Energy performance comparison of a chiller plant using the conventional staging and the co-design approach in the early design phase of hotel buildings

As part of the design process of a chiller plant, one of the final stages is the energy testing of the system in relation to future operating conditions. Recent studies have suggested establishing robust solutions, but a conservative approach still prevails at this stage. However, the results of som...

Full description

Autores:
Díaz Torres, Yamile
Gullo, Paride
Hernández Herrera, Hernán
Torres del Toro, Migdalia
Reyes Calvo, Roy
Silva Ortega, Jorge I
Gómez Sarduy, Julio
Tipo de recurso:
Article of investigation
Fecha de publicación:
2023
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/10518
Acceso en línea:
https://hdl.handle.net/11323/10518
https://repositorio.cuc.edu.co/
Palabra clave:
Chiller plant
Co-design
Traditional staging
Optimal chiller loading
Optimal chiller sequencing
Rights
openAccess
License
Atribución 4.0 Internacional (CC BY 4.0)
id RCUC2_870e827a331a924806c98352b1272741
oai_identifier_str oai:repositorio.cuc.edu.co:11323/10518
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.eng.fl_str_mv Energy performance comparison of a chiller plant using the conventional staging and the co-design approach in the early design phase of hotel buildings
title Energy performance comparison of a chiller plant using the conventional staging and the co-design approach in the early design phase of hotel buildings
spellingShingle Energy performance comparison of a chiller plant using the conventional staging and the co-design approach in the early design phase of hotel buildings
Chiller plant
Co-design
Traditional staging
Optimal chiller loading
Optimal chiller sequencing
title_short Energy performance comparison of a chiller plant using the conventional staging and the co-design approach in the early design phase of hotel buildings
title_full Energy performance comparison of a chiller plant using the conventional staging and the co-design approach in the early design phase of hotel buildings
title_fullStr Energy performance comparison of a chiller plant using the conventional staging and the co-design approach in the early design phase of hotel buildings
title_full_unstemmed Energy performance comparison of a chiller plant using the conventional staging and the co-design approach in the early design phase of hotel buildings
title_sort Energy performance comparison of a chiller plant using the conventional staging and the co-design approach in the early design phase of hotel buildings
dc.creator.fl_str_mv Díaz Torres, Yamile
Gullo, Paride
Hernández Herrera, Hernán
Torres del Toro, Migdalia
Reyes Calvo, Roy
Silva Ortega, Jorge I
Gómez Sarduy, Julio
dc.contributor.author.none.fl_str_mv Díaz Torres, Yamile
Gullo, Paride
Hernández Herrera, Hernán
Torres del Toro, Migdalia
Reyes Calvo, Roy
Silva Ortega, Jorge I
Gómez Sarduy, Julio
dc.subject.proposal.eng.fl_str_mv Chiller plant
Co-design
Traditional staging
Optimal chiller loading
Optimal chiller sequencing
topic Chiller plant
Co-design
Traditional staging
Optimal chiller loading
Optimal chiller sequencing
description As part of the design process of a chiller plant, one of the final stages is the energy testing of the system in relation to future operating conditions. Recent studies have suggested establishing robust solutions, but a conservative approach still prevails at this stage. However, the results of some recent studies suggest the application of a new co-design (control–design) approach. The present research involves a comparative analysis between the use of conventional staging and the co-design approach in the design phase of a chiller plant. This paper analyzes the energy consumption estimations of six different chiller plant combinations for a Cuban hotel. For the conservative approach using on/off traditional staging, the results suggest that the best option would be the adoption of a chiller plant featuring a symmetrical configuration. However, the outcomes related to the co-design approach suggest that the best option would be an asymmetrical configuration. The energy savings results were equal to 24.8% and the resulting coefficient of performance (COP) was 59.7% greater than that of the symmetrical configuration. This research lays firm foundations for the correct choice and design of a suitable chiller plant configuration for a selected hotel, allowing for significant energy savings in the tourism sector.
publishDate 2023
dc.date.accessioned.none.fl_str_mv 2023-09-26T20:25:43Z
dc.date.available.none.fl_str_mv 2023-09-26T20:25:43Z
dc.date.issued.none.fl_str_mv 2023-04-28
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
format http://purl.org/coar/resource_type/c_2df8fbb1
status_str publishedVersion
dc.identifier.citation.spa.fl_str_mv Díaz Torres, Y.; Gullo, P.; Hernández Herrera, H.; Torres del Toro, M.; Reyes Calvo, R.; Silva Ortega, J.I.; Gómez arduy, J. Energy Performance Comparison of a Chiller Plant Using the Conventional Staging and the Co-Design Approach in the Early Design Phase of Hotel Buildings. Energies 2023, 16, 3782. https://doi.org/10.3390/en16093782
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/11323/10518
dc.identifier.doi.none.fl_str_mv 10.3390/en16093782
dc.identifier.eissn.spa.fl_str_mv 1996-1073
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
identifier_str_mv Díaz Torres, Y.; Gullo, P.; Hernández Herrera, H.; Torres del Toro, M.; Reyes Calvo, R.; Silva Ortega, J.I.; Gómez arduy, J. Energy Performance Comparison of a Chiller Plant Using the Conventional Staging and the Co-Design Approach in the Early Design Phase of Hotel Buildings. Energies 2023, 16, 3782. https://doi.org/10.3390/en16093782
10.3390/en16093782
1996-1073
Corporación Universidad de la Costa
REDICUC - Repositorio CUC
url https://hdl.handle.net/11323/10518
https://repositorio.cuc.edu.co/
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.ispartofjournal.spa.fl_str_mv Energies
dc.relation.references.spa.fl_str_mv 1. Fang, X.; Jin, X.; Du, Z.; Wang, Y.; Shi, W. Evaluation of the design of chilled water system based on the optimal operation performance of equipments. Appl. Therm. Eng. 2017, 113, 435–448. [CrossRef]
