. Ind. Eng. Chem. 71, 1–18. https://doi.org/10.1016/j.jiec.2018.11.024
Rodrigues, L.A., da Silva, M.L.C.P., Alvarez-Mendes, M.O., Coutinho, A.R., Thim, G.P., 2011. Phenol removal from aqueous solution by activated carbon produced from avocado kernel seeds. Chem. Eng. J. 174, 49–57. https://doi.org/10.1016/ j.cej.2011.08.027
Singh, J., Bhunia, H., Basu, S., 2019. Adsorption of CO2 on KOH activated carbon adsorbents: Effect of different mass ratios. J. Environ. Manag. 250, 109457. https://doi.org/10.1016/j. jenvman.2019.109457
Ta, H.S., Van, K.L., Thi, T.T.L., Nguyen, D.H., 2021. Thermodynamic studies on the adsorption of phenol from aqueous solution by coffee husk activated carbon. Egypt J. Chem. 64, 2355–2367. https://doi.org/10.21608/EJCHEM.2021. 30318.2648
Thommes, M., Kaneko, K., Neimark, A.V., Olivier, J.P., RodriguezReinoso, F., Rouquerol, J., Sing, K.S.W., 2015. Physisorption of gases, with special reference to the evaluation of the surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem. https://doi.org/10.1515/pac-2014-1117
Thue, P.S., Adebayo, M.A., Lima, E.C., Sieliechi, J.M., Machado, F.M., Dotto, G.L., Vaghetti, J.C.P., Dias, S.L.P., 2016. Preparation, characterization, and application of microwave-assisted activated carbons from wood chips for removal of phenol from aqueous solution. J. Mol. Liq. 223, 1067–1080. https://doi.org/ 10.1016/j.molliq.2016.09.032
Thue, P.S., Umpierres, C.S., Lima, E.C., Lima, D.R., Machado, F.M., dos Reis, G.S., da Silva, R.S., Pavan, F.A., Tran, H.N., 2020. Single-step pyrolysis for producing magnetic activated carbon from tucumã (Astrocaryum aculeatum) seed and nickel (II) chloride and zinc (II) chloride. Application for removal of nicotinamide and propranolol. J. Hazard Mater. 398, 122903. https://doi.org/10.1016/j.jhazmat.2020.122903
Turki, A., Guillard, C., Dappozze, F., Ksibi, Z., Berhault, G., Kochkar, H., 2015. Phenol photocatalytic degradation over anisotropic TiO2 nanomaterials: kinetic study, adsorption isotherms, and formal mechanisms. Appl. Catal. B Environ. 163, 404–414. https://doi.org/10.1016/j.apcatb.2014.08.010
Wang, J., Lei, S., Liang, L., 2020. Preparation of porous activated carbon from semi-coke by high-temperature activation with KOH for the high-efficiency adsorption of aqueous tetracycline. Appl. Surf. Sci. 530, 147187. https://doi.org/10.1016/j. apsusc.2020.147187
Wei, H., Chen, J., Fu, N., Chen, H., Lin, H., Han, S., 2018. Biomassderived nitrogen-doped porous carbon with superior capacitive performance and high CO2 capture capacity. Electro Acta 266, 161–169. https://doi.org/10.1016/j.electacta.2017.12.192
Xu, J., Chen, L., Qu, H., Jiao, Y., Xie, J., Xing, G., 2014. Preparation and characterization of activated carbon from reedy grass leaves by chemical activation with H3PO4. Appl. Surf. Sci. 320, 674–680. https://doi.org/10.1016/j.apsusc.2014.08.178
Yahya, M.A., Al-Qodah, Z., Ngah, C.W.Z., 2015. Agricultural biowaste materials as potential sustainable precursors used for activated carbon production: A review. Renew. Sustain Energy Rev. 46, 218–235. https://doi.org/10.1016/j.rser.2015.02.051
Yu-bin, T., Qiang, L., Fang-yan, C., 2012. Preparation and characterization of activated carbon from waste ramulus mori. Chem. Eng. J. 203, 19–24. https://doi.org/10.1016/j.cej.2012.07. 007
Zazycki, M.A., Godinho, M., Perondi, D., Foletto, E.L., Collazzo, G.C., Dotto, G.L., 2018. New biochar from pecan nutshells as an alternative adsorbent for removing reactive red 141 from aqueous solutions. J. Clean. Prod. 171, 57–65. https://doi.org/ 10.1016/j.jclepro.2017.10.007
dc.relation.citationendpage.spa.fl_str_mv 396
dc.relation.citationstartpage.spa.fl_str_mv 387
dc.relation.citationvolume.spa.fl_str_mv 187
dc.rights.eng.fl_str_mv © 2022 Institution of Chemical Engineers. Published by Elsevier Ltd. All rights reserved.
dc.rights.license.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/embargoedAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_f1cf
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
© 2022 Institution of Chemical Engineers. Published by Elsevier Ltd. All rights reserved.
https://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_f1cf
eu_rights_str_mv embargoedAccess
dc.format.extent.spa.fl_str_mv 10 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.coverage.country.none.fl_str_mv Brazil
dc.publisher.spa.fl_str_mv Institution of Chemical Engineers
dc.publisher.place.spa.fl_str_mv United Kingdom
dc.source.spa.fl_str_mv https://www.sciencedirect.com/science/article/pii/S0263876222004841
institution Corporación Universidad de la Costa
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/37fdb1d4-5332-480a-aa46-be54073c57f9/download
https://repositorio.cuc.edu.co/bitstreams/bb646715-29bc-4da9-8a3c-7df800fd1f19/download
https://repositorio.cuc.edu.co/bitstreams/d4b0be9e-63ea-4f57-8b31-07a2b3d8812c/download
https://repositorio.cuc.edu.co/bitstreams/53e787b4-d783-4175-adb5-6ea30296ae64/download
bitstream.checksum.fl_str_mv fa98a0f17c870852fcc720d56479a0a3
2f9959eaf5b71fae44bbf9ec84150c7a
3f6dba6d8d5e9590666da92db2359974
