Application of feast (Feature Selection Toolbox) in ids (Intrusion detection Systems)

Security in computer networks has become a critical point for many organizations, but keeping data integrity demands time and large economic investments, in consequence there has been several solution approaches between hardware and software but sometimes these has become inefficient for attacks det...

Full description

Autores:
Mendoza Palechor, Fabio Enrique
De La Hoz Correa, Eduardo Miguel
De La Hoz Manotas, Alexis Kevin
Tipo de recurso:
Article of journal
Fecha de publicación:
2014
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/760
Acceso en línea:
https://hdl.handle.net/11323/760
https://repositorio.cuc.edu.co/
Palabra clave:
Feature Selection Toolbox (FEAST)
Data-Set
Security
Attacks
Networks
Rights
openAccess
License
Atribución – No comercial – Compartir igual
id RCUC2_8787c3f8bd254cd437e0c4f0c2428006
oai_identifier_str oai:repositorio.cuc.edu.co:11323/760
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.eng.fl_str_mv Application of feast (Feature Selection Toolbox) in ids (Intrusion detection Systems)
title Application of feast (Feature Selection Toolbox) in ids (Intrusion detection Systems)
spellingShingle Application of feast (Feature Selection Toolbox) in ids (Intrusion detection Systems)
Feature Selection Toolbox (FEAST)
Data-Set
Security
Attacks
Networks
title_short Application of feast (Feature Selection Toolbox) in ids (Intrusion detection Systems)
title_full Application of feast (Feature Selection Toolbox) in ids (Intrusion detection Systems)
title_fullStr Application of feast (Feature Selection Toolbox) in ids (Intrusion detection Systems)
title_full_unstemmed Application of feast (Feature Selection Toolbox) in ids (Intrusion detection Systems)
title_sort Application of feast (Feature Selection Toolbox) in ids (Intrusion detection Systems)
dc.creator.fl_str_mv Mendoza Palechor, Fabio Enrique
De La Hoz Correa, Eduardo Miguel
De La Hoz Manotas, Alexis Kevin
dc.contributor.author.spa.fl_str_mv Mendoza Palechor, Fabio Enrique
De La Hoz Correa, Eduardo Miguel
De La Hoz Manotas, Alexis Kevin
dc.subject.eng.fl_str_mv Feature Selection Toolbox (FEAST)
Data-Set
Security
Attacks
Networks
topic Feature Selection Toolbox (FEAST)
Data-Set
Security
Attacks
Networks
description Security in computer networks has become a critical point for many organizations, but keeping data integrity demands time and large economic investments, in consequence there has been several solution approaches between hardware and software but sometimes these has become inefficient for attacks detection. This paper presents research results obtained implementing algorithms from FEAST, a Matlab Toolbox with the purpose of selecting the method with better precision results for different attacks detection using the least number of features. The Data Set NSL-KDD was taken as reference. The Relief method obtained the best precision levels for attack detection: 86.20%(NORMAL), 85.71% (DOS), 88.42% (PROBE), 93.11%(U2R), 90.07(R2L), which makes it a promising technique for features selection in data network intrusions.