2. ASHRAE. ASHRAE Fundamentals Handbook; ASHRAE: Peachtree Corners, GA, USA, 2017; ISBN 10: 1939200598.
3. Díaz Torres, Y.; Álvarez Guerra Plasencia, A.; Viego Felipe, P.; Crespo Sanchez, G.; Diaz Gonzalez, M. Chiller plant design. Review of the aspects that involve its efficient design. Ing. Energética 2020, 41, e1711.
4. Taylor, S. Fundamentals of Design and Control of Central Chilled-Water Plans (I-P); Atlanta ASHRAE: Peachtree Corners, GA, USA, 2017; ISBN 978-1-939200-67-9.
5. Cheng, Q.; Wang, S.; Yan, C. Sequential Monte Carlo simulation for robust optimal design of cooling water system with quantified uncertainty and reliability. Energy 2016, 118, 489–501. [CrossRef]
6. Yan, C.; Cheng, Q.; Cai, H. Life-Cycle optimization of a chiller plant with quantified analysis of uncertainty and reliability in commercial buildings. Appl. Sci. 2019, 9, 1548. [CrossRef]
7. Huang, P.; Huang, G.; Augenbroe, G.; Li, S. Optimal configuration of multiple-chiller plants under cooling load uncertainty for different climate effects and building types. Energy Build. 2018, 158, 684–697. [CrossRef]
8. Li, H.; Wang, S.; Xiao, F. Probabilistic optimal design and on-site adaptive commissioning of building air-conditioning systems concerning uncertainties. Energy Procedia 2019, 158, 2725–2730. [CrossRef]
9. Sun, Y.; Wang, S.; Huang, G. Chiller sequencing control with enhanced robustness for energy efficient operation. Energy Build. 2009, 41, 1246–1255. [CrossRef]
10. Gang, W.; Wang, S.; Xiao, F.; Gao, D.-c. Robust optimal design cooling systems considering cooling load uncertainty and equipment reliability. Appl. Energy 2015, 159, 265–275. [CrossRef]
11. Gang, W.; Wang, S.; Yan, C.; Xiao, F. Robust optimal design of building cooling systems concerning uncertainties using mini-max regret theory. Sci. Technol. Built Environ. 2015, 21, 789–799. [CrossRef]
12. Cheng, Q.; Yan, C.; Wang, S. Robust Optimal Design of Chiller Plants Based on Cooling Load Distribution. Energy Procedia 2015, 75, 1354–1359. [CrossRef]
13. Niu, J.; Tian, Z.; Lu, Y.; Zhao, H.; Lan, B. A robust optimization model for designing the building cooling source under cooling load uncertainty. Appl. Energy 2019, 241, 390–403. [CrossRef]
14. Chen, Y.; Yang, C.; Pan, X.; Yan, D. Desing and operation optimization of multi-chiller plants based on energy performance simulation. Energy Build. 2020, 222, 110100. [CrossRef]
15. Bhattacharya, A.; Vasisht, S.; Adetola, V.; Huang, S.; Sharma, H.; Vrabie, D. Control co-design of commercial building chiller plant using Bayesian optimization. Energy Build. 2021, 246, 111077. [CrossRef]
16. Garcia-Sanz, M. Control co-design: An engineering game changer. Adv. Control. Appl. Eng. Ind. Syst. 2019, 1, e18. [CrossRef]
17. Rampazzo, M. A static moving boundary modelling approach for simulation of indirect evaporative free cooling systems. Appl. Energy 2019, 250, 1719–1728.
18. Masburah, R.; Sinha, S.; Lochan, R.; Dey, S.; Zhu, Q. Co-Designing Intelligent Control of Building HVAC and Microgrids. DSD 2021: Euromicro Conference on Digital System Design. 2021. Available online: https://ieeexplore.ieee.org/document/9556332 (accessed on 20 December 2021).
