Evaluación de protocolos de comunicación para una red inalámbrica de monitoreo de precipitaciones en zonas urbanas

Rainfall monitoring networks are key elements in the development of warnings and predictive models for communities at risk of flooding during high intensity rainfall events. Currently, most of these networks send the rainfall measurement to a data center in real time using wireless communication pro...

Full description

Autores:
Ortega González, Lilia Rosa
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2021
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
spa
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/8471
Acceso en línea:
https://hdl.handle.net/11323/8471
https://repositorio.cuc.edu.co/
Palabra clave:
Rainfall monitoring
LoRaWAN
Zigbee
Sigfox
Radio mobile
Monitoreo de precipitaciones
Rights
openAccess
License
Attribution-NonCommercial-ShareAlike 4.0 International
id RCUC2_8757fa0ee8f6099c8ed1cbf80f52e61e
oai_identifier_str oai:repositorio.cuc.edu.co:11323/8471
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.spa.fl_str_mv Evaluación de protocolos de comunicación para una red inalámbrica de monitoreo de precipitaciones en zonas urbanas
title Evaluación de protocolos de comunicación para una red inalámbrica de monitoreo de precipitaciones en zonas urbanas
spellingShingle Evaluación de protocolos de comunicación para una red inalámbrica de monitoreo de precipitaciones en zonas urbanas
Rainfall monitoring
LoRaWAN
Zigbee
Sigfox
Radio mobile
Monitoreo de precipitaciones
title_short Evaluación de protocolos de comunicación para una red inalámbrica de monitoreo de precipitaciones en zonas urbanas
title_full Evaluación de protocolos de comunicación para una red inalámbrica de monitoreo de precipitaciones en zonas urbanas
title_fullStr Evaluación de protocolos de comunicación para una red inalámbrica de monitoreo de precipitaciones en zonas urbanas
title_full_unstemmed Evaluación de protocolos de comunicación para una red inalámbrica de monitoreo de precipitaciones en zonas urbanas
title_sort Evaluación de protocolos de comunicación para una red inalámbrica de monitoreo de precipitaciones en zonas urbanas
dc.creator.fl_str_mv Ortega González, Lilia Rosa
dc.contributor.advisor.spa.fl_str_mv Acosta Coll, Melisa Andrea
Piñeres Espitia, Gabriel Dario
dc.contributor.author.spa.fl_str_mv Ortega González, Lilia Rosa
dc.subject.spa.fl_str_mv Rainfall monitoring
LoRaWAN
Zigbee
Sigfox
Radio mobile
Monitoreo de precipitaciones
topic Rainfall monitoring
LoRaWAN
Zigbee
Sigfox
Radio mobile
Monitoreo de precipitaciones
description Rainfall monitoring networks are key elements in the development of warnings and predictive models for communities at risk of flooding during high intensity rainfall events. Currently, most of these networks send the rainfall measurement to a data center in real time using wireless communication protocols, thus avoiding travel to the measurement site. An application case of this is an Early Warning System (EWS) for pluvial flash floods developed in Barranquilla, which used the GPRS protocol to send real-time rain gauge measurement data to a web server for further processing; however, this protocol has high energy consumption and high maintenance costs. In the present work, an evaluation of three low power wireless communication protocols, Zigbee, LoRaWAN and Sigfox, is carried out to determine which one is the most suitable to be applied to an early warning system that monitors rainfall in the city of Barranquilla. The stipulated evaluation metrics are the characteristics of the link profile, energy consumption and costs of the devices for the implementation of the system. To perform the evaluation, a wireless sensor network was designed and characterized, which was analyzed using the free software tool Radio Mobile; this tool allowed determining the performance for each communication protocol, taking into account the measurement points implemented with the GPRS network of the previous SAT. The final results of the simulation show the LoRaWAN protocol as a viable alternative with good performance.
publishDate 2021
dc.date.accessioned.none.fl_str_mv 2021-07-19T20:05:43Z
dc.date.available.none.fl_str_mv 2021-07-19T20:05:43Z
dc.date.issued.none.fl_str_mv 2021
dc.type.spa.fl_str_mv Trabajo de grado - Pregrado
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TP
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_7a1f
status_str acceptedVersion
dc.identifier.uri.spa.fl_str_mv https://hdl.handle.net/11323/8471
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
url https://hdl.handle.net/11323/8471
https://repositorio.cuc.edu.co/
identifier_str_mv Corporación Universidad de la Costa
REDICUC - Repositorio CUC
dc.language.iso.none.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Acosta-Coll, M., Ballester-Merelo, F., & Martínez-Peiró, M. (2018). Early warning system for detection of urban pluvial flooding hazard levels in an ungauged basin. Natural Hazards, 92(2), 1237–1265. https://doi.org/10.1007/s11069-018-3249-4
Acosta Coll, M. (2013). Sistemas de Alerta Temprana (S.A.T) para la Reducción del Riesgo de Inundaciones Súbitas y Fenómenos Atmosféricos en el Área Metropolitana de Barranquilla. Scientia et Technica, 18(2), 303–308. https://doi.org/10.22517/23447214.8661
Albero, T., Sempere, V., Silvestre, J., & Dabbas, P. (2005). Environmental control system based on mobile devices. IEEE International Conference on Emerging Technologies and Factory Automation, ETFA, 1 2 VOLS(November 2015), 831–838. https://doi.org/10.1109/etfa.2005.1612612
Alliance, L. (2020). LoRaWAN® L2 1.0.4 Specification. 1–75.