publishDate 2014
dc.date.issued.none.fl_str_mv 2014-12-31
dc.date.accessioned.none.fl_str_mv 2018-11-09T00:29:31Z
dc.date.available.none.fl_str_mv 2018-11-09T00:29:31Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_6501
status_str acceptedVersion
dc.identifier.issn.spa.fl_str_mv 1992-8645
dc.identifier.uri.spa.fl_str_mv https://hdl.handle.net/11323/760
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
identifier_str_mv 1992-8645
Corporación Universidad de la Costa
REDICUC - Repositorio CUC
url https://hdl.handle.net/11323/760
https://repositorio.cuc.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.references.spa.fl_str_mv [1] M. Crosbie and G. Spafford., “Applying genetic programming to intrusion detection. “ in AAAI Fall Symposium on Genetic Pro- gramming, 1995. [2] R. Gong, M. Zulkernine, and P. Abolmaesmumi, “A software implementation of a genetic algorithm based approach to network intrusion detection.,” in Sixth Internatio- nal Conference on Software Engineering, Artificial Intelligence, Networking and Para- llel/Distributed Computing and First ACIS International Workshop on Self-Assembling Wireless Networks (SNDP/SWAN’05), vol. 0, pp. 246– 253, 2005. [3] W. Li, “A genetic approach to network intrusion detection,” tech. rep., SANS Institute, 2003. [4] C. Sinclair, P. Lyn, and S. Matzer, “An application of machine learning to network intrusion detection.,” in 15th Annual Computer Security Applications Conference, 1999. [5] Herrera, D., Carvajal, Helber., IMPLEMENTACIÓN DE UNA RED NEURONAL PARA LA DETECCIÓN DE INTRUSIONES EN UNA RED TCP/IP, Revista Ingenierías USBMed, paginas 45-48, 2010. [6] Kayacık, G., Zincir, N., Heywood, M., Selecting Features for Intrusion Detection: A Feature Relevance Analysis on KDD 99 Intrusion Detection Datasets , Dalhousie University, Faculty of Computer Science [7] P. Ananthi y P. Balasubramanie, «A Fuzzy Neural Network And Multiple Kernel Fuzzy CMeans Algorithm For Secured Intrusion Detection System,» Journal of Theoretical and Applied Information Technology (JATIT), pp. 206-217. [8] A. Falke, V. Fulsoundar, R. Pawase, S. Wale y S. Ghule, «Network Intrusion Detection System using Fuzzy Logic,» nternational Journal Of Scientific Research And Education, pp. 626- 635. [9] Castillo, R., Deteccion de Intrusos Mediante Tecnicas de Mineria de Datos, Departamento de Sistemas e Informatica, Universidad Autonoma de Colombia. [10] Lorenzo, I., Macia, F., Mora, F., Gil, J., Marcos, J., Modelo Eficiente y Escalable para la Deteccion de Intrusos en Red, Departamento de Tecnologia y Computacion, Universidad de Alicante. [11] Catania, C., Garcia, C., 2008, Reconocimiento de Patrones en el Trafico de Red Basado en Algoritmos Geneticos, Revista Iberoamericana de Inteligencia Artificial, Vol 12, 65-75. [12] Xiaoqing, G., Hebin, G., Luyi, C., Network Intrusion Detection Method Based on Agent and SVM, Beijing Vocational College of Electronic Science Beijing 100026,P.R. China. [13] Kuang, L., Zulkernine, M., An Anomaly Intrusion Detection Method Using the CSIKNN Algorithm School of Computing Queen’s University Kingston, Canada. [14] W. Hu, Y. Liao, and V. Vemuri. Robust Support Vector Machines for Anomaly Detection in Computer Security. Proc. International Conference on Machine Learning and Applications, pages 23–24, 2003. [15] Oporto, Sl., Aquino, I., Chavez, J., Perez, C., Comparacion de Cuatro Tecnicas de Selección de Caracteristicas Envolventes usando Neuronales, Arboles de Decisión, Maquinas de Vector de Soporte y Clasificador Bayesiano. [16] D.E. Goldberg, Genetic algorithms in search, optimization, and machine learning. AddisonWesley. [17] H. Liu and H. Motorola. Feature Selection for Knowledge Discovery and Data Mining. Boston: Kluwer Academy, (1998). [18] http://www.cs.man.ac.uk/~gbrown/fstoolbox/ (07/11/2013) [19] S. J. Stolfo, W. Fan, W. Lee, A. Prodromidis, and P. K. Chan, “Costbased modeling for fraud and intrusion detection: Results from the jam project,” discex, vol. 02, p. 1130, 2000. [20] Tribak, H., Febrero 2012, Análisis Estadístico de Distintas Técnicas de Inteligencia Artificial en Detección de Intrusos. Tesis Doctoral