6eb1c6ca0a3be89fdb5b99e2951d3ecb
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1811760771284074496
spelling Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)© 2022 Institution of Chemical Engineers. Published by Elsevier Ltd. All rights reserved.https://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/embargoedAccesshttp://purl.org/coar/access_right/c_f1cfda Silva, Maria C.F.Schnorr, Carlos EduardoFrantz Lütke, SabrinaKnani, SalahNascimento, Victoria X.Lima, Éder C.Thue, Pascal S.Vieillard, JulienSilva Oliveira, Luis FelipeDotto, Guilherme Luiz2024-02-23T15:41:02Z2023-112024-02-23T15:41:02Z2022-11Maria C.F. da Silva, Carlos Schnorr, Sabrina F. Lütke, Salah Knani, Victoria X. Nascimento, Éder C. Lima, Pascal S. Thue, Julien Vieillard, Luis F.O. Silva, Guilherme L. Dotto, KOH activated carbons from Brazil nut shell: Preparation, characterization, and their application in phenol adsorption, Chemical Engineering Research and Design, Volume 187, 2022, Pages 387-396, ISSN 0263-8762, https://doi.org/10.1016/j.cherd.2022.09.0120263-8762https://hdl.handle.net/11323/1078010.1016/j.cherd.2022.09.0121744-3563Corporación Universidad de la CostaREDICUC – Repositorio CUChttps://repositorio.cuc.edu.co/Activated carbons named AC105 and AC11 were prepared from Brazil nut shells using the weight ratios of Brazil nut shells: KOH of 1:0.5 and 1:1, respectively. The prepared materials were characterized using different techniques and applied to remove phenol from the aqueous solution through adsorption. The characterization data showed that both materials presented similar properties, with AC11 exhibiting a slightly higher specific surface area (332.2 m2 g–1) than AC105 (314.3 m2 g–1). The kinetic study showed that AC11 reached the process equilibrium faster than AC105, and the Elovich model was best suited to the kinetic data for both adsorbents. The equilibrium data followed the Sips model; the maximum adsorption capacities were 55.16 and 68.52 mg g–1 for AC105 and AC11, respectively. The application of the materials in the treatment of a simulated industrial effluent showed removal efficiencies of 28.05% and 48.20% for AC105 and AC11, respectively. Therefore, through the adsorption results, AC11 proved to be more efficient towards phenol removal and is a promising alternative for treating wastewater containing this contaminant.10 páginasapplication/pdfengInstitution of Chemical EngineersUnited Kingdomhttps://www.sciencedirect.com/science/article/pii/S0263876222004841KOH activated carbons from Brazil nut shell: preparation, characterization, and their application in phenol adsorptionArtículo de revistahttp://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85BrazilChemical Engineering Research and DesignAhmaruzzaman, M., 2008. Adsorption of phenolic compounds on low-cost adsorbents: a review. Adv. Colloid Interface Sci. 143, 48–67. https://doi.org/10.1016/j.cis.2008.07.002Al-Obaidi, M.A., Kara-Zaïtri, C., Mujtaba, I.M., 2017. Removal of phenol from wastewater using spiral-wound reverse osmosis process: model development based on experiment and simulation. J. Water Process Eng. 18, 20–28. https://doi.org/10. 1016/j.jwpe.2017.05.005Alvarez, J., Lopez, G., Amutio, M., Bilbao, J., Olazar, M., 2015. Physical activation of rice husk pyrolysis char for the production of high surface area activated carbons. Ind. Eng. Chem. Res 54, 7241–7250. https://doi.org/10.1021/acs.iecr. 5b01589Baldonia, A.B., Teodoro, L.P.R., Teodorob, P.E., Toninic, H., Tardind, F.D., Botin, A.A., Hoogerheide, E.S.S., Botelho, S.C.C., Lulu, J., de Farias Neto, A.L., Azevedo, V.C.R., 2020. Genetic diversity of Brazil nut tree (Bertholletia excelsa Bonpl.) in southern Brazilian Amazon. Ecol. Manag. 458, 117795. https:// doi.org/10.1016/j.foreco.2019.117795Chiang, Y.C., Juang, R.S., 2017. Surface modifications of carbonaceous materials for carbon dioxide adsorption: a review. J. Taiwan Inst. Chem. Eng. 71, 214–234. https://doi.org/10.1016/j. jtice.2016.12.014CONAMA (2005) Resolução CONAMA n° 357, de 17 de março de 2005. Conselho Nacional do Meio Ambiente (CONAMA).Diel, J.C., Franco, D.S.P., Nunes, I.S., Pereira, H.A., Moreira, K.S., Burgo, T.A.L., Foletto, E.L., Dotto, G.L., 2021. Carbon nanotubes impregnated with metallic nanoparticles and their application as an adsorbent for the glyphosate removal in an aqueous matrix. J. Environ. Chem. Eng. 9, 105178. https://doi.org/10. 1016/j.jece.2021.105178Du, W., Sun, J., Zan, Y., Zhang, Z., Ji, J., Wang, F., 2017. Biomassderived nitrogen-doped hierarchically porous carbon networks as efficient absorbents for phenol removal from wastewater over a wide pH range. RSC Adv. 7, 46629–46635. https://doi.org/10.1039/C7RA08374BDuan, S., Ma, W., Pan, Y., Meng, F., Yu, S., Wu, L., 2017. Synthesis of magnetic biochar from iron sludge for the enhancement of Cr(VI) removal from solution. J. Taiwan Inst. Chem. Eng. 80, 835–841. https://doi.org/10.1016/j.jtice.2017.07.002Duan, W., Meng, F., Cui, H., Lin, Y., Wang, G., Wu, J., 2018. Ecotoxicity of phenol and cresols to aquatic organisms: a review. Ecotoxicol. Environ. Saf. 157, 441–456. https://doi.org/10. 