Ávila, H. (2012). Perspectiva del manejo del drenaje pluvial frente al cambio climático - caso de estudio: ciudad de Barranquilla, Colombia*. Revista de Ingeniería, (36), 54–59. https://doi.org/10.16924/revinge.36.10
Avila, L., Ávila, H., & Sisa, A. (2017). A reactive early warning model for urban flash flood management. World Environmental and Water Resources Congress 2017: Water, Wastewater, and Stormwater; Urban Watershed Management; and Municipal Water Infrastructure - Selected Papers from the World Environmental and Water Resources Congress 2017, (August), 372–382. https://doi.org/10.1061/9780784480632.030
Balmaceda, J., Aubert, J., & Arias, M. R. (2018). Performance analysis of radio link implementation for low cost deployed WiMAX networks. 2017 IEEE 37th Central America and Panama Convention, CONCAPAN 2017, 2018-Janua, 1–5. https://doi.org/10.1109/CONCAPAN.2017.8278516
Bernal, H. A. T. (2020). Análisis De Tecnologías De Comunicaciones Inalámbricas Para Determinar La Mejor Opción a Implementar Para Los Servicios Que Presta La DitgEaab. Retrieved from http://www.elsevier.com/locate/scp
Bhoyar, P., Sahare, P., Dhok, S. B., & Deshmukh, R. B. (2019). Communication technologies and security challenges for internet of things: A comprehensive review. AEU - International Journal of Electronics and Communications, 99, 81–99. https://doi.org/10.1016/j.aeue.2018.11.031
Bonilla, I., Arturo, T., & Morles, M. (2016). Iot, El Internet De Las Cosas Y La Innovación De Sus Aplicaciones. VInculaTégica EFAN, (1), 2313–2340. Retrieved from http://www.web.facpya.uanl.mx/Vinculategica/Revistas/R2/2313-2340 - Iot, El Internet De Las Cosas Y La Innovacion De Sus Aplicaciones.pdf
Buettrich, S. (2007). Unidad 06 Unidad 06: : Cálculo de Radioenlace Cálculo de Radioenlace Tabla de contenido. 1–22. Retrieved from http://www.itrainonline.org/itrainonline/mmtk/wireless_es/files/06_es_calculo-deradioenlace_guia_v02.pdf
CAE S.p.A. (2021). PRECIPITACIONES INTENSAS. Retrieved April 19, 2020, from https://www.cae.it/esp/soluciones/sistemas-de-monitoreo-para-eventosmeteorológicos-extremos/precipitaciones-intensas-sl-10.html
Caicedo Ortiz, J. G. (2015). Modelo de despliegue de una WSN para la medición de las variables climáticas que causan fuertes precipitaciones. Prospectiva, 13(1), 106. https://doi.org/10.15665/rp.v13i1.365
Cama-Pinto, A., Acosta-Coll, M., Piñeres-Espitia, G., Caicedo-Ortiz, J., Zamora-Musa, R., & Sepulveda-Ojeda, J. (2016). Diseño de una red de sensores inalámbricos para la monitorización de inundaciones repentinas en la ciudad de Barranquilla, Colombia. Ingeniare. Revista Chilena de Ingeniería, 24(4), 581–599. https://doi.org/10.4067/s0718-33052016000400005
Digi International Inc. (2020). ConnectPort® X2 - Digi International. Retrieved from http://www.digi.com/products/xbee-rf-solutions/gateways/connectportx2gateways
Dragino. (2020). Lora Shield. Retrieved from Wiki for Dragino Project website: http://wiki.dragino.com/index.php?title=Lora_Shield
DRAGINO. (2020). Outdoor LoRaWAN Gateway OVERVIEW : 1.0(8), 86647123.
Dulman, S., Chatterjea, S., & Havinga, P. (2005). Introduction to wireless sensor networks. Embedded Systems: Handbook, (c), 31-1-31–10. https://doi.org/10.1201/9781420038163
East, B. R. (2008). 9XTend TM OEM RF Module. 1–2.