dc.rights.spa.fl_str_mv Atribución – No comercial – Compartir igual
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Atribución – No comercial – Compartir igual
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.publisher.spa.fl_str_mv Journal of Theoretical and Applied Information Technology
institution Corporación Universidad de la Costa
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/11ba6d0d-f90c-4c6b-ad0a-a97807341923/download
https://repositorio.cuc.edu.co/bitstreams/80ebcb85-66c5-48c7-a6e6-4ac1e14bae3b/download
https://repositorio.cuc.edu.co/bitstreams/99bd066f-bb29-4614-9ace-37a1412372f0/download
https://repositorio.cuc.edu.co/bitstreams/78593f9a-665d-4bb6-a499-24fa5c3d0e31/download
bitstream.checksum.fl_str_mv 7de96151bedcbac9e45d3ba257fc3503
8a4605be74aa9ea9d79846c1fba20a33
143acccdb8994e8ea60c508d33c02254
2b74cf3ed452c202217487bd8dd6522b
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1811760837057052672
spelling Mendoza Palechor, Fabio EnriqueDe La Hoz Correa, Eduardo MiguelDe La Hoz Manotas, Alexis Kevin2018-11-09T00:29:31Z2018-11-09T00:29:31Z2014-12-311992-8645https://hdl.handle.net/11323/760Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/Security in computer networks has become a critical point for many organizations, but keeping data integrity demands time and large economic investments, in consequence there has been several solution approaches between hardware and software but sometimes these has become inefficient for attacks detection. This paper presents research results obtained implementing algorithms from FEAST, a Matlab Toolbox with the purpose of selecting the method with better precision results for different attacks detection using the least number of features. The Data Set NSL-KDD was taken as reference. The Relief method obtained the best precision levels for attack detection: 86.20%(NORMAL), 85.71% (DOS), 88.42% (PROBE), 93.11%(U2R), 90.07(R2L), which makes it a promising technique for features selection in data network intrusions.Mendoza Palechor, Fabio Enrique-0000-0002-2755-0841-600De La Hoz Correa, Eduardo Miguel-f50d0e8b-2e3b-4e05-816a-bcd89cf4b021-0De La Hoz Manotas, Alexis Kevin-8c2e7635-6db0-49a2-bb3b-b7131e3bad0f-0engJournal of Theoretical and Applied Information TechnologyAtribución – No comercial – Compartir igualinfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Feature Selection Toolbox (FEAST)Data-SetSecurityAttacksNetworksApplication of feast (Feature Selection Toolbox) in ids (Intrusion detection Systems)Artículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersion[1] M. Crosbie and G. Spafford., “Applying genetic programming to intrusion detection. “ in AAAI Fall Symposium on Genetic Pro- gramming, 1995. [2] R. Gong, M. Zulkernine, and P. Abolmaesmumi, “A software implementation of a genetic algorithm based approach to network intrusion detection.,” in Sixth Internatio- nal Conference on Software Engineering, Artificial Intelligence, Networking and Para- llel/Distributed Computing and First ACIS International Workshop on Self-Assembling Wireless Networks (SNDP/SWAN’05), vol. 0, pp. 246– 253, 2005. [3] W. Li, “A genetic approach to network intrusion detection,” tech. rep., SANS Institute, 2003. [4] C. Sinclair, P. Lyn, and S. Matzer, “An