1016/j.ecoenv.2018.03.089Ferreira, M.P., Lotte, R.G., D'Elia, F.V., Stamatopoulos, C., Kim, D.H., Benjamin, A.R., 2021. Accurate mapping of Brazil nut trees (Bertholletia excelsa) in Amazonian forests using WorldView-3 satellite images and convolutional neural networks. Ecol. Inf. 63, 101302. https://doi.org/10.1016/j.ecoinf. 2021.101302Ferreira, S.D., Altafini, C.R., Perondi, D., Godinho, M., 2015. Pyrolysis of medium density fiberboard (MDF) wastes in a screw reactor. Energy Convers. Manag 92, 223–233. https://doi. org/10.1016/j.enconman.2014.12.032Franco, D.S.P., Georgin, J., Netto, M.S., Allasia, D., Oliveira, M.L.S., Foletto, E.L., Dotto, G.L., 2021. Highly effective adsorption of synthetic phenol effluent by a novel activated carbon prepared from fruit wastes of the Ceiba speciosa forest species. J. Environ. Chem. Eng. 9, 105927. https://doi.org/10.1016/j.jece. 2021.105927Fu, Y., Shen, Y., Zhang, Z., Ge, X., Chen, M., 2019. Activated biochars derived from rice husk via one- and two-step KOHcatalyzed pyrolysis for phenol adsorption. Sci. Total Environ. 646, 1567–1577. https://doi.org/10.1016/j.scitotenv.2018.07.423Georgin, J., Marques, B.S., Peres, E.C., Allasia, D., Dotto, G.L., 2018. Biosorption of cationic dyes by Pará chestnut husk (Bertholletia excelsa. Water Sci. Technol. 77, 1612–1621. https://doi.org/10.2166/wst.2018.041Giles, C.H., Smith, D., Huitson, A., 1974. A general treatment and classification of the solute adsorption isotherm. J. Colloid Interface Sci. 47, 755–765. https://doi.org/10.1016/0021- 9797(74)90252-5Hameed, B.H., Rahman, A.A., 2008. Removal of phenol from aqueous solutions by adsorption onto activated carbon prepared from biomass material. J. Hazard Mater. 160, 576–581. https://doi.org/10.1016/j.jhazmat.2008.03.028Hussain, S.N., Roberts, E.P.L., Asghar, H.M.A., Campen, A.K., Brown, N.W., 2013. Oxidation of phenol and the adsorption of breakdown products using a graphite adsorbent with electrochemical regeneration. Electro Acta 92, 20–30. https://doi. org/10.1016/j.electacta.2013.01.020IBGE (2021) Produção da Extração Vegetal e da Silvicultura 2020. Instituto Brasileiro de Geografia e Estatística (IBGE).Kalderis, D., Koutoulakis, D., Paraskeva, P., Diamadopoulos, E., Otal, E., del Valle, J.O., Fernández-Pereira, C., 2008. Adsorption of polluting substances on activated carbons prepared from rice husk and sugarcane bagasse. Chem. Eng. J. 144, 42–50. https://doi.org/10.1016/j.cej.2008.01.007Kamiński, W., Kuśmierek, K., Świątkowski, A., Tomczak, E., 2020. Simultaneous adsorption of phenol derivatives from water onto spherical activated carbon. Ecol. Chem. Eng. S 27, 403–413. https://doi.org/10.2478/eces-2020-0026Kumar, M., Upadhyay, S.N., Mishra, P.K., 2019. A comparative study of thermochemical characteristics of lignocellulosic biomasses. Bioresour. Technol. Rep. 8, 100186. https://doi.org/ 10.1016/j.biteb.2019.100186Larasati, A., Fowler, G.D., Graham, N.J.D., 2020. Chemical regeneration of granular activated carbon: preliminary evaluation of alternative regenerant solutions. Environ. Sci. Water Res Technol. 6, 2043–2056. https://doi.org/10.1039/d0ew00328jLima, É.C., Adebayo, M.A., Machado, F.M., 2015. Kinetic and Equilibrium Models of Adsorption. In: Bergmann, C.P., Machado, F.M. (Eds.), Carbon Nanomaterials as Adsorbents for Environmental and Biological Applications. Springer International Publishing, Switzerland, pp. 33–69.Lütke, S.F., Igansi, A.V., Pegoraro, L., Dotto, G.L., Pinto, L.A.A., Cadaval, T.R.S., 2019. Preparation of activated carbon from black wattle bark waste and its application for phenol adsorption. J. Environ. Chem. Eng. 7, 103396. https://doi.org/10. 1016/j.jece.2019.103396Machado, L.M.M., Lütke, S.F., Perondi, D., Godinho, M., Oliveira, M.L.S., Collazzo, G.C., Dotto, G.L., 2020. Simultaneous production of mesoporous biochar and palmitic acid by pyrolysis of brewing industry wastes. Waste Manag 113, 96–104. https:// doi.org/10.1016/j.wasman.2020.05.038Martins, A.C., Pezoti, O., Cazetta, A.L., Bedin, K.C., Yamazaki, D.A.S., Bandoch, G.F.G., Asefa, T., Visentainer, J.V., Almeida, V.C., 2015. Removal of tetracycline by NaOH-activated carbon produced from macadamia nut shells: kinetic and equilibrium studies. Chem. Eng. J. 260, 291–299. https://doi.org/10.1016/j. cej.2014.09.017Mohammadi, S., Kargari, A., Sanaeepur, H., Abbassian, K., Najafi, A., Mofarrah, E., 2015. Phenol removal from industrial wastewaters: a short review. Desalin. Water Treat. 53, 2215–2234. https://doi.org/10.1080/19443994.2014.883327Mohammadi, S.Z., Darijani, Z., Karimi, M.A., 2020. Fast and efficient removal of phenol by magnetic activated carbon-cobalt nanoparticles. J. Alloy. Compd. 832, 154942. https://doi.org/10. 1016/j.jallcom.2020.154942Muniandy, L., Adam, F., Rahman, A., Mohamed, A.R., Ng, E.P., 2014. The synthesis and characterization of high purity mixed microporous/mesoporous activated carbon from rice husk using chemical activation with NaOH and KOH. Microporous Mesoporous Mater. 