Garcia, F. C. C., Retamar, A. E., & Javier, J. C. (2016). A real time urban flood monitoring system for metro Manila. IEEE Region 10 Annual International Conference, Proceedings/TENCON, 2016-Janua, 3–7. https://doi.org/10.1109/TENCON.2015.7372990
García Garrancho, P. (2006). Manuel de uso de Radio Mobile. 31. Retrieved from https://upcommons.upc.edu/bitstream/handle/2099.1/6989/anexos/Anexo 16.pdf Guide, I. (2018). XKIT INSTRUCTION. (April).
Hua, J., & Shunwuritu, N. (2021). Research on term extraction technology in computer field based on wireless network technology. Microprocessors and Microsystems, 80(September 2020), 103336. https://doi.org/10.1016/j.micpro.2020.103336
IP Europe. (2019). What are cellular communication standards ? Retrieved April 26, 2021, from IP-Europe-Factsheet website: https://www.iptalks.eu/policy-priorities/supportthe-open-standards-development-model/what-are-cellular-communication-standards/
ITU-T. (2014). Applications of Wireless Sensor Networks in Next Generation Networks. Series T.2000: Next Generation Networks, (February), 1–94.
Javier, F., Pisón, M. De, Marcos, A. G., & Elías, F. A. (2009). Redes inalámbricas de sensores : teoría y aplicación práctica Roberto Fernández Martínez , Joaquín Ordieres Meré ,.
Kadhim, L. A., & Salih, S. M. (2014). Indoor Distributed Antenna System for the University of Baghdad Building. IEEE Transactions on Antennas and Propagation, 5(4), 57–68.
Kama, A., Diallo, M., & Drame, M. S. (2018). Low cost connected and autonomous rain gauge for real time rainfall monitoring in Dakar. 2018 25th International Conference on Telecommunications, ICT 2018, 660–664. https://doi.org/10.1109/ICT.2018.8464854
Koucheryavy, A., & Salim, A. (2009). Cluster head selection for homogeneous wireless sensor networks. International Conference on Advanced Communication Technology, ICACT, 3(3), 2141–2146.
Lavric, A., Petrariu, A. I., & Popa, V. (2019). SigFox Communication Protocol: The New Era of IoT? 2019 International Conference on Sensing and Instrumentation in IoT Era, ISSI 2019, 2019–2022. https://doi.org/10.1109/ISSI47111.2019.9043727
Lee, J. S., Su, Y. W., & Shen, C. C. (2007). A comparative study of wireless protocols: Bluetooth, UWB, ZigBee, and Wi-Fi. IECON Proceedings (Industrial Electronics Conference), (September 2014), 46–51. https://doi.org/10.1109/IECON.2007.4460126
Li, W., & Kara, S. (2017). Methodology for Monitoring Manufacturing Environment by Using Wireless Sensor Networks (WSN) and the Internet of Things (IoT). Procedia CIRP, 61, 323–328. https://doi.org/10.1016/j.procir.2016.11.182
LoRa Alliance. (2015). A technical overview of LoRa and LoRaWAN. (November), 1–20. Retrieved from https://www.loraalliance.org/portals/0/documents/whitepapers/LoRaWAN101.pdf
Mangundu, E. M., Mateus, J. N., Zodi, G. A. L., & Johson, J. (2018). A wireless sensor network for rainfall monitoring, using cellular network: A case for Namibia. 2017 Global Wireless Summit, GWS 2017, 2018-Janua, 240–244. https://doi.org/10.1109/GWS.2017.8300469
Mekki, K., Bajic, E., Chaxel, F., & Meyer, F. (2019). A comparative study of LPWAN technologies for large-scale IoT deployment. ICT Express, 5(1), 1–7. https://doi.org/10.1016/j.icte.2017.12.005
Mendoza, A., González, H., Buelvas, J., & Rueda, S. L. M. (2016). Guía para la Implementación de Sistemas de alerta temprana. Retrieved from https://repositorio.gestiondelriesgo.gov.co/bitstream/handle/20.500.11762/18505/VOL -9-GUIA-PARA-LA-IMPLEMENTACION-DE SISTEMAS-DE-ALETATEMPRANA.pdf?sequence=18
Monachesi, E., Gómez López, F. A., Carrasco, A., Frenzel, A. M., Chaile, G., & Tucumán, F. R. (2016). Estudio de viabilidad de un enlace WiFi. Retrieved from http://www.edutecne.utn.edu.ar
Noaa. (2012). Guía de referencia para sistemas de alerta temprana de crecidas repentinas. Retrieved from http://www.meted.ucar.edu/communities/hazwarnsys/ffewsrg_es/FFG_completa_es.pdf
Organización Meteorológica Mundial. (1994). GUÍA DE PRACTICAS HIDROLÓGICAS. Retrieved from https://www.wmo.int/pages/prog/hwrp/publications/guide/spanish/168_Vol_I_es.pdf
Rueda, J. S., & Talavera Portocarrero, J. M. (2017). Similitudes y diferencias entre Redes de Sensores Inalámbricas e Internet de las Cosas: Hacia una postura clarificadora. Revista Colombiana de Computación, 18(2), 58–74. https://doi.org/10.29375/25392115.3218