19. Díaz-Torres, Y.; Calvo, R.; Herrera, H.; Gomez, S.; Guerra, M.; Silva, J. Procedure to obtain the optimal distribution cooling capacity of an air-condensed chiller plant for a hotel facility conceptual design. Energy Rep. 2021, 7, 622–637. [CrossRef]
20. Díaz Torres, Y.R.; Hernandez, H.; Torres, M.; Alvarez-Guerra, M.; Gullo, P.; Silva, I. Statistical- mathematical procedure to determine the cooling distribution of a chiller plant. Energy Rep. 2022, 8, 512–526. [CrossRef]
21. Thangavelu, S.R.; Myat, A.; Khambadkone, A. Energy optimization methodology of multi-chiller plant in commercial buildings. Energy 2017, 123, 64–76. [CrossRef]
22. Díaz-Torres, Y.; Valdivia-Noda, Y.; Monteagudo-Yanes, J.P.; Miranda-Torres, Y. Application of building energy simulation in the validation of operational strategies of HVAC systems on a tropical hotel. Ing. Mecánica 2017, 20, 31–38.
23. TRNSYS 16; Solar Energy Laboratory, University of Wisconsin-Madison: Madison, WI, USA, 2006; Volume 5, Mathematical Reference.
24. ASHRAE 55; Thermal Environmental Conditions for Human Occupancy. ASHRAE: Washington, DC, USA, 2010.
25. Díaz-Torres, Y.; Santana-Justiz, M.; Francisco-Pedro, G.J.; Daniel-Álvarez, L.; Miranda-Torres, Y.; Guerra-Plascencia, M.Á. Methodology for the preparation and selection of black box mathematical models for the energy simulation of screw type chillers. Ing. Mecánica 2020, 23, e612.
26. White, H. A heteroskedasticity-consistent covariance matrix estimator and a direct test for heteroskedasticity. Econometrica 1980, 48, 817–838. [CrossRef]
27. Breusch, T.S.; Pagan, A. The Review of Economic Studies. In Econometrics Issue; Oxford University Press: Oxford, UK, 1980; Volume 47, pp. 239–253.
28. Jarque, C.M.; Bera, A.K. A test for normality of observations and regression residuals. Int. Stat. Rev. 1987, 55, 163–172. [CrossRef]
29. Catrini, P.; Piacentino, A.; Cardona, F.; Ciulla, G. Exergoeconomic analysis as support in decision-making for the design and operation of multiple chiller in air conditioning applications. Energy Convers. Manag. 2020, 220, 113051. [CrossRef]
30. Teimourzadeh, H.; Jabari, F.; Mohammadi-Ivatloo, B. An augmented group search optimization algorithm for optimal cooling-load dispatch in multi-chiller plants. Comput. Electr. Eng. 2020, 85, 106434. [CrossRef]
31. Ho, W.T.; Yu, F.W. Improved model and optimization for the energy performance of chiller syste with diverse component staging. Energy 2021, 217, 119376. [CrossRef]
32. Chang, Y.-C.; Lin, F.-A.; Lin, C.H. Optimal Chillers sequencing by branch and bound method for saving energy. Energy Convers. Manag. 2005, 46, 2158–2172. [CrossRef]
33. Witkoswski, K.; Haering, P.; Seidelt, S.; Pini, N. Role of thermal technologies for enhancing flexibility in multi-energy systems through sector coupling: Technical suitability and expected developments. IET Energy Syst. Integr. 2020, 2, 69–79. [CrossRef]
34. Acerbi, A.; Rampazzo, M.; De Nicolao, G. Na exact algorithm for the optimal chiller loading problem and its application to the OptimalChiller Sequencing Problem. Energies 2020, 13, 6372. [CrossRef]
35. Satué, M.; Arahal, M.; Acedo, L.; Ortega, M. Economic versus energetic model predictive control of a cold production plant with thermal energy storage. Appl. Therm. Eng. 2022, 210, 118309. [CrossRef]
36. Qiu, S.; Zhang, W.; Li, J.; Chen, J.; Li, Z.; Li, Z. A chiller operation strategy based on multiple-objetive optimization. Energy Procedia 2018, 152, 318–323. [CrossRef]
37. Zheng, Z.; Li, J.; Duan, P. Optimal chiller loading by improved artificial fish swarm algorithm for energy saving. Math. Comput. Simul. 2019, 155, 227–243. [CrossRef]
38. Norma Cubana NC 217: 2002; Climatización. Especificaciones de Diseños. Temperaturas en Locales Climatizados. Norma Cubana: Havana, Cuba, 2002.
39. Guerra, M.A.; Cabello, J.; Sousa, V.; Sagastume, A.; Monteagudo, Y.; Lapido, M.; Lara, B. Forescasting and control of the electricity consumption in hotels. In Proceedings of the IX International Conference for Renewable Energy, Energy Saving and Energy Education (CIER 2017); Centro de Estudio de Tecnologias Energeticas Renovables CETER: Havana, Cuba, 2017; p. 1CD-ROM.
40. Valdivia, Y.; Álvarez Guerra, M.; Gómez, J.; Luc, H.; Vandecasteele, C. Sanitary hot water production from heat recovery in hotel buildings in Cuba. Ing. Energética 2019, 40, 234–244.
41. E-View 12 Student Version. Available online: https://www.eviews.com/home.html (accessed on 14 February 2023).
42. METEONORM, 2020. Global Meteorological Database for Engineers, Planners and Education. Available online: www.meteonorm. com/pages/en/meteonorm.php (accessed on 10 July 2022).
43. MATLAB Simulink. 2018. Available online: https://www.mathworks.com/help/simulink/release-notes-R2018a.html (accessed on 14 February 2023).