197, 316–323. https://doi.org/10.1016/j. micromeso.2014.06.020Pradeep, N.V., Anupama, S., Navya, K., Shalini, H.N., Idris, M., Hampannavar, U.S., 2015. Biological removal of phenol from wastewaters: a mini-review. Appl. Water Sci. 5, 105–112. https://doi.org/10.1007/s13201-014-0176-8Prauchner, M.J., Sapag, K., Rodríguez-Reinoso, F., 2016. Tailoring biomass-based activated carbon for CH4 storage by combining chemical activation with H3PO4 or ZnCl2 and physical activation with CO2. Carbon 110, 138–147. https://doi.org/10.1016/ j.carbon.2016.08.092Raza, W., Lee, J., Raza, N., Luo, Y., Kim, K., Yang, J., 2019. Removal of phenolic compounds from industrial wastewater based on membrane-based technologies. J. Ind. Eng. Chem. 71, 1–18. https://doi.org/10.1016/j.jiec.2018.11.024Rodrigues, L.A., da Silva, M.L.C.P., Alvarez-Mendes, M.O., Coutinho, A.R., Thim, G.P., 2011. Phenol removal from aqueous solution by activated carbon produced from avocado kernel seeds. Chem. Eng. J. 174, 49–57. https://doi.org/10.1016/ j.cej.2011.08.027Singh, J., Bhunia, H., Basu, S., 2019. Adsorption of CO2 on KOH activated carbon adsorbents: Effect of different mass ratios. J. Environ. Manag. 250, 109457. https://doi.org/10.1016/j. jenvman.2019.109457Ta, H.S., Van, K.L., Thi, T.T.L., Nguyen, D.H., 2021. Thermodynamic studies on the adsorption of phenol from aqueous solution by coffee husk activated carbon. Egypt J. Chem. 64, 2355–2367. https://doi.org/10.21608/EJCHEM.2021. 30318.2648Thommes, M., Kaneko, K., Neimark, A.V., Olivier, J.P., RodriguezReinoso, F., Rouquerol, J., Sing, K.S.W., 2015. Physisorption of gases, with special reference to the evaluation of the surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem. https://doi.org/10.1515/pac-2014-1117Thue, P.S., Adebayo, M.A., Lima, E.C., Sieliechi, J.M., Machado, F.M., Dotto, G.L., Vaghetti, J.C.P., Dias, S.L.P., 2016. Preparation, characterization, and application of microwave-assisted activated carbons from wood chips for removal of phenol from aqueous solution. J. Mol. Liq. 223, 1067–1080. https://doi.org/ 10.1016/j.molliq.2016.09.032Thue, P.S., Umpierres, C.S., Lima, E.C., Lima, D.R., Machado, F.M., dos Reis, G.S., da Silva, R.S., Pavan, F.A., Tran, H.N., 2020. Single-step pyrolysis for producing magnetic activated carbon from tucumã (Astrocaryum aculeatum) seed and nickel (II) chloride and zinc (II) chloride. Application for removal of nicotinamide and propranolol. J. Hazard Mater. 398, 122903. https://doi.org/10.1016/j.jhazmat.2020.122903Turki, A., Guillard, C., Dappozze, F., Ksibi, Z., Berhault, G., Kochkar, H., 2015. Phenol photocatalytic degradation over anisotropic TiO2 nanomaterials: kinetic study, adsorption isotherms, and formal mechanisms. Appl. Catal. B Environ. 163, 404–414. https://doi.org/10.1016/j.apcatb.2014.08.010Wang, J., Lei, S., Liang, L., 2020. Preparation of porous activated carbon from semi-coke by high-temperature activation with KOH for the high-efficiency adsorption of aqueous tetracycline. Appl. Surf. Sci. 530, 147187. https://doi.org/10.1016/j. apsusc.2020.147187Wei, H., Chen, J., Fu, N., Chen, H., Lin, H., Han, S., 2018. Biomassderived nitrogen-doped porous carbon with superior capacitive performance and high CO2 capture capacity. Electro Acta 266, 161–169. https://doi.org/10.1016/j.electacta.2017.12.192Xu, J., Chen, L., Qu, H., Jiao, Y., Xie, J., Xing, G., 2014. Preparation and characterization of activated carbon from reedy grass leaves by chemical activation with H3PO4. Appl. Surf. Sci. 320, 674–680. https://doi.org/10.1016/j.apsusc.2014.08.178Yahya, M.A., Al-Qodah, Z., Ngah, C.W.Z., 2015. Agricultural biowaste materials as potential sustainable precursors used for activated carbon production: A review. Renew. Sustain Energy Rev. 46, 218–235. https://doi.org/10.1016/j.rser.2015.02.051Yu-bin, T., Qiang, L., Fang-yan, C., 2012. Preparation and characterization of activated carbon from waste ramulus mori. Chem. Eng. J. 203, 19–24. https://doi.org/10.1016/j.cej.2012.07. 007Zazycki, M.A., Godinho, M., Perondi, D., Foletto, E.L., Collazzo, G.C., Dotto, G.L., 2018. New biochar from pecan nutshells as an alternative adsorbent for removing reactive red 141 from aqueous solutions. J. Clean. Prod. 171, 57–65. https://doi.org/ 10.1016/j.jclepro.2017.10.007396387187AdsorptionActivated carbonChemical activationKinetic and isotherm modelsPhenolSimulated effluentPublicationORIGINALKOH activated carbons from Brazil nut shell.pdfKOH activated carbons from Brazil nut shell.pdfArtículoapplication/pdf3397714https://repositorio.cuc.edu.co/bitstreams/37fdb1d4-5332-480a-aa46-be54073c57f9/downloadfa98a0f17c870852fcc720d56479a0a3MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-814828https://repositorio.cuc.edu.co/bitstreams/bb646715-29bc-4da9-8a3c-7df800fd1f19/download2f9959eaf5b71fae44bbf9ec84150c7aMD52TEXTKOH activated carbons from Brazil nut shell.pdf.txtKOH activated carbons from Brazil nut shell.pdf.txtExtracted texttext/plain47885https://repositorio.cuc.edu.co/bitstreams/d4b0be9e-63ea-4f57-8b31-07a2b3d8812c/download3f6dba6d8d5e9590666da92db2359974MD53THUMBNAILKOH activated carbons from Brazil nut shell.pdf.jpgKOH activated carbons from Brazil nut shell.pdf.jpgGenerated Thumbnailimage/jpeg14796https://repositorio.cuc.edu.co/bitstreams/53e787b4-d783-4175-adb5-6ea30296ae64/download6eb1c6ca0a3be89fdb5b99e2951d3ecbMD5411323/10780oai:repositorio.cuc.edu.co:11323/107802024-09-17 11:04:36.379https://creativecommons.org/licenses/by-nc-nd/4.0/© 2022 Institution of Chemical Engineers. Published by Elsevier Ltd. All rights reserved.open.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coTEEgT0JSQSAoVEFMIFkgQ09NTyBTRSBERUZJTkUgTcOBUyBBREVMQU5URSkgU0UgT1RPUkdBIEJBSk8gTE9TIFRFUk1JTk9TIERFIEVTVEEgTElDRU5DSUEgUMOaQkxJQ0EgREUgQ1JFQVRJVkUgQ09NTU9OUyAo4oCcTFBDQ+KAnSBPIOKAnExJQ0VOQ0lB4oCdKS4gTEEgT0JSQSBFU1TDgSBQUk9URUdJREEgUE9SIERFUkVDSE9TIERFIEFVVE9SIFkvVSBPVFJBUyBMRVlFUyBBUExJQ0FCTEVTLiBRVUVEQSBQUk9ISUJJRE8gQ1VBTFFVSUVSIFVTTyBRVUUgU0UgSEFHQSBERSBMQSBPQlJBIFFVRSBOTyBDVUVOVEUgQ09OIExBIEFVVE9SSVpBQ0nDk04gUEVSVElORU5URSBERSBDT05GT1JNSURBRCBDT04gTE9TIFTDiVJNSU5PUyBERSBFU1RBIExJQ0VOQ0lBIFkgREUgTEEgTEVZIERFIERFUkVDSE8gREUgQVVUT1IuCgpNRURJQU5URSBFTCBFSkVSQ0lDSU8gREUgQ1VBTFFVSUVSQSBERSBMT1MgREVSRUNIT1MgUVVFIFNFIE9UT1JHQU4gRU4gRVNUQSBMSUNFTkNJQSwgVVNURUQgQUNFUFRBIFkgQUNVRVJEQSBRVUVEQVIgT0JMSUdBRE8gRU4gTE9TIFRFUk1JTk9TIFFVRSBTRSBTRcORQUxBTiBFTiBFTExBLiBFTCBMSUNFTkNJQU5URSBDT05DRURFIEEgVVNURUQgTE9TIERFUkVDSE9TIENPTlRFTklET1MgRU4gRVNUQSBMSUNFTkNJQSBDT05ESUNJT05BRE9TIEEgTEEgQUNFUFRBQ0nDk04gREUgU1VTIFRFUk1JTk9TIFkgQ09ORElDSU9ORVMuCjEuIERlZmluaWNpb25lcwoKYS4JT2JyYSBDb2xlY3RpdmEgZXMgdW5hIG9icmEsIHRhbCBjb21vIHVuYSBwdWJsaWNhY2nDs24gcGVyacOzZGljYSwgdW5hIGFudG9sb2fDrWEsIG8gdW5hIGVuY2ljbG9wZWRpYSwgZW4gbGEgcXVlIGxhIG9icmEgZW4gc3UgdG90YWxpZGFkLCBzaW4gbW9kaWZpY2FjacOzbiBhbGd1bmEsIGp1bnRvIGNvbiB1biBncnVwbyBkZSBvdHJhcyBjb250cmlidWNpb25lcyBxdWUgY29uc3RpdHV5ZW4gb2JyYXMgc2VwYXJhZGFzIGUgaW5kZXBlbmRpZW50ZXMgZW4gc8OtIG1pc21hcywgc2UgaW50ZWdyYW4gZW4gdW4gdG9kbyBjb2xlY3Rpdm8uIFVuYSBPYnJhIHF1ZSBjb25zdGl0dXllIHVuYSBvYnJhIGNvbGVjdGl2YSBubyBzZSBjb25zaWRlcmFyw6EgdW5hIE9icmEgRGVyaXZhZGEgKGNvbW8gc2UgZGVmaW5lIGFiYWpvKSBwYXJhIGxvcyBwcm9ww7NzaXRvcyBkZSBlc3RhIGxpY2VuY2lhLiBhcXVlbGxhIHByb2R1Y2lkYSBwb3IgdW4gZ3J1cG8gZGUgYXV0b3JlcywgZW4gcXVlIGxhIE9icmEgc2UgZW5jdWVudHJhIHNpbiBtb2RpZmljYWNpb25lcywganVudG8gY29uIHVuYSBjaWVydGEgY2FudGlkYWQgZGUgb3RyYXMgY29udHJpYnVjaW9uZXMsIHF1ZSBjb25zdGl0dXllbiBlbiBzw60gbWlzbW9zIHRyYWJham9zIHNlcGFyYWRvcyBlIGluZGVwZW5kaWVudGVzLCBxdWUgc29uIGludGVncmFkb3MgYWwgdG9kbyBjb2xlY3Rpdm8sIHRhbGVzIGNvbW8gcHVibGljYWNpb25lcyBwZXJpw7NkaWNhcywgYW50b2xvZ8OtYXMgbyBlbmNpY2xvcGVkaWFzLgoKYi4JT2JyYSBEZXJpdmFkYSBzaWduaWZpY2EgdW5hIG9icmEgYmFzYWRhIGVuIGxhIG9icmEgb2JqZXRvIGRlIGVzdGEgbGljZW5jaWEgbyBlbiDDqXN0YSB5IG90cmFzIG9icmFzIHByZWV4aXN0ZW50ZXMsIHRhbGVzIGNvbW8gdHJhZHVjY2lvbmVzLCBhcnJlZ2xvcyBtdXNpY2FsZXMsIGRyYW1hdGl6YWNpb25lcywg4oCcZmljY2lvbmFsaXphY2lvbmVz4oCdLCB2ZXJzaW9uZXMgcGFyYSBjaW5lLCDigJxncmFiYWNpb25lcyBkZSBzb25pZG/igJ0sIHJlcHJvZHVjY2lvbmVzIGRlIGFydGUsIHJlc8O6bWVuZXMsIGNvbmRlbnNhY2lvbmVzLCBvIGN1YWxxdWllciBvdHJhIGVuIGxhIHF1ZSBsYSBvYnJhIHB1ZWRhIHNlciB0cmFuc2Zvcm1hZGEsIGNhbWJpYWRhIG8gYWRhcHRhZGEsIGV4Y2VwdG8gYXF1ZWxsYXMgcXVlIGNvbnN0aXR1eWFuIHVuYSBvYnJhIGNvbGVjdGl2YSwgbGFzIHF1ZSBubyBzZXLDoW4gY29uc2lkZXJhZGFzIHVuYSBvYnJhIGRlcml2YWRhIHBhcmEgZWZlY3RvcyBkZSBlc3RhIGxpY2VuY2lhLiAoUGFyYSBldml0YXIgZHVkYXMsIGVuIGVsIGNhc28gZGUgcXVlIGxhIE9icmEgc2VhIHVuYSBjb21wb3NpY2nDs24gbXVzaWNhbCBvIHVuYSBncmFiYWNpw7NuIHNvbm9yYSwgcGFyYSBsb3MgZWZlY3RvcyBkZSBlc3RhIExpY2VuY2lhIGxhIHNpbmNyb25pemFjacOzbiB0ZW1wb3JhbCBkZSBsYSBPYnJhIGNvbiB1bmEgaW1hZ2VuIGVuIG1vdmltaWVudG8gc2UgY29uc2lkZXJhcsOhIHVuYSBPYnJhIERlcml2YWRhIHBhcmEgbG9zIGZpbmVzIGRlIGVzdGEgbGljZW5jaWEpLgoKYy4JTGljZW5jaWFudGUsIGVzIGVsIGluZGl2aWR1byBvIGxhIGVudGlkYWQgdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgZGUgYXV0b3IgcXVlIG9mcmVjZSBsYSBPYnJhIGVuIGNvbmZvcm1pZGFkIGNvbiBsYXMgY29uZGljaW9uZXMgZGUgZXN0YSBMaWNlbmNpYS4KCmQuCUF1dG9yIG9yaWdpbmFsLCBlcyBlbCBpbmRpdmlkdW8gcXVlIGNyZcOzIGxhIE9icmEuCgplLglPYnJhLCBlcyBhcXVlbGxhIG9icmEgc3VzY2VwdGlibGUgZGUgcHJvdGVjY2nDs24gcG9yIGVsIHLDqWdpbWVuIGRlIERlcmVjaG8gZGUgQXV0b3IgeSBxdWUgZXMgb2ZyZWNpZGEgZW4gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIGxpY2VuY2lhCgpmLglVc3RlZCwgZXMgZWwgaW5kaXZpZHVvIG8gbGEgZW50aWRhZCBxdWUgZWplcmNpdGEgbG9zIGRlcmVjaG9zIG90b3JnYWRvcyBhbCBhbXBhcm8gZGUgZXN0YSBMaWNlbmNpYSB5IHF1ZSBjb24gYW50ZXJpb3JpZGFkIG5vIGhhIHZpb2xhZG8gbGFzIGNvbmRpY2lvbmVzIGRlIGxhIG1pc21hIHJlc3BlY3RvIGEgbGEgT2JyYSwgbyBxdWUgaGF5YSBvYnRlbmlkbyBhdXRvcml6YWNpw7NuIGV4cHJlc2EgcG9yIHBhcnRlIGRlbCBMaWNlbmNpYW50ZSBwYXJhIGVqZXJjZXIgbG9zIGRlcmVjaG9zIGFsIGFtcGFybyBkZSBlc3RhIExpY2VuY2lhIHBlc2UgYSB1bmEgdmlvbGFjacOzbiBhbnRlcmlvci4KCjIuIERlcmVjaG9zIGRlIFVzb3MgSG9ucmFkb3MgeSBleGNlcGNpb25lcyBMZWdhbGVzLgpOYWRhIGVuIGVzdGEgTGljZW5jaWEgcG9kcsOhIHNlciBpbnRlcnByZXRhZG8gY29tbyB1bmEgZGlzbWludWNpw7NuLCBsaW1pdGFjacOzbiBvIHJlc3RyaWNjacOzbiBkZSBsb3MgZGVyZWNob3MgZGVyaXZhZG9zIGRlbCB1c28gaG9ucmFkbyB5IG90cmFzIGxpbWl0YWNpb25lcyBvIGV4Y2VwY2lvbmVzIGEgbG9zIGRlcmVjaG9zIGRlbCBhdXRvciBiYWpvIGVsIHLDqWdpbWVuIGxlZ2FsIHZpZ2VudGUgbyBkZXJpdmFkbyBkZSBjdWFscXVpZXIgb3RyYSBub3JtYSBxdWUgc2UgbGUgYXBsaXF1ZS4KCjMuIENvbmNlc2nDs24gZGUgbGEgTGljZW5jaWEuCkJham8gbG9zIHTDqXJtaW5vcyB5IGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIGVsIExpY2VuY2lhbnRlIG90b3JnYSBhIFVzdGVkIHVuYSBsaWNlbmNpYSBtdW5kaWFsLCBsaWJyZSBkZSByZWdhbMOtYXMsIG5vIGV4Y2x1c2l2YSB5IHBlcnBldHVhIChkdXJhbnRlIHRvZG8gZWwgcGVyw61vZG8gZGUgdmlnZW5jaWEgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yKSBwYXJhIGVqZXJjZXIgZXN0b3MgZGVyZWNob3Mgc29icmUgbGEgT2JyYSB0YWwgeSBjb21vIHNlIGluZGljYSBhIGNvbnRpbnVhY2nDs246CgphLglSZXByb2R1Y2lyIGxhIE9icmEsIGluY29ycG9yYXIgbGEgT2JyYSBlbiB1bmEgbyBtw6FzIE9icmFzIENvbGVjdGl2YXMsIHkgcmVwcm9kdWNpciBsYSBPYnJhIGluY29ycG9yYWRhIGVuIGxhcyBPYnJhcyBDb2xlY3RpdmFzLgoKYi4JRGlzdHJpYnVpciBjb3BpYXMgbyBmb25vZ3JhbWFzIGRlIGxhcyBPYnJhcywgZXhoaWJpcmxhcyBww7pibGljYW1lbnRlLCBlamVjdXRhcmxhcyBww7pibGljYW1lbnRlIHkvbyBwb25lcmxhcyBhIGRpc3Bvc2ljacOzbiBww7pibGljYSwgaW5jbHV5w6luZG9sYXMgY29tbyBpbmNvcnBvcmFkYXMgZW4gT2JyYXMgQ29sZWN0aXZhcywgc2Vnw7puIGNvcnJlc3BvbmRhLgoKYy4JRGlzdHJpYnVpciBjb3BpYXMgZGUgbGFzIE9icmFzIERlcml2YWRhcyBxdWUgc2UgZ2VuZXJlbiwgZXhoaWJpcmxhcyBww7pibGljYW1lbnRlLCBlamVjdXRhcmxhcyBww7pibGljYW1lbnRlIHkvbyBwb25lcmxhcyBhIGRpc3Bvc2ljacOzbiBww7pibGljYS4KTG9zIGRlcmVjaG9zIG1lbmNpb25hZG9zIGFudGVyaW9ybWVudGUgcHVlZGVuIHNlciBlamVyY2lkb3MgZW4gdG9kb3MgbG9zIG1lZGlvcyB5IGZvcm1hdG9zLCBhY3R1YWxtZW50ZSBjb25vY2lkb3MgbyBxdWUgc2UgaW52ZW50ZW4gZW4gZWwgZnV0dXJvLiBMb3MgZGVyZWNob3MgYW50ZXMgbWVuY2lvbmFkb3MgaW5jbHV5ZW4gZWwgZGVyZWNobyBhIHJlYWxpemFyIGRpY2hhcyBtb2RpZmljYWNpb25lcyBlbiBsYSBtZWRpZGEgcXVlIHNlYW4gdMOpY25pY2FtZW50ZSBuZWNlc2FyaWFzIHBhcmEgZWplcmNlciBsb3MgZGVyZWNob3MgZW4gb3RybyBtZWRpbyBvIGZvcm1hdG9zLCBwZXJvIGRlIG90cmEgbWFuZXJhIHVzdGVkIG5vIGVzdMOhIGF1dG9yaXphZG8gcGFyYSByZWFsaXphciBvYnJhcyBkZXJpdmFkYXMuIFRvZG9zIGxvcyBkZXJlY2hvcyBubyBvdG9yZ2Fkb3MgZXhwcmVzYW1lbnRlIHBvciBlbCBMaWNlbmNpYW50ZSBxdWVkYW4gcG9yIGVzdGUgbWVkaW8gcmVzZXJ2YWRvcywgaW5jbHV5ZW5kbyBwZXJvIHNpbiBsaW1pdGFyc2UgYSBhcXVlbGxvcyBxdWUgc2UgbWVuY2lvbmFuIGVuIGxhcyBzZWNjaW9uZXMgNChkKSB5IDQoZSkuCgo0LiBSZXN0cmljY2lvbmVzLgpMYSBsaWNlbmNpYSBvdG9yZ2FkYSBlbiBsYSBhbnRlcmlvciBTZWNjacOzbiAzIGVzdMOhIGV4cHJlc2FtZW50ZSBzdWpldGEgeSBsaW1pdGFkYSBwb3IgbGFzIHNpZ3VpZW50ZXMgcmVzdHJpY2Npb25lczoKCmEuCVVzdGVkIHB1ZWRlIGRpc3RyaWJ1aXIsIGV4aGliaXIgcMO6YmxpY2FtZW50ZSwgZWplY3V0YXIgcMO6YmxpY2FtZW50ZSwgbyBwb25lciBhIGRpc3Bvc2ljacOzbiBww7pibGljYSBsYSBPYnJhIHPDs2xvIGJham8gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIHkgVXN0ZWQgZGViZSBpbmNsdWlyIHVuYSBjb3BpYSBkZSBlc3RhIGxpY2VuY2lhIG8gZGVsIElkZW50aWZpY2Fkb3IgVW5pdmVyc2FsIGRlIFJlY3Vyc29zIGRlIGxhIG1pc21hIGNvbiBjYWRhIGNvcGlhIGRlIGxhIE9icmEgcXVlIGRpc3RyaWJ1eWEsIGV4aGliYSBww7pibGljYW1lbnRlLCBlamVjdXRlIHDDumJsaWNhbWVudGUgbyBwb25nYSBhIGRpc3Bvc2ljacOzbiBww7pibGljYS4gTm8gZXMgcG9zaWJsZSBvZnJlY2VyIG8gaW1wb25lciBuaW5ndW5hIGNvbmRpY2nDs24gc29icmUgbGEgT2JyYSBxdWUgYWx0ZXJlIG8gbGltaXRlIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhIG8gZWwgZWplcmNpY2lvIGRlIGxvcyBkZXJlY2hvcyBkZSBsb3MgZGVzdGluYXRhcmlvcyBvdG9yZ2Fkb3MgZW4gZXN0ZSBkb2N1bWVudG8uIE5vIGVzIHBvc2libGUgc3VibGljZW5jaWFyIGxhIE9icmEuIFVzdGVkIGRlYmUgbWFudGVuZXIgaW50YWN0b3MgdG9kb3MgbG9zIGF2aXNvcyBxdWUgaGFnYW4gcmVmZXJlbmNpYSBhIGVzdGEgTGljZW5jaWEgeSBhIGxhIGNsw6F1c3VsYSBkZSBsaW1pdGFjacOzbiBkZSBnYXJhbnTDrWFzLiBVc3RlZCBubyBwdWVkZSBkaXN0cmlidWlyLCBleGhpYmlyIHDDumJsaWNhbWVudGUsIGVqZWN1dGFyIHDDumJsaWNhbWVudGUsIG8gcG9uZXIgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBjb24gYWxndW5hIG1lZGlkYSB0ZWNub2zDs2dpY2EgcXVlIGNvbnRyb2xlIGVsIGFjY2VzbyBvIGxhIHV0aWxpemFjacOzbiBkZSBlbGxhIGRlIHVuYSBmb3JtYSBxdWUgc2VhIGluY29uc2lzdGVudGUgY29uIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLiBMbyBhbnRlcmlvciBzZSBhcGxpY2EgYSBsYSBPYnJhIGluY29ycG9yYWRhIGEgdW5hIE9icmEgQ29sZWN0aXZhLCBwZXJvIGVzdG8gbm8gZXhpZ2UgcXVlIGxhIE9icmEgQ29sZWN0aXZhIGFwYXJ0ZSBkZSBsYSBvYnJhIG1pc21hIHF1ZWRlIHN1amV0YSBhIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLiBTaSBVc3RlZCBjcmVhIHVuYSBPYnJhIENvbGVjdGl2YSwgcHJldmlvIGF2aXNvIGRlIGN1YWxxdWllciBMaWNlbmNpYW50ZSBkZWJlLCBlbiBsYSBtZWRpZGEgZGUgbG8gcG9zaWJsZSwgZWxpbWluYXIgZGUgbGEgT2JyYSBDb2xlY3RpdmEgY3VhbHF1aWVyIHJlZmVyZW5jaWEgYSBkaWNobyBMaWNlbmNpYW50ZSBvIGFsIEF1dG9yIE9yaWdpbmFsLCBzZWfDum4gbG8gc29saWNpdGFkbyBwb3IgZWwgTGljZW5jaWFudGUgeSBjb25mb3JtZSBsbyBleGlnZSBsYSBjbMOhdXN1bGEgNChjKS4KCmIuCVVzdGVkIG5vIHB1ZWRlIGVqZXJjZXIgbmluZ3VubyBkZSBsb3MgZGVyZWNob3MgcXVlIGxlIGhhbiBzaWRvIG90b3JnYWRvcyBlbiBsYSBTZWNjacOzbiAzIHByZWNlZGVudGUgZGUgbW9kbyBxdWUgZXN0w6luIHByaW5jaXBhbG1lbnRlIGRlc3RpbmFkb3MgbyBkaXJlY3RhbWVudGUgZGlyaWdpZG9zIGEgY29uc2VndWlyIHVuIHByb3ZlY2hvIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLiBFbCBpbnRlcmNhbWJpbyBkZSBsYSBPYnJhIHBvciBvdHJhcyBvYnJhcyBwcm90ZWdpZGFzIHBvciBkZXJlY2hvcyBkZSBhdXRvciwgeWEgc2VhIGEgdHJhdsOpcyBkZSB1biBzaXN0ZW1hIHBhcmEgY29tcGFydGlyIGFyY2hpdm9zIGRpZ2l0YWxlcyAoZGlnaXRhbCBmaWxlLXNoYXJpbmcpIG8gZGUgY3VhbHF1aWVyIG90cmEgbWFuZXJhIG5vIHNlcsOhIGNvbnNpZGVyYWRvIGNvbW8gZXN0YXIgZGVzdGluYWRvIHByaW5jaXBhbG1lbnRlIG8gZGlyaWdpZG8gZGlyZWN0YW1lbnRlIGEgY29uc2VndWlyIHVuIHByb3ZlY2hvIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLCBzaWVtcHJlIHF1ZSBubyBzZSByZWFsaWNlIHVuIHBhZ28gbWVkaWFudGUgdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIGVuIHJlbGFjacOzbiBjb24gZWwgaW50ZXJjYW1iaW8gZGUgb2JyYXMgcHJvdGVnaWRhcyBwb3IgZWwgZGVyZWNobyBkZSBhdXRvci4KCmMuCVNpIHVzdGVkIGRpc3RyaWJ1eWUsIGV4aGliZSBww7pibGljYW1lbnRlLCBlamVjdXRhIHDDumJsaWNhbWVudGUgbyBlamVjdXRhIHDDumJsaWNhbWVudGUgZW4gZm9ybWEgZGlnaXRhbCBsYSBPYnJhIG8gY3VhbHF1aWVyIE9icmEgRGVyaXZhZGEgdSBPYnJhIENvbGVjdGl2YSwgVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RhIHRvZGEgbGEgaW5mb3JtYWNpw7NuIGRlIGRlcmVjaG8gZGUgYXV0b3IgZGUgbGEgT2JyYSB5IHByb3BvcmNpb25hciwgZGUgZm9ybWEgcmF6b25hYmxlIHNlZ8O6biBlbCBtZWRpbyBvIG1hbmVyYSBxdWUgVXN0ZWQgZXN0w6kgdXRpbGl6YW5kbzogKGkpIGVsIG5vbWJyZSBkZWwgQXV0b3IgT3JpZ2luYWwgc2kgZXN0w6EgcHJvdmlzdG8gKG8gc2V1ZMOzbmltbywgc2kgZnVlcmUgYXBsaWNhYmxlKSwgeS9vIChpaSkgZWwgbm9tYnJlIGRlIGxhIHBhcnRlIG8gbGFzIHBhcnRlcyBxdWUgZWwgQXV0b3IgT3JpZ2luYWwgeS9vIGVsIExpY2VuY2lhbnRlIGh1YmllcmVuIGRlc2lnbmFkbyBwYXJhIGxhIGF0cmlidWNpw7NuICh2LmcuLCB1biBpbnN0aXR1dG8gcGF0cm9jaW5hZG9yLCBlZGl0b3JpYWwsIHB1YmxpY2FjacOzbikgZW4gbGEgaW5mb3JtYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZWwgTGljZW5jaWFudGUsIHTDqXJtaW5vcyBkZSBzZXJ2aWNpb3MgbyBkZSBvdHJhcyBmb3JtYXMgcmF6b25hYmxlczsgZWwgdMOtdHVsbyBkZSBsYSBPYnJhIHNpIGVzdMOhIHByb3Zpc3RvOyBlbiBsYSBtZWRpZGEgZGUgbG8gcmF6b25hYmxlbWVudGUgZmFjdGlibGUgeSwgc2kgZXN0w6EgcHJvdmlzdG8sIGVsIElkZW50aWZpY2Fkb3IgVW5pZm9ybWUgZGUgUmVjdXJzb3MgKFVuaWZvcm0gUmVzb3VyY2UgSWRlbnRpZmllcikgcXVlIGVsIExpY2VuY2lhbnRlIGVzcGVjaWZpY2EgcGFyYSBzZXIgYXNvY2lhZG8gY29uIGxhIE9icmEsIHNhbHZvIHF1ZSB0YWwgVVJJIG5vIHNlIHJlZmllcmEgYSBsYSBub3RhIHNvYnJlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBvIGEgbGEgaW5mb3JtYWNpw7NuIHNvYnJlIGVsIGxpY2VuY2lhbWllbnRvIGRlIGxhIE9icmE7IHkgZW4gZWwgY2FzbyBkZSB1bmEgT2JyYSBEZXJpdmFkYSwgYXRyaWJ1aXIgZWwgY3LDqWRpdG8gaWRlbnRpZmljYW5kbyBlbCB1c28gZGUgbGEgT2JyYSBlbiBsYSBPYnJhIERlcml2YWRhICh2LmcuLCAiVHJhZHVjY2nDs24gRnJhbmNlc2EgZGUgbGEgT2JyYSBkZWwgQXV0b3IgT3JpZ2luYWwsIiBvICJHdWnDs24gQ2luZW1hdG9ncsOhZmljbyBiYXNhZG8gZW4gbGEgT2JyYSBvcmlnaW5hbCBkZWwgQXV0b3IgT3JpZ2luYWwiKS4gVGFsIGNyw6lkaXRvIHB1ZWRlIHNlciBpbXBsZW1lbnRhZG8gZGUgY3VhbHF1aWVyIGZvcm1hIHJhem9uYWJsZTsgZW4gZWwgY2Fzbywgc2luIGVtYmFyZ28sIGRlIE9icmFzIERlcml2YWRhcyB1IE9icmFzIENvbGVjdGl2YXMsIHRhbCBjcsOpZGl0byBhcGFyZWNlcsOhLCBjb21vIG3DrW5pbW8sIGRvbmRlIGFwYXJlY2UgZWwgY3LDqWRpdG8gZGUgY3VhbHF1aWVyIG90cm8gYXV0b3IgY29tcGFyYWJsZSB5IGRlIHVuYSBtYW5lcmEsIGFsIG1lbm9zLCB0YW4gZGVzdGFjYWRhIGNvbW8gZWwgY3LDqWRpdG8gZGUgb3RybyBhdXRvciBjb21wYXJhYmxlLgoKZC4JUGFyYSBldml0YXIgdG9kYSBjb25mdXNpw7NuLCBlbCBMaWNlbmNpYW50ZSBhY2xhcmEgcXVlLCBjdWFuZG8gbGEgb2JyYSBlcyB1bmEgY29tcG9zaWNpw7NuIG11c2ljYWw6CgppLglSZWdhbMOtYXMgcG9yIGludGVycHJldGFjacOzbiB5IGVqZWN1Y2nDs24gYmFqbyBsaWNlbmNpYXMgZ2VuZXJhbGVzLiBFbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gZXhjbHVzaXZvIGRlIGF1dG9yaXphciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIG8gbGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGRlIGxhIG9icmEgeSBkZSByZWNvbGVjdGFyLCBzZWEgaW5kaXZpZHVhbG1lbnRlIG8gYSB0cmF2w6lzIGRlIHVuYSBzb2NpZWRhZCBkZSBnZXN0acOzbiBjb2xlY3RpdmEgZGUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIChwb3IgZWplbXBsbywgU0FZQ08pLCBsYXMgcmVnYWzDrWFzIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIG8gcG9yIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIChwb3IgZWplbXBsbyBXZWJjYXN0KSBsaWNlbmNpYWRhIGJham8gbGljZW5jaWFzIGdlbmVyYWxlcywgc2kgbGEgaW50ZXJwcmV0YWNpw7NuIG8gZWplY3VjacOzbiBkZSBsYSBvYnJhIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBvcmllbnRhZGEgcG9yIG8gZGlyaWdpZGEgYSBsYSBvYnRlbmNpw7NuIGRlIHVuYSB2ZW50YWphIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLgoKaWkuCVJlZ2Fsw61hcyBwb3IgRm9ub2dyYW1hcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSByZWNvbGVjdGFyLCBpbmRpdmlkdWFsbWVudGUgbyBhIHRyYXbDqXMgZGUgdW5hIHNvY2llZGFkIGRlIGdlc3Rpw7NuIGNvbGVjdGl2YSBkZSBkZXJlY2hvcyBkZSBhdXRvciB5IGRlcmVjaG9zIGNvbmV4b3MgKHBvciBlamVtcGxvLCBsb3MgY29uc2FncmFkb3MgcG9yIGxhIFNBWUNPKSwgdW5hIGFnZW5jaWEgZGUgZGVyZWNob3MgbXVzaWNhbGVzIG8gYWxnw7puIGFnZW50ZSBkZXNpZ25hZG8sIGxhcyByZWdhbMOtYXMgcG9yIGN1YWxxdWllciBmb25vZ3JhbWEgcXVlIFVzdGVkIGNyZWUgYSBwYXJ0aXIgZGUgbGEgb2JyYSAo4oCcdmVyc2nDs24gY292ZXLigJ0pIHkgZGlzdHJpYnV5YSwgZW4gbG9zIHTDqXJtaW5vcyBkZWwgcsOpZ2ltZW4gZGUgZGVyZWNob3MgZGUgYXV0b3IsIHNpIGxhIGNyZWFjacOzbiBvIGRpc3RyaWJ1Y2nDs24gZGUgZXNhIHZlcnNpw7NuIGNvdmVyIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkZXN0aW5hZGEgbyBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuCgplLglHZXN0acOzbiBkZSBEZXJlY2hvcyBkZSBBdXRvciBzb2JyZSBJbnRlcnByZXRhY2lvbmVzIHkgRWplY3VjaW9uZXMgRGlnaXRhbGVzIChXZWJDYXN0aW5nKS4gUGFyYSBldml0YXIgdG9kYSBjb25mdXNpw7NuLCBlbCBMaWNlbmNpYW50ZSBhY2xhcmEgcXVlLCBjdWFuZG8gbGEgb2JyYSBzZWEgdW4gZm9ub2dyYW1hLCBlbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gZXhjbHVzaXZvIGRlIGF1dG9yaXphciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8sIHdlYmNhc3QpIHkgZGUgcmVjb2xlY3RhciwgaW5kaXZpZHVhbG1lbnRlIG8gYSB0cmF2w6lzIGRlIHVuYSBzb2NpZWRhZCBkZSBnZXN0acOzbiBjb2xlY3RpdmEgZGUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIChwb3IgZWplbXBsbywgQUNJTlBSTyksIGxhcyByZWdhbMOtYXMgcG9yIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIChwb3IgZWplbXBsbywgd2ViY2FzdCksIHN1amV0YSBhIGxhcyBkaXNwb3NpY2lvbmVzIGFwbGljYWJsZXMgZGVsIHLDqWdpbWVuIGRlIERlcmVjaG8gZGUgQXV0b3IsIHNpIGVzdGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuCgo1LiBSZXByZXNlbnRhY2lvbmVzLCBHYXJhbnTDrWFzIHkgTGltaXRhY2lvbmVzIGRlIFJlc3BvbnNhYmlsaWRhZC4KQSBNRU5PUyBRVUUgTEFTIFBBUlRFUyBMTyBBQ09SREFSQU4gREUgT1RSQSBGT1JNQSBQT1IgRVNDUklUTywgRUwgTElDRU5DSUFOVEUgT0ZSRUNFIExBIE9CUkEgKEVOIEVMIEVTVEFETyBFTiBFTCBRVUUgU0UgRU5DVUVOVFJBKSDigJxUQUwgQ1VBTOKAnSwgU0lOIEJSSU5EQVIgR0FSQU5Uw41BUyBERSBDTEFTRSBBTEdVTkEgUkVTUEVDVE8gREUgTEEgT0JSQSwgWUEgU0VBIEVYUFJFU0EsIElNUEzDjUNJVEEsIExFR0FMIE8gQ1VBTFFVSUVSQSBPVFJBLCBJTkNMVVlFTkRPLCBTSU4gTElNSVRBUlNFIEEgRUxMQVMsIEdBUkFOVMONQVMgREUgVElUVUxBUklEQUQsIENPTUVSQ0lBQklMSURBRCwgQURBUFRBQklMSURBRCBPIEFERUNVQUNJw5NOIEEgUFJPUMOTU0lUTyBERVRFUk1JTkFETywgQVVTRU5DSUEgREUgSU5GUkFDQ0nDk04sIERFIEFVU0VOQ0lBIERFIERFRkVDVE9TIExBVEVOVEVTIE8gREUgT1RSTyBUSVBPLCBPIExBIFBSRVNFTkNJQSBPIEFVU0VOQ0lBIERFIEVSUk9SRVMsIFNFQU4gTyBOTyBERVNDVUJSSUJMRVMgKFBVRURBTiBPIE5PIFNFUiBFU1RPUyBERVNDVUJJRVJUT1MpLiBBTEdVTkFTIEpVUklTRElDQ0lPTkVTIE5PIFBFUk1JVEVOIExBIEVYQ0xVU0nDk04gREUgR0FSQU5Uw41BUyBJTVBMw41DSVRBUywgRU4gQ1VZTyBDQVNPIEVTVEEgRVhDTFVTScOTTiBQVUVERSBOTyBBUExJQ0FSU0UgQSBVU1RFRC4KCjYuIExpbWl0YWNpw7NuIGRlIHJlc3BvbnNhYmlsaWRhZC4KQSBNRU5PUyBRVUUgTE8gRVhJSkEgRVhQUkVTQU1FTlRFIExBIExFWSBBUExJQ0FCTEUsIEVMIExJQ0VOQ0lBTlRFIE5PIFNFUsOBIFJFU1BPTlNBQkxFIEFOVEUgVVNURUQgUE9SIERBw5FPIEFMR1VOTywgU0VBIFBPUiBSRVNQT05TQUJJTElEQUQgRVhUUkFDT05UUkFDVFVBTCwgUFJFQ09OVFJBQ1RVQUwgTyBDT05UUkFDVFVBTCwgT0JKRVRJVkEgTyBTVUJKRVRJVkEsIFNFIFRSQVRFIERFIERBw5FPUyBNT1JBTEVTIE8gUEFUUklNT05JQUxFUywgRElSRUNUT1MgTyBJTkRJUkVDVE9TLCBQUkVWSVNUT1MgTyBJTVBSRVZJU1RPUyBQUk9EVUNJRE9TIFBPUiBFTCBVU08gREUgRVNUQSBMSUNFTkNJQSBPIERFIExBIE9CUkEsIEFVTiBDVUFORE8gRUwgTElDRU5DSUFOVEUgSEFZQSBTSURPIEFEVkVSVElETyBERSBMQSBQT1NJQklMSURBRCBERSBESUNIT1MgREHDkU9TLiBBTEdVTkFTIExFWUVTIE5PIFBFUk1JVEVOIExBIEVYQ0xVU0nDk04gREUgQ0lFUlRBIFJFU1BPTlNBQklMSURBRCwgRU4gQ1VZTyBDQVNPIEVTVEEgRVhDTFVTScOTTiBQVUVERSBOTyBBUExJQ0FSU0UgQSBVU1RFRC4KCjcuIFTDqXJtaW5vLgoKYS4JRXN0YSBMaWNlbmNpYSB5IGxvcyBkZXJlY2hvcyBvdG9yZ2Fkb3MgZW4gdmlydHVkIGRlIGVsbGEgdGVybWluYXLDoW4gYXV0b23DoXRpY2FtZW50ZSBzaSBVc3RlZCBpbmZyaW5nZSBhbGd1bmEgY29uZGljacOzbiBlc3RhYmxlY2lkYSBlbiBlbGxhLiBTaW4gZW1iYXJnbywgbG9zIGluZGl2aWR1b3MgbyBlbnRpZGFkZXMgcXVlIGhhbiByZWNpYmlkbyBPYnJhcyBEZXJpdmFkYXMgbyBDb2xlY3RpdmFzIGRlIFVzdGVkIGRlIGNvbmZvcm1pZGFkIGNvbiBlc3RhIExpY2VuY2lhLCBubyB2ZXLDoW4gdGVybWluYWRhcyBzdXMgbGljZW5jaWFzLCBzaWVtcHJlIHF1ZSBlc3RvcyBpbmRpdmlkdW9zIG8gZW50aWRhZGVzIHNpZ2FuIGN1bXBsaWVuZG8gw61udGVncmFtZW50ZSBsYXMgY29uZGljaW9uZXMgZGUgZXN0YXMgbGljZW5jaWFzLiBMYXMgU2VjY2lvbmVzIDEsIDIsIDUsIDYsIDcsIHkgOCBzdWJzaXN0aXLDoW4gYSBjdWFscXVpZXIgdGVybWluYWNpw7NuIGRlIGVzdGEgTGljZW5jaWEuCgpiLglTdWpldGEgYSBsYXMgY29uZGljaW9uZXMgeSB0w6lybWlub3MgYW50ZXJpb3JlcywgbGEgbGljZW5jaWEgb3RvcmdhZGEgYXF1w60gZXMgcGVycGV0dWEgKGR1cmFudGUgZWwgcGVyw61vZG8gZGUgdmlnZW5jaWEgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGRlIGxhIG9icmEpLiBObyBvYnN0YW50ZSBsbyBhbnRlcmlvciwgZWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGEgcHVibGljYXIgeS9vIGVzdHJlbmFyIGxhIE9icmEgYmFqbyBjb25kaWNpb25lcyBkZSBsaWNlbmNpYSBkaWZlcmVudGVzIG8gYSBkZWphciBkZSBkaXN0cmlidWlybGEgZW4gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIExpY2VuY2lhIGVuIGN1YWxxdWllciBtb21lbnRvOyBlbiBlbCBlbnRlbmRpZG8sIHNpbiBlbWJhcmdvLCBxdWUgZXNhIGVsZWNjacOzbiBubyBzZXJ2aXLDoSBwYXJhIHJldm9jYXIgZXN0YSBsaWNlbmNpYSBvIHF1ZSBkZWJhIHNlciBvdG9yZ2FkYSAsIGJham8gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIGxpY2VuY2lhKSwgeSBlc3RhIGxpY2VuY2lhIGNvbnRpbnVhcsOhIGVuIHBsZW5vIHZpZ29yIHkgZWZlY3RvIGEgbWVub3MgcXVlIHNlYSB0ZXJtaW5hZGEgY29tbyBzZSBleHByZXNhIGF0csOhcy4gTGEgTGljZW5jaWEgcmV2b2NhZGEgY29udGludWFyw6Egc2llbmRvIHBsZW5hbWVudGUgdmlnZW50ZSB5IGVmZWN0aXZhIHNpIG5vIHNlIGxlIGRhIHTDqXJtaW5vIGVuIGxhcyBjb25kaWNpb25lcyBpbmRpY2FkYXMgYW50ZXJpb3JtZW50ZS4KCjguIFZhcmlvcy4KCmEuCUNhZGEgdmV6IHF1ZSBVc3RlZCBkaXN0cmlidXlhIG8gcG9uZ2EgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBvIHVuYSBPYnJhIENvbGVjdGl2YSwgZWwgTGljZW5jaWFudGUgb2ZyZWNlcsOhIGFsIGRlc3RpbmF0YXJpbyB1bmEgbGljZW5jaWEgZW4gbG9zIG1pc21vcyB0w6lybWlub3MgeSBjb25kaWNpb25lcyBxdWUgbGEgbGljZW5jaWEgb3RvcmdhZGEgYSBVc3RlZCBiYWpvIGVzdGEgTGljZW5jaWEuCgpiLglTaSBhbGd1bmEgZGlzcG9zaWNpw7NuIGRlIGVzdGEgTGljZW5jaWEgcmVzdWx0YSBpbnZhbGlkYWRhIG8gbm8gZXhpZ2libGUsIHNlZ8O6biBsYSBsZWdpc2xhY2nDs24gdmlnZW50ZSwgZXN0byBubyBhZmVjdGFyw6EgbmkgbGEgdmFsaWRleiBuaSBsYSBhcGxpY2FiaWxpZGFkIGRlbCByZXN0byBkZSBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhIHksIHNpbiBhY2Npw7NuIGFkaWNpb25hbCBwb3IgcGFydGUgZGUgbG9zIHN1amV0b3MgZGUgZXN0ZSBhY3VlcmRvLCBhcXXDqWxsYSBzZSBlbnRlbmRlcsOhIHJlZm9ybWFkYSBsbyBtw61uaW1vIG5lY2VzYXJpbyBwYXJhIGhhY2VyIHF1ZSBkaWNoYSBkaXNwb3NpY2nDs24gc2VhIHbDoWxpZGEgeSBleGlnaWJsZS4KCmMuCU5pbmfDum4gdMOpcm1pbm8gbyBkaXNwb3NpY2nDs24gZGUgZXN0YSBMaWNlbmNpYSBzZSBlc3RpbWFyw6EgcmVudW5jaWFkYSB5IG5pbmd1bmEgdmlvbGFjacOzbiBkZSBlbGxhIHNlcsOhIGNvbnNlbnRpZGEgYSBtZW5vcyBxdWUgZXNhIHJlbnVuY2lhIG8gY29uc2VudGltaWVudG8gc2VhIG90b3JnYWRvIHBvciBlc2NyaXRvIHkgZmlybWFkbyBwb3IgbGEgcGFydGUgcXVlIHJlbnVuY2llIG8gY29uc2llbnRhLgoKZC4JRXN0YSBMaWNlbmNpYSByZWZsZWphIGVsIGFjdWVyZG8gcGxlbm8gZW50cmUgbGFzIHBhcnRlcyByZXNwZWN0byBhIGxhIE9icmEgYXF1w60gbGljZW5jaWFkYS4gTm8gaGF5IGFycmVnbG9zLCBhY3VlcmRvcyBvIGRlY2xhcmFjaW9uZXMgcmVzcGVjdG8gYSBsYSBPYnJhIHF1ZSBubyBlc3TDqW4gZXNwZWNpZmljYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gRWwgTGljZW5jaWFudGUgbm8gc2UgdmVyw6EgbGltaXRhZG8gcG9yIG5pbmd1bmEgZGlzcG9zaWNpw7NuIGFkaWNpb25hbCBxdWUgcHVlZGEgc3VyZ2lyIGVuIGFsZ3VuYSBjb211bmljYWNpw7NuIGVtYW5hZGEgZGUgVXN0ZWQuIEVzdGEgTGljZW5jaWEgbm8gcHVlZGUgc2VyIG1vZGlmaWNhZGEgc2luIGVsIGNvbnNlbnRpbWllbnRvIG11dHVvIHBvciBlc2NyaXRvIGRlbCBMaWNlbmNpYW50ZSB5IFVzdGVkLgo=