Sadowski, S., & Spachos, P. (2020). Wireless technologies for smart agricultural monitoring using internet of things devices with energy harvesting capabilities. Computers and Electronics in Agriculture, 172(September 2019), 105338. https://doi.org/10.1016/j.compag.2020.105338
Santos, S. C., Firmino, R. M., Mattos, D. M. F., & Medeiros, D. S. V. (2020). An IoT Rainfall Monitoring Application based on Wireless Communication Technologies. 53–56. https://doi.org/10.1109/ciot50422.2020.9244293
Seybold, J. S. (2005). Introduction to RF Propagation. In Introduction to RF Propagation. https://doi.org/10.1002/0471743690
Sigfox. (2017). Sigfox Technical Overview. 1(May), 26. Retrieved from https://www.disk91.com/wp-content/uploads/2017/05/4967675830228422064.pdf
Sohraby, K., Minoli, D., & Znati, T. (2007). Basic Wireless Sensor Technology. In Wireless Sensor Networks. https://doi.org/10.1002/9780470112762.ch3
Talavera, J. M., Tobón, L. E., Gómez, J. A., Culman, M. A., Aranda, J. M., Parra, D. T., … Garreta, L. E. (2017). Review of IoT applications in agro-industrial and environmental fields. Computers and Electronics in Agriculture, 142(September), 283–297. https://doi.org/10.1016/j.compag.2017.09.015
Trandafir, B., Fratu, O., & Halunga, S. (2010). Simulation and analysis of a Wi-Fi public network using the radio mobile software. 2010 9th International Symposium on Electronics and Telecommunications, ISETC’10 - Conference Proceedings, 281–284. https://doi.org/10.1109/ISETC.2010.5679309
Vitadhani, A., Alief, F., Haryanto, B., Harwahyu, R., & Fitri Sari, R. (2020). Simulating LoRaWAN for flood early warning system in ciliwung river, bogor-Jakarta. Proceedings - 2020 International Seminar on Application for Technology of Information and Communication: IT Challenges for Sustainability, Scalability, and Security in the Age of Digital Disruption, ISemantic 2020, 274–279. https://doi.org/10.1109/iSemantic50169.2020.9234221
Yuwono, T., Ruzardi, & Ismail, M. (2011). Rain gauge development employing bluetooth and RF modem. 2011 IEEE International Conference on Space Science and Communication: “Towards Exploring the Equatorial Phenomena”, IconSpace 2011 - Proceedings, (July), 320–323. https://doi.org/10.1109/IConSpace.2011.6015909
Zand, P., Chatterjea, S., Ketema, J., & Havinga, P. (2012). A distributed scheduling algorithm for real-time (D-SAR) industrial wireless sensor and actuator networks. IEEE International Conference on Emerging Technologies and Factory Automation, ETFA. https://doi.org/10.1109/ETFA.2012.6489719
Zennaro, M., Bagula, A., Gascon, D., & Noveleta, A. B. (2010). Long distance wireless sensor networks: Simulation vs reality. Proceedings of the 4th ACM Workshop on Networked Systems for Developing Regions, NSDR ’10, (June 2014). https://doi.org/10.1145/1836001.1836013
dc.rights.spa.fl_str_mv Attribution-NonCommercial-ShareAlike 4.0 International
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Attribution-NonCommercial-ShareAlike 4.0 International
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Corporación Universidad de la Costa
dc.publisher.program.spa.fl_str_mv Ingeniería Electrónica
institution Corporación Universidad de la Costa
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstream/11323/8471/1/Evaluaci%c3%b3n%20de%20protocolos%20de%20comunicaci%c3%b3n%20para%20monitoreo%20de%20precipitaciones%20en%20zonas%20urbanas.pdf
https://repositorio.cuc.edu.co/bitstream/11323/8471/2/license_rdf
https://repositorio.cuc.edu.co/bitstream/11323/8471/3/license.txt
https://repositorio.cuc.edu.co/bitstream/11323/8471/4/Evaluaci%c3%b3n%20de%20protocolos%20de%20comunicaci%c3%b3n%20para%20monitoreo%20de%20precipitaciones%20en%20zonas%20urbanas.pdf.jpg
https://repositorio.cuc.edu.co/bitstream/11323/8471/5/Evaluaci%c3%b3n%20de%20protocolos%20de%20comunicaci%c3%b3n%20para%20monitoreo%20de%20precipitaciones%20en%20zonas%20urbanas.pdf.txt
bitstream.checksum.fl_str_mv a764f16eac1ed416e53f18c18bcd3cab
934f4ca17e109e0a05eaeaba504d7ce4
e30e9215131d99561d40d6b0abbe9bad
c654faf3aea030e87b1ba0d6cc6533ad
1d83cab283983f94e107fbdb1c79136e
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Universidad de La Costa
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1808400156168552448