44. Norma Cubana NC 220-3:2009; Edificaciones-Requisitos de diseño para la eficiencia energética-Parte 3: Sistemas y Equipamiento de Calefacción, Ventilación y Aire Acondicionado. Oficina Nacional de Normalización (NC): Havana, Cuba, 2009.
dc.relation.citationendpage.spa.fl_str_mv 23
dc.relation.citationstartpage.spa.fl_str_mv 1
dc.relation.citationissue.spa.fl_str_mv 9
dc.relation.citationvolume.spa.fl_str_mv 16
dc.rights.eng.fl_str_mv © 2023 by the authors. Licensee MDPI, Basel, Switzerland.
dc.rights.license.spa.fl_str_mv Atribución 4.0 Internacional (CC BY 4.0)
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Atribución 4.0 Internacional (CC BY 4.0)
© 2023 by the authors. Licensee MDPI, Basel, Switzerland.
https://creativecommons.org/licenses/by/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 23 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Multidisciplinary Digital Publishing Institute (MDPI)
dc.publisher.place.spa.fl_str_mv Switzerland
dc.source.spa.fl_str_mv https://www.mdpi.com/1996-1073/16/9/3782
institution Corporación Universidad de la Costa
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstream/11323/10518/1/Energy%20Performance%20Comparison%20of%20a%20Chiller%20Plant%20Using%20the%20Conventional%20Staging%20and%20the%20Co-Design%20Approach%20in%20the%20Early%20Design%20Phase%20of%20Hotel%20Buildings.pdf
https://repositorio.cuc.edu.co/bitstream/11323/10518/2/license.txt
https://repositorio.cuc.edu.co/bitstream/11323/10518/3/Energy%20Performance%20Comparison%20of%20a%20Chiller%20Plant%20Using%20the%20Conventional%20Staging%20and%20the%20Co-Design%20Approach%20in%20the%20Early%20Design%20Phase%20of%20Hotel%20Buildings.pdf.txt
https://repositorio.cuc.edu.co/bitstream/11323/10518/4/Energy%20Performance%20Comparison%20of%20a%20Chiller%20Plant%20Using%20the%20Conventional%20Staging%20and%20the%20Co-Design%20Approach%20in%20the%20Early%20Design%20Phase%20of%20Hotel%20Buildings.pdf.jpg
bitstream.checksum.fl_str_mv a95d85136e82e0d263e559be36ce5439
2f9959eaf5b71fae44bbf9ec84150c7a
bb0a6ee9a14181af5cf078d8298aae20
1bcaf0354d0e8872a848842b01c32513
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Universidad de La Costa
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1808400223954796544
spelling Atribución 4.0 Internacional (CC BY 4.0)© 2023 by the authors. Licensee MDPI, Basel, Switzerland.https://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Díaz Torres, Yamile509726c8fa439124c7ebc8aacd26ef12Gullo, Paride4b588a40d21e2b123fe764a8e33cc7be600Hernández Herrera, Hernán368f702324432a4013403d8c819e2e2eTorres del Toro, Migdalia1479544beb27f7e671651f09e271992fReyes Calvo, Roy78045fb2f4c669c5c1dedd4aad597912Silva Ortega, Jorge I398d7040aeff9fde787d72ea917797e2600Gómez Sarduy, Julio28b5ca366390353cda3ab476754568422023-09-26T20:25:43Z2023-09-26T20:25:43Z2023-04-28Díaz Torres, Y.; Gullo, P.; Hernández Herrera, H.; Torres del Toro, M.; Reyes Calvo, R.; Silva Ortega, J.I.; Gómez arduy, J. Energy Performance Comparison of a Chiller Plant Using the Conventional Staging and the Co-Design Approach in the Early Design Phase of Hotel Buildings. Energies 2023, 16, 3782. https://doi.org/10.3390/en16093782https://hdl.handle.net/11323/1051810.3390/en160937821996-1073Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/As part of the design process of a chiller plant, one of the final stages is the energy testing of the system in relation to future operating conditions. Recent studies have suggested establishing robust solutions, but a conservative approach still prevails at this stage. However, the results of some recent studies suggest the application of a new co-design (control–design) approach. The present research involves a comparative analysis between the use of conventional staging and the co-design approach in the design phase of a chiller plant. This paper analyzes the energy consumption estimations of six different chiller plant combinations for a Cuban hotel. For the conservative approach using on/off traditional staging, the results suggest that the best option would be the adoption of a chiller plant featuring a symmetrical configuration. However, the outcomes related to the co-design approach suggest that the best option would be an asymmetrical configuration. The energy savings results were equal to 24.8% and the resulting coefficient of performance (COP) was 59.7% greater than that of the symmetrical configuration. This research lays firm foundations for the correct choice and design of a suitable chiller plant configuration for a selected hotel, allowing for significant energy savings in the tourism sector.23 páginasapplication/pdfengMultidisciplinary Digital Publishing Institute (MDPI)Switzerlandhttps://www.mdpi.com/1996-1073/16/9/3782Energy performance comparison of a chiller plant using the conventional staging and the co-design approach in the early design phase of hotel buildingsArtículo de revistahttp://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85Energies1. Fang, X.; Jin, X.; Du, Z.; Wang, Y.; Shi, W. Evaluation of the design of chilled water system based on the optimal operation performance of equipments. Appl. Therm. Eng. 2017, 113, 435–448. [CrossRef]2. ASHRAE. ASHRAE Fundamentals Handbook; ASHRAE: Peachtree Corners, GA, USA, 2017; ISBN 10: 1939200598.3. Díaz Torres, Y.; Álvarez Guerra Plasencia, A.; Viego Felipe, P.; Crespo Sanchez, G.; Diaz Gonzalez, M. Chiller plant design. Review of the aspects that involve its efficient design. Ing. Energética 2020, 41, e1711.4. Taylor, S. Fundamentals of Design and Control of Central Chilled-Water Plans (I-P); Atlanta ASHRAE: Peachtree Corners, GA, USA, 2017; ISBN 978-1-939200-67-9.5. Cheng, Q.; Wang, S.; Yan, C. Sequential Monte Carlo simulation for robust optimal design of cooling water system with quantified uncertainty and reliability. Energy 2016, 118, 489–501. [CrossRef]6. Yan, C.; Cheng, Q.; Cai, H. Life-Cycle optimization of a chiller plant with quantified analysis of uncertainty and reliability in commercial buildings. Appl. Sci. 2019, 9, 1548. [CrossRef]7. Huang, P.; Huang, G.; Augenbroe, G.; Li, S. Optimal configuration of multiple-chiller plants under cooling load uncertainty for different climate effects and building types. Energy Build. 2018, 158, 684–697. [CrossRef]8. Li, H.; Wang, S.; Xiao, F. Probabilistic optimal design and on-site adaptive commissioning of building air-conditioning systems concerning uncertainties. Energy Procedia 2019, 158, 2725–2730. [CrossRef]9. Sun, Y.; Wang, S.; Huang, G. Chiller sequencing control with enhanced robustness for energy efficient operation. Energy Build. 2009, 41, 1246–1255. [CrossRef]10. Gang, W.; Wang, S.; Xiao, F.; Gao, D.-c. Robust optimal design cooling systems considering cooling load uncertainty and equipment reliability. Appl. Energy 2015, 159, 265–275. [CrossRef]11. Gang, W.; Wang, S.; Yan, C.; Xiao, F. Robust optimal design of building cooling systems concerning uncertainties using mini-max regret theory. Sci. Technol. Built Environ. 2015, 21, 789–799. [CrossRef]12. Cheng, Q.; Yan, C.; Wang, S. Robust Optimal Design of Chiller Plants Based on Cooling Load Distribution. Energy Procedia 2015, 75, 1354–1359. [CrossRef]13. Niu, J.; Tian, Z.; Lu, Y.; Zhao, H.; Lan, B. A robust optimization model for designing the building cooling source under cooling load uncertainty. Appl. Energy 2019, 241, 390–403. [CrossRef]14. Chen, Y.; Yang, C.; Pan, X.; Yan, D. Desing and operation optimization of multi-chiller plants based on energy performance simulation. Energy Build. 2020, 222, 110100. [CrossRef]15. Bhattacharya, A.; Vasisht, S.; Adetola, V.; Huang, S.; Sharma, H.; Vrabie, D. Control co-design of commercial building chiller plant using Bayesian optimization. Energy Build. 2021, 246, 111077. [CrossRef]16. Garcia-Sanz, M. Control co-design: An engineering game changer. Adv. Control. Appl. Eng. Ind. Syst. 2019, 1, e18. [CrossRef]17. Rampazzo, M. A static moving boundary modelling approach for simulation of indirect evaporative free cooling systems. Appl. Energy 2019, 250, 1719–1728.18. Masburah, R.; Sinha, S.; Lochan, R.; Dey, S.; Zhu, Q. Co-Designing Intelligent Control of Building HVAC and Microgrids. DSD 2021: Euromicro Conference on Digital System Design. 2021. Available online: https://ieeexplore.ieee.org/document/9556332 (accessed on 20 December 2021).19. Díaz-Torres, Y.; Calvo, R.; Herrera, H.; Gomez, S.; Guerra, M.; Silva, J. Procedure to obtain the optimal distribution cooling capacity of an air-condensed chiller plant for a hotel facility conceptual design. Energy Rep. 2021, 7, 622–637. [CrossRef]20. Díaz Torres, Y.R.; Hernandez, H.; Torres, M.; Alvarez-Guerra, M.; Gullo, P.; Silva, I. Statistical- mathematical procedure to determine the cooling distribution of a chiller plant. Energy Rep. 2022, 8, 512–526. [CrossRef]21. Thangavelu, S.R.; Myat, A.; Khambadkone, A. Energy optimization methodology of multi-chiller plant in commercial buildings. Energy 2017, 123, 64–76. [CrossRef]22. Díaz-Torres, Y.; Valdivia-Noda, Y.; Monteagudo-Yanes, J.P.; Miranda-Torres, Y. Application of building energy simulation in the validation of operational strategies of HVAC systems on a tropical hotel. Ing. Mecánica 2017, 20, 31–38.23. TRNSYS 16; Solar Energy Laboratory, University of Wisconsin-Madison: Madison, WI, USA, 2006; Volume 5, Mathematical Reference.24. ASHRAE 55; Thermal Environmental Conditions for Human Occupancy. ASHRAE: Washington, DC, USA, 2010.25. Díaz-Torres, Y.; Santana-Justiz, M.; Francisco-Pedro, G.J.; Daniel-Álvarez, L.; Miranda-Torres, Y.; Guerra-Plascencia, M.Á. Methodology for the preparation and selection of black box mathematical models for the energy simulation of screw type chillers. Ing. Mecánica 2020, 23, e612.26. White, H. A heteroskedasticity-consistent covariance matrix estimator and a direct test for heteroskedasticity. Econometrica 1980, 48, 817–838. [CrossRef]27. Breusch, T.S.; Pagan, A. The Review of Economic Studies. In Econometrics Issue; Oxford University Press: Oxford, UK, 1980; Volume 47, pp. 239–253.28. Jarque, C.M.; Bera, A.K. A test for normality of observations and regression residuals. Int. Stat. Rev. 1987, 55, 163–172. [CrossRef]29. Catrini, P.; Piacentino, A.; Cardona, F.; Ciulla, G. Exergoeconomic analysis as support in decision-making for the design and operation of multiple chiller in air conditioning applications. Energy Convers. Manag. 2020, 220, 113051. [CrossRef]30. Teimourzadeh, H.; Jabari, F.; Mohammadi-Ivatloo, B. An augmented group search optimization algorithm for optimal cooling-load dispatch in multi-chiller plants. Comput. Electr. Eng. 2020, 85, 106434. [CrossRef]31. Ho, W.T.; Yu, F.W. Improved model and optimization for the energy performance of chiller syste with diverse component staging. Energy 2021, 217, 119376. [CrossRef]32. Chang, Y.-C.; Lin, F.-A.; Lin, C.H. Optimal Chillers sequencing by branch and bound method for saving energy. Energy Convers. Manag. 2005, 46, 2158–2172. [CrossRef]33. Witkoswski, K.; Haering, P.; Seidelt, S.; Pini, N. Role of thermal technologies for enhancing flexibility in multi-energy systems through sector coupling: Technical suitability and expected developments. IET Energy Syst. Integr. 2020, 2, 69–79. [CrossRef]34. Acerbi, A.; Rampazzo, M.; De Nicolao, G. Na exact algorithm for the optimal chiller loading problem and its application to the OptimalChiller Sequencing Problem. Energies 2020, 13, 6372. [CrossRef]35. Satué, M.; Arahal, M.; Acedo, L.; Ortega, M. Economic versus energetic model predictive control of a cold production plant with thermal energy storage. Appl. Therm. Eng. 2022, 210, 118309. [CrossRef]36. Qiu, S.; Zhang, W.; Li, J.; Chen, J.; Li, Z.; Li, Z. A chiller operation strategy based on multiple-objetive optimization. Energy Procedia 2018, 152, 318–323. [CrossRef]37. Zheng, Z.; Li, J.; Duan, P. Optimal chiller loading by improved artificial fish swarm algorithm for energy saving. Math. Comput. Simul. 2019, 155, 227–243. [CrossRef]38. Norma Cubana NC 217: 2002; Climatización. Especificaciones de Diseños. Temperaturas en Locales Climatizados. Norma Cubana: Havana, Cuba, 2002.39. Guerra, M.A.; Cabello, J.; Sousa, V.; Sagastume, A.; Monteagudo, Y.; Lapido, M.; Lara, B. Forescasting and control of the electricity consumption in hotels. In Proceedings of the IX International Conference for Renewable Energy, Energy Saving and Energy Education (CIER 2017); Centro de Estudio de Tecnologias Energeticas Renovables CETER: Havana, Cuba, 2017; p. 1CD-ROM.40. Valdivia, Y.; Álvarez Guerra, M.; Gómez, J.; Luc, H.; Vandecasteele, C. Sanitary hot water production from heat recovery in hotel buildings in Cuba. Ing. Energética 2019, 40, 234–244.41. E-View 12 Student Version. Available online: https://www.eviews.com/home.html (accessed on 14 February 2023).42. METEONORM, 2020. Global Meteorological Database for Engineers, Planners and Education. Available online: www.meteonorm. com/pages/en/meteonorm.php (accessed on 10 July 2022).43. MATLAB Simulink. 2018. Available online: https://www.mathworks.com/help/simulink/release-notes-R2018a.html (accessed on 14 February 2023).44. Norma Cubana NC 220-3:2009; Edificaciones-Requisitos de diseño para la eficiencia energética-Parte 3: Sistemas y Equipamiento de Calefacción, Ventilación y Aire Acondicionado. Oficina Nacional de Normalización (NC): Havana, Cuba, 2009.231916Chiller plantCo-designTraditional stagingOptimal chiller loadingOptimal chiller sequencingORIGINALEnergy Performance Comparison of a Chiller Plant Using the Conventional Staging and the Co-Design Approach in the Early Design Phase of Hotel Buildings.pdfEnergy Performance Comparison of a Chiller Plant Using the Conventional Staging and the Co-Design Approach in the Early Design Phase of Hotel Buildings.pdfArtículosapplication/pdf3584501https://repositorio.cuc.edu.co/bitstream/11323/10518/1/Energy%20Performance%20Comparison%20of%20a%20Chiller%20Plant%20Using%20the%20Conventional%20Staging%20and%20the%20Co-Design%20Approach%20in%20the%20Early%20Design%20Phase%20of%20Hotel%20Buildings.pdfa95d85136e82e0d263e559be36ce5439MD51open accessLICENSElicense.txtlicense.txttext/plain; charset=utf-814828https://repositorio.cuc.edu.co/bitstream/11323/10518/2/license.txt2f9959eaf5b71fae44bbf9ec84150c7aMD52open accessTEXTEnergy Performance Comparison of a Chiller Plant Using the Conventional Staging and the Co-Design Approach in the Early Design Phase of Hotel Buildings.pdf.txtEnergy Performance Comparison of a Chiller Plant Using the Conventional Staging and the Co-Design Approach in the Early Design Phase of Hotel Buildings.pdf.txtExtracted texttext/plain82880https://repositorio.cuc.edu.co/bitstream/11323/10518/3/Energy%20Performance%20Comparison%20of%20a%20Chiller%20Plant%20Using%20the%20Conventional%20Staging%20and%20the%20Co-Design%20Approach%20in%20the%20Early%20Design%20Phase%20of%20Hotel%20Buildings.pdf.txtbb0a6ee9a14181af5cf078d8298aae20MD53open accessTHUMBNAILEnergy Performance Comparison of a Chiller Plant Using the Conventional Staging and the Co-Design Approach in the Early Design Phase of Hotel Buildings.pdf.jpgEnergy Performance Comparison of a Chiller Plant Using the Conventional Staging and the Co-Design Approach in the Early Design Phase of Hotel Buildings.pdf.jpgGenerated Thumbnailimage/jpeg15566https://repositorio.cuc.edu.co/bitstream/11323/10518/4/Energy%20Performance%20Comparison%20of%20a%20Chiller%20Plant%20Using%20the%20Conventional%20Staging%20and%20the%20Co-Design%20Approach%20in%20the%20Early%20Design%20Phase%20of%20Hotel%20Buildings.pdf.jpg1bcaf0354d0e8872a848842b01c32513MD54open access11323/10518oai:repositorio.cuc.edu.co:11323/105182023-09-27 03:03:19.176An error occurred on the license name.|||https://creativecommons.org/licenses/by/4.0/open accessRepositorio Universidad de La Costabdigital@metabiblioteca.comTEEgT0JSQSAoVEFMIFkgQ09NTyBTRSBERUZJTkUgTcOBUyBBREVMQU5URSkgU0UgT1RPUkdBIEJBSk8gTE9TIFRFUk1JTk9TIERFIEVTVEEgTElDRU5DSUEgUMOaQkxJQ0EgREUgQ1JFQVRJVkUgQ09NTU9OUyAo4oCcTFBDQ+KAnSBPIOKAnExJQ0VOQ0lB4oCdKS4gTEEgT0JSQSBFU1TDgSBQUk9URUdJREEgUE9SIERFUkVDSE9TIERFIEFVVE9SIFkvVSBPVFJBUyBMRVlFUyBBUExJQ0FCTEVTLiBRVUVEQSBQUk9ISUJJRE8gQ1VBTFFVSUVSIFVTTyBRVUUgU0UgSEFHQSBERSBMQSBPQlJBIFFVRSBOTyBDVUVOVEUgQ09OIExBIEFVVE9SSVpBQ0nDk04gUEVSVElORU5URSBERSBDT05GT1JNSURBRCBDT04gTE9TIFTDiVJNSU5PUyBERSBFU1RBIExJQ0VOQ0lBIFkgREUgTEEgTEVZIERFIERFUkVDSE8gREUgQVVUT1IuCgpNRURJQU5URSBFTCBFSkVSQ0lDSU8gREUgQ1VBTFFVSUVSQSBERSBMT1MgREVSRUNIT1MgUVVFIFNFIE9UT1JHQU4gRU4gRVNUQSBMSUNFTkNJQSwgVVNURUQgQUNFUFRBIFkgQUNVRVJEQSBRVUVEQVIgT0JMSUdBRE8gRU4gTE9TIFRFUk1JTk9TIFFVRSBTRSBTRcORQUxBTiBFTiBFTExBLiBFTCBMSUNFTkNJQU5URSBDT05DRURFIEEgVVNURUQgTE9TIERFUkVDSE9TIENPTlRFTklET1MgRU4gRVNUQSBMSUNFTkNJQSBDT05ESUNJT05BRE9TIEEgTEEgQUNFUFRBQ0nDk04gREUgU1VTIFRFUk1JTk9TIFkgQ09ORElDSU9ORVMuCjEuIERlZmluaWNpb25lcwoKYS4JT2JyYSBDb2xlY3RpdmEgZXMgdW5hIG9icmEsIHRhbCBjb21vIHVuYSBwdWJsaWNhY2nDs24gcGVyacOzZGljYSwgdW5hIGFudG9sb2fDrWEsIG8gdW5hIGVuY2ljbG9wZWRpYSwgZW4gbGEgcXVlIGxhIG9icmEgZW4gc3UgdG90YWxpZGFkLCBzaW4gbW9kaWZpY2FjacOzbiBhbGd1bmEsIGp1bnRvIGNvbiB1biBncnVwbyBkZSBvdHJhcyBjb250cmlidWNpb25lcyBxdWUgY29uc3RpdHV5ZW4gb2JyYXMgc2VwYXJhZGFzIGUgaW5kZXBlbmRpZW50ZXMgZW4gc8OtIG1pc21hcywgc2UgaW50ZWdyYW4gZW4gdW4gdG9kbyBjb2xlY3Rpdm8uIFVuYSBPYnJhIHF1ZSBjb25zdGl0dXllIHVuYSBvYnJhIGNvbGVjdGl2YSBubyBzZSBjb25zaWRlcmFyw6EgdW5hIE9icmEgRGVyaXZhZGEgKGNvbW8gc2UgZGVmaW5lIGFiYWpvKSBwYXJhIGxvcyBwcm9ww7NzaXRvcyBkZSBlc3RhIGxpY2VuY2lhLiBhcXVlbGxhIHByb2R1Y2lkYSBwb3IgdW4gZ3J1cG8gZGUgYXV0b3JlcywgZW4gcXVlIGxhIE9icmEgc2UgZW5jdWVudHJhIHNpbiBtb2RpZmljYWNpb25lcywganVudG8gY29uIHVuYSBjaWVydGEgY2FudGlkYWQgZGUgb3RyYXMgY29udHJpYnVjaW9uZXMsIHF1ZSBjb25zdGl0dXllbiBlbiBzw60gbWlzbW9zIHRyYWJham9zIHNlcGFyYWRvcyBlIGluZGVwZW5kaWVudGVzLCBxdWUgc29uIGludGVncmFkb3MgYWwgdG9kbyBjb2xlY3Rpdm8sIHRhbGVzIGNvbW8gcHVibGljYWNpb25lcyBwZXJpw7NkaWNhcywgYW50b2xvZ8OtYXMgbyBlbmNpY2xvcGVkaWFzLgoKYi4JT2JyYSBEZXJpdmFkYSBzaWduaWZpY2EgdW5hIG9icmEgYmFzYWRhIGVuIGxhIG9icmEgb2JqZXRvIGRlIGVzdGEgbGljZW5jaWEgbyBlbiDDqXN0YSB5IG90cmFzIG9icmFzIHByZWV4aXN0ZW50ZXMsIHRhbGVzIGNvbW8gdHJhZHVjY2lvbmVzLCBhcnJlZ2xvcyBtdXNpY2FsZXMsIGRyYW1hdGl6YWNpb25lcywg4oCcZmljY2lvbmFsaXphY2lvbmVz4oCdLCB2ZXJzaW9uZXMgcGFyYSBjaW5lLCDigJxncmFiYWNpb25lcyBkZSBzb25pZG/igJ0sIHJlcHJvZHVjY2lvbmVzIGRlIGFydGUsIHJlc8O6bWVuZXMsIGNvbmRlbnNhY2lvbmVzLCBvIGN1YWxxdWllciBvdHJhIGVuIGxhIHF1ZSBsYSBvYnJhIHB1ZWRhIHNlciB0cmFuc2Zvcm1hZGEsIGNhbWJpYWRhIG8gYWRhcHRhZGEsIGV4Y2VwdG8gYXF1ZWxsYXMgcXVlIGNvbnN0aXR1eWFuIHVuYSBvYnJhIGNvbGVjdGl2YSwgbGFzIHF1ZSBubyBzZXLDoW4gY29uc2lkZXJhZGFzIHVuYSBvYnJhIGRlcml2YWRhIHBhcmEgZWZlY3RvcyBkZSBlc3RhIGxpY2VuY2lhLiAoUGFyYSBldml0YXIgZHVkYXMsIGVuIGVsIGNhc28gZGUgcXVlIGxhIE9icmEgc2VhIHVuYSBjb21wb3NpY2nDs24gbXVzaWNhbCBvIHVuYSBncmFiYWNpw7NuIHNvbm9yYSwgcGFyYSBsb3MgZWZlY3RvcyBkZSBlc3RhIExpY2VuY2lhIGxhIHNpbmNyb25pemFjacOzbiB0ZW1wb3JhbCBkZSBsYSBPYnJhIGNvbiB1bmEgaW1hZ2VuIGVuIG1vdmltaWVudG8gc2UgY29uc2lkZXJhcsOhIHVuYSBPYnJhIERlcml2YWRhIHBhcmEgbG9zIGZpbmVzIGRlIGVzdGEgbGljZW5jaWEpLgoKYy4JTGljZW5jaWFudGUsIGVzIGVsIGluZGl2aWR1byBvIGxhIGVudGlkYWQgdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgZGUgYXV0b3IgcXVlIG9mcmVjZSBsYSBPYnJhIGVuIGNvbmZvcm1