application of machine learning to network intrusion detection.,” in 15th Annual Computer Security Applications Conference, 1999. [5] Herrera, D., Carvajal, Helber., IMPLEMENTACIÓN DE UNA RED NEURONAL PARA LA DETECCIÓN DE INTRUSIONES EN UNA RED TCP/IP, Revista Ingenierías USBMed, paginas 45-48, 2010. [6] Kayacık, G., Zincir, N., Heywood, M., Selecting Features for Intrusion Detection: A Feature Relevance Analysis on KDD 99 Intrusion Detection Datasets , Dalhousie University, Faculty of Computer Science [7] P. Ananthi y P. Balasubramanie, «A Fuzzy Neural Network And Multiple Kernel Fuzzy CMeans Algorithm For Secured Intrusion Detection System,» Journal of Theoretical and Applied Information Technology (JATIT), pp. 206-217. [8] A. Falke, V. Fulsoundar, R. Pawase, S. Wale y S. Ghule, «Network Intrusion Detection System using Fuzzy Logic,» nternational Journal Of Scientific Research And Education, pp. 626- 635. [9] Castillo, R., Deteccion de Intrusos Mediante Tecnicas de Mineria de Datos, Departamento de Sistemas e Informatica, Universidad Autonoma de Colombia. [10] Lorenzo, I., Macia, F., Mora, F., Gil, J., Marcos, J., Modelo Eficiente y Escalable para la Deteccion de Intrusos en Red, Departamento de Tecnologia y Computacion, Universidad de Alicante. [11] Catania, C., Garcia, C., 2008, Reconocimiento de Patrones en el Trafico de Red Basado en Algoritmos Geneticos, Revista Iberoamericana de Inteligencia Artificial, Vol 12, 65-75. [12] Xiaoqing, G., Hebin, G., Luyi, C., Network Intrusion Detection Method Based on Agent and SVM, Beijing Vocational College of Electronic Science Beijing 100026,P.R. China. [13] Kuang, L., Zulkernine, M., An Anomaly Intrusion Detection Method Using the CSIKNN Algorithm School of Computing Queen’s University Kingston, Canada. [14] W. Hu, Y. Liao, and V. Vemuri. Robust Support Vector Machines for Anomaly Detection in Computer Security. Proc. International Conference on Machine Learning and Applications, pages 23–24, 2003. [15] Oporto, Sl., Aquino, I., Chavez, J., Perez, C., Comparacion de Cuatro Tecnicas de Selección de Caracteristicas Envolventes usando Neuronales, Arboles de Decisión, Maquinas de Vector de Soporte y Clasificador Bayesiano. [16] D.E. Goldberg, Genetic algorithms in search, optimization, and machine learning. AddisonWesley. [17] H. Liu and H. Motorola. Feature Selection for Knowledge Discovery and Data Mining. Boston: Kluwer Academy, (1998). [18] http://www.cs.man.ac.uk/~gbrown/fstoolbox/ (07/11/2013) [19] S. J. Stolfo, W. Fan, W. Lee, A. Prodromidis, and P. K. Chan, “Costbased modeling for fraud and intrusion detection: Results from the jam project,” discex, vol. 02, p. 1130, 2000. [20] Tribak, H., Febrero 2012, Análisis Estadístico de Distintas Técnicas de Inteligencia Artificial en Detección de Intrusos. Tesis DoctoralPublicationORIGINALAPPLICATION OF FEAST.pdfAPPLICATION OF FEAST.pdfapplication/pdf598804https://repositorio.cuc.edu.co/bitstreams/11ba6d0d-f90c-4c6b-ad0a-a97807341923/download7de96151bedcbac9e45d3ba257fc3503MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.cuc.edu.co/bitstreams/80ebcb85-66c5-48c7-a6e6-4ac1e14bae3b/download8a4605be74aa9ea9d79846c1fba20a33MD52THUMBNAILAPPLICATION OF FEAST.pdf.jpgAPPLICATION OF FEAST.pdf.jpgimage/jpeg64701https://repositorio.cuc.edu.co/bitstreams/99bd066f-bb29-4614-9ace-37a1412372f0/download143acccdb8994e8ea60c508d33c02254MD54TEXTAPPLICATION OF FEAST.pdf.txtAPPLICATION OF FEAST.pdf.txttext/plain24753https://repositorio.cuc.edu.co/bitstreams/78593f9a-665d-4bb6-a499-24fa5c3d0e31/download2b74cf3ed452c202217487bd8dd6522bMD5511323/760oai:repositorio.cuc.edu.co:11323/7602024-09-17 14:08:16.373open.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=