spelling Acosta Coll, Melisa Andrea17e86c9aa166917938a1f69ef4813a0d-1Piñeres Espitia, Gabriel Dario1560714ef1fd6ceda28e93b1c47da050-1Ortega González, Lilia Rosad9d226c95a0572a73dfb52d735c11fbd3002021-07-19T20:05:43Z2021-07-19T20:05:43Z2021https://hdl.handle.net/11323/8471Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/Rainfall monitoring networks are key elements in the development of warnings and predictive models for communities at risk of flooding during high intensity rainfall events. Currently, most of these networks send the rainfall measurement to a data center in real time using wireless communication protocols, thus avoiding travel to the measurement site. An application case of this is an Early Warning System (EWS) for pluvial flash floods developed in Barranquilla, which used the GPRS protocol to send real-time rain gauge measurement data to a web server for further processing; however, this protocol has high energy consumption and high maintenance costs. In the present work, an evaluation of three low power wireless communication protocols, Zigbee, LoRaWAN and Sigfox, is carried out to determine which one is the most suitable to be applied to an early warning system that monitors rainfall in the city of Barranquilla. The stipulated evaluation metrics are the characteristics of the link profile, energy consumption and costs of the devices for the implementation of the system. To perform the evaluation, a wireless sensor network was designed and characterized, which was analyzed using the free software tool Radio Mobile; this tool allowed determining the performance for each communication protocol, taking into account the measurement points implemented with the GPRS network of the previous SAT. The final results of the simulation show the LoRaWAN protocol as a viable alternative with good performance.Las redes de monitoreo de precipitaciones son elementos claves para la elaboración de alertas y modelos de predicción para las comunidades que corren el riesgo de sufrir inundaciones durante los episodios de precipitaciones de alta intensidad. Actualmente, la mayoría de estas redes envían la medición de las precipitaciones a un centro de datos en tiempo real utilizando protocolos de comunicación inalámbrica, evitando así los desplazamientos al lugar de la medición. Un caso de aplicación de esto es un Sistema de Alerta Temprana (SAT) para inundaciones repentinas pluviales desarrollado en Barranquilla, el cual utilizaba el protocolo GPRS para enviar datos en tiempo real de medición de pluviómetros a un servidor web para su posterior procesamiento; sin embargo, este protocolo presenta alto consumo energético y también elevados costos de mantenimiento. En el presente trabajo se realiza una evaluación de tres protocolos de comunicación inalámbrica de baja potencia, Zigbee, LoRaWAN y Sigfox, para determinar cuál es el más adecuado para aplicar a un sistema de alerta temprana que monitorea precipitaciones en la ciudad de Barranquilla. Las métricas estipuladas de evaluación son las características del perfil de enlace, consumo energético y costos de los dispositivos para la implementación del sistema. Para realizar la evaluación se diseñó y caracterizó una red de sensores inalámbricos, la cual se analizó haciendo uso de la herramienta de software libre Radio Mobile; esta herramienta permitió determinar el rendimiento para cada protocolo de comunicación, teniendo en cuenta los puntos de medición implementados con la red GPRS del anterior SAT. Los resultados finales de la simulación muestran al protocolo LoRaWAN como una alternativa viable y de buen rendimiento.application/pdfspaCorporación Universidad de la CostaIngeniería ElectrónicaAttribution-NonCommercial-ShareAlike 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Rainfall monitoringLoRaWANZigbeeSigfoxRadio mobileMonitoreo de precipitacionesEvaluación de protocolos de comunicación para una red inalámbrica de monitoreo de precipitaciones en zonas urbanasTrabajo de grado - Pregradohttp://purl.org/coar/resource_type/c_7a1fTextinfo:eu-repo/semantics/bachelorThesishttp://purl.org/redcol/resource_type/TPinfo:eu-repo/semantics/acceptedVersionAcosta-Coll, M., Ballester-Merelo, F., & Martínez-Peiró, M. (2018). Early warning system for detection of urban pluvial flooding hazard levels in an ungauged basin. Natural Hazards, 92(2), 1237–1265. https://doi.org/10.1007/s11069-018-3249-4Acosta Coll, M. (2013). Sistemas de Alerta Temprana (S.A.T) para la Reducción del Riesgo de Inundaciones Súbitas y Fenómenos Atmosféricos en el Área Metropolitana de Barranquilla. Scientia et Technica, 18(2), 303–308. https://doi.org/10.22517/23447214.8661Albero, T., Sempere, V., Silvestre, J., & Dabbas, P. (2005). Environmental control system based on mobile devices. IEEE International Conference on Emerging Technologies and Factory Automation, ETFA, 1 2 VOLS(November 2015), 831–838. https://doi.org/10.1109/etfa.2005.1612612Alliance, L. (2020). LoRaWAN® L2 1.0.4 Specification. 1–75.Ávila, H. (2012). Perspectiva del manejo del drenaje pluvial frente al cambio climático - caso de estudio: ciudad de Barranquilla, Colombia*. Revista de Ingeniería, (36), 54–59. https://doi.org/10.16924/revinge.36.10Avila, L., Ávila, H., & Sisa, A. (2017). A reactive early warning model for urban flash flood management. World Environmental and Water Resources Congress 2017: Water, Wastewater, and Stormwater; Urban Watershed Management; and Municipal Water Infrastructure - Selected Papers from the World Environmental and Water Resources Congress 2017, (August), 372–382. https://doi.org/10.1061/9780784480632.030Balmaceda, J., Aubert, J., & Arias, M. R. (2018). Performance analysis of radio link implementation for low cost deployed WiMAX networks. 2017 IEEE 37th Central America and Panama Convention, CONCAPAN 2017, 2018-Janua, 1–5. https://doi.org/10.1109/CONCAPAN.2017.8278516Bernal, H. A. T. (2020). Análisis De Tecnologías De Comunicaciones Inalámbricas Para Determinar La Mejor Opción a Implementar Para Los Servicios Que Presta La DitgEaab. Retrieved from http://www.elsevier.com/locate/scpBhoyar, P., Sahare, P., Dhok, S. B., & Deshmukh, R. B. (2019). Communication technologies and security challenges for internet of things: A comprehensive review. AEU - International Journal of Electronics and Communications, 99, 81–99. https://doi.org/10.1016/j.aeue.2018.11.031Bonilla, I., Arturo, T., & Morles, M. (2016). Iot, El Internet De Las Cosas Y La Innovación De Sus Aplicaciones. VInculaTégica EFAN, (1), 2313–2340. Retrieved from http://www.web.facpya.uanl.mx/Vinculategica/Revistas/R2/2313-2340 - Iot, El Internet De Las Cosas Y La Innovacion De Sus Aplicaciones.pdfBuettrich, S. (2007). Unidad 06 Unidad 06: : Cálculo de Radioenlace Cálculo de Radioenlace Tabla de contenido. 1–22. Retrieved from http://www.itrainonline.org/itrainonline/mmtk/wireless_es/files/06_es_calculo-deradioenlace_guia_v02.pdfCAE S.p.A. (2021). PRECIPITACIONES INTENSAS. Retrieved April 19, 2020, from https://www.cae.it/esp/soluciones/sistemas-de-monitoreo-para-eventosmeteorológicos-extremos/precipitaciones-intensas-sl-10.htmlCaicedo Ortiz, J. G. (2015). Modelo de despliegue de una WSN para la medición de las variables climáticas que causan fuertes precipitaciones. Prospectiva, 13(1), 106. https://doi.org/10.15665/rp.v13i1.365Cama-Pinto, A., Acosta-Coll, M., Piñeres-Espitia, G., Caicedo-Ortiz, J., Zamora-Musa, R., & Sepulveda-Ojeda, J. (2016). Diseño de una red de sensores inalámbricos para la monitorización de inundaciones repentinas en la ciudad de Barranquilla, Colombia. Ingeniare. Revista Chilena de Ingeniería, 24(4), 581–599. https://doi.org/10.4067/s0718-33052016000400005Digi International Inc. (2020). ConnectPort® X2 - Digi International. Retrieved from http://www.digi.com/products/xbee-rf-solutions/gateways/connectportx2gatewaysDragino. (2020). Lora Shield. Retrieved from Wiki for Dragino Project website: http://wiki.dragino.com/index.php?title=Lora_ShieldDRAGINO. (2020). Outdoor LoRaWAN Gateway OVERVIEW : 1.0(8), 86647123.Dulman, S., Chatterjea, S., & Havinga, P. (2005). Introduction to wireless sensor networks. Embedded Systems: Handbook, (c), 31-1-31–10. https://doi.org/10.1201/9781420038163East, B. R. (2008). 9XTend TM OEM RF Module. 1–2.Garcia, F. C. C., Retamar, A. E., & Javier, J. C. (2016). A real time urban flood monitoring system for metro Manila. IEEE Region 10 Annual International Conference, Proceedings/TENCON, 2016-Janua, 3–7. https://doi.org/10.1109/TENCON.2015.7372990García Garrancho, P. (2006). Manuel de uso de Radio Mobile. 31. Retrieved from https://upcommons.upc.edu/bitstream/handle/2099.1/6989/anexos/Anexo 16.pdf Guide, I. (2018). XKIT INSTRUCTION. (April).Hua, J., & Shunwuritu, N. (2021). Research on term extraction technology in computer field based on wireless network technology. Microprocessors and Microsystems, 80(September 2020), 103336. https://doi.org/10.1016/j.micpro.2020.103336IP Europe. (2019). What are cellular communication standards ? Retrieved April 26, 2021, from IP-Europe-Factsheet website: https://www.iptalks.eu/policy-priorities/supportthe-open-standards-development-model/what-are-cellular-communication-standards/ITU-T. (2014). Applications of Wireless Sensor Networks in Next Generation Networks. Series T.2000: Next Generation Networks, (February), 1–94.Javier, F., Pisón, M. De, Marcos, A. G., & Elías, F. A. (2009). Redes inalámbricas de sensores : teoría y aplicación práctica Roberto Fernández Martínez , Joaquín Ordieres Meré ,.Kadhim, L. A., & Salih, S. M. (2014). Indoor Distributed Antenna System for the University of Baghdad Building. IEEE Transactions on Antennas and Propagation, 5(4), 57–68.Kama, A., Diallo, M., & Drame, M. S. (2018). Low cost connected and autonomous rain gauge for real time rainfall monitoring in Dakar. 2018 25th International Conference on Telecommunications, ICT 2018, 660–664. https://doi.org/10.1109/ICT.2018.8464854Koucheryavy, A., & Salim, A. (2009). Cluster head selection for homogeneous wireless sensor networks. International Conference on Advanced Communication Technology, ICACT, 3(3), 2141–2146.Lavric, A., Petrariu, A. I., & Popa, V. (2019). SigFox Communication Protocol: The New Era of IoT? 2019 International Conference on Sensing and Instrumentation in IoT Era, ISSI 2019, 2019–2022. https://doi.org/10.1109/ISSI47111.2019.9043727Lee, J. S., Su, Y. W., & Shen, C. C. (2007). A comparative study of wireless protocols: Bluetooth, UWB, ZigBee, and Wi-Fi. IECON Proceedings (Industrial Electronics Conference), (September 2014), 46–51. https://doi.org/10.1109/IECON.2007.4460126Li, W., & Kara, S. (2017). Methodology for Monitoring Manufacturing Environment by Using Wireless Sensor Networks (WSN) and the Internet of Things (IoT). Procedia CIRP, 61, 323–328. https://doi.org/10.1016/j.procir.2016.11.182LoRa Alliance. (2015). A technical overview of LoRa and LoRaWAN. (November), 1–20. Retrieved from https://www.loraalliance.org/portals/0/documents/whitepapers/LoRaWAN101.pdfMangundu, E. M., Mateus, J. N., Zodi, G. A. L., & Johson, J. (2018). A wireless sensor network for rainfall monitoring, using cellular network: A case for Namibia. 2017 Global Wireless Summit, GWS 2017, 2018-Janua, 240–244. https://doi.org/10.1109/GWS.2017.8300469Mekki, K., Bajic, E., Chaxel, F., & Meyer, F. (2019). A comparative study of LPWAN technologies for large-scale IoT deployment. ICT Express, 5(1), 1–7. https://doi.org/10.1016/j.icte.2017.12.005Mendoza, A., González, H., Buelvas, J., & Rueda, S. L. M. (2016). Guía para la Implementación de Sistemas de alerta temprana. Retrieved from https://repositorio.gestiondelriesgo.gov.co/bitstream/handle/20.500.11762/18505/VOL -9-GUIA-PARA-LA-IMPLEMENTACION-DE SISTEMAS-DE-ALETATEMPRANA.pdf?sequence=18Monachesi, E., Gómez López, F. A., Carrasco, A., Frenzel, A. M., Chaile, G., & Tucumán, F. R. (2016). Estudio de viabilidad de un enlace WiFi. Retrieved from http://www.edutecne.utn.edu.arNoaa. (2012). Guía de referencia para sistemas de alerta temprana de crecidas repentinas. Retrieved from http://www.meted.ucar.edu/communities/hazwarnsys/ffewsrg_es/FFG_completa_es.pdfOrganización Meteorológica Mundial. (1994). GUÍA DE PRACTICAS HIDROLÓGICAS. Retrieved from https://www.wmo.int/pages/prog/hwrp/publications/guide/spanish/168_Vol_I_es.pdfRueda, J. S., & Talavera Portocarrero, J. M. (2017). Similitudes y diferencias entre Redes de Sensores Inalámbricas e Internet de las Cosas: Hacia una postura clarificadora. Revista Colombiana de Computación, 18(2), 58–74. https://doi.org/10.29375/25392115.3218Sadowski, S., & Spachos, P. (2020). Wireless technologies for smart agricultural monitoring using internet of things devices with energy harvesting capabilities. Computers and Electronics in Agriculture, 172(September 2019), 105338. https://doi.org/10.1016/j.compag.2020.105338Santos, S. C., Firmino, R. M., Mattos, D. M. F., & Medeiros, D. S. V. (2020). An IoT Rainfall Monitoring Application based on Wireless Communication Technologies. 53–56. https://doi.org/10.1109/ciot50422.2020.9244293Seybold, J. S. (2005). Introduction to RF Propagation. In Introduction to RF Propagation. https://doi.org/10.1002/0471743690Sigfox. (2017). Sigfox Technical Overview. 1(May), 26. Retrieved from https://www.disk91.com/wp-content/uploads/2017/05/4967675830228422064.pdfSohraby, K., Minoli, D., & Znati, T. (2007). Basic Wireless Sensor Technology. In Wireless Sensor Networks. https://doi.org/10.1002/9780470112762.ch3Talavera, J. M., Tobón, L. E., Gómez, J. A., Culman, M. A., Aranda, J. M., Parra, D. T., … Garreta, L. E. (2017). Review of IoT applications in agro-industrial and environmental fields. Computers and Electronics in Agriculture, 142(September), 283–297. https://doi.org/10.1016/j.compag.2017.09.015Trandafir, B., Fratu, O., & Halunga, S. (2010). Simulation and analysis of a Wi-Fi public network using the radio mobile software. 2010 9th International Symposium on Electronics and Telecommunications, ISETC’10 - Conference Proceedings, 281–284. https://doi.org/10.1109/ISETC.2010.5679309Vitadhani, A., Alief, F., Haryanto, B., Harwahyu, R., & Fitri Sari, R. (2020). Simulating LoRaWAN for flood early warning system in ciliwung river, bogor-Jakarta. Proceedings - 2020 International Seminar on Application for Technology of Information and Communication: IT Challenges for Sustainability, Scalability, and Security in the Age of Digital Disruption, ISemantic 2020, 274–279. https://doi.org/10.1109/iSemantic50169.2020.9234221Yuwono, T., Ruzardi, & Ismail, M. (2011). Rain gauge development employing bluetooth and RF modem. 2011 IEEE International Conference on Space Science and Communication: “Towards Exploring the Equatorial Phenomena”, IconSpace 2011 - Proceedings, (July), 320–323. https://doi.org/10.1109/IConSpace.2011.6015909Zand, P., Chatterjea, S., Ketema, J., & Havinga, P. (2012). A distributed scheduling algorithm for real-time (D-SAR) industrial wireless sensor and actuator networks. IEEE International Conference on Emerging Technologies and Factory Automation, ETFA. https://doi.org/10.1109/ETFA.2012.6489719Zennaro, M., Bagula, A., Gascon, D., & Noveleta, A. B. (2010). Long distance wireless sensor networks: Simulation vs reality. Proceedings of the 4th ACM Workshop on Networked Systems for Developing Regions, NSDR ’10, (June 2014). https://doi.org/10.1145/1836001.1836013ORIGINALEvaluación de protocolos de comunicación para monitoreo de precipitaciones en zonas urbanas.pdfEvaluación de protocolos de comunicación para monitoreo de precipitaciones en zonas urbanas.pdfapplication/pdf2284486https://repositorio.cuc.edu.co/bitstream/11323/8471/1/Evaluaci%c3%b3n%20de%20protocolos%20de%20comunicaci%c3%b3n%20para%20monitoreo%20de%20precipitaciones%20en%20zonas%20urbanas.pdfa764f16eac1ed416e53f18c18bcd3cabMD51open accessCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81031https://repositorio.cuc.edu.co/bitstream/11323/8471/2/license_rdf934f4ca17e109e0a05eaeaba504d7ce4MD52open accessLICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstream/11323/8471/3/license.txte30e9215131d99561d40d6b0abbe9badMD53open accessTHUMBNAILEvaluación de protocolos de comunicación para monitoreo de precipitaciones en zonas urbanas.pdf.jpgEvaluación de protocolos de comunicación para monitoreo de precipitaciones en zonas urbanas.pdf.jpgimage/jpeg26426https://repositorio.cuc.edu.co/bitstream/11323/8471/4/Evaluaci%c3%b3n%20de%20protocolos%20de%20comunicaci%c3%b3n%20para%20monitoreo%20de%20precipitaciones%20en%20zonas%20urbanas.pdf.jpgc654faf3aea030e87b1ba0d6cc6533adMD54open accessTEXTEvaluación de protocolos de comunicación para monitoreo de precipitaciones en zonas urbanas.pdf.txtEvaluación de protocolos de comunicación para monitoreo de precipitaciones en zonas urbanas.pdf.txttext/plain110650https://repositorio.cuc.edu.co/bitstream/11323/8471/5/Evaluaci%c3%b3n%20de%20protocolos%20de%20comunicaci%c3%b3n%20para%20monitoreo%20de%20precipitaciones%20en%20zonas%20urbanas.pdf.txt1d83cab283983f94e107fbdb1c79136eMD55open access11323/8471oai:repositorio.cuc.edu.co:11323/84712023-12-14 15:41:30.742Attribution-NonCommercial-ShareAlike 4.0 International|||http://creativecommons.org/licenses/by-nc-sa/4.0/open accessRepositorio Universidad de La Costabdigital@metabiblioteca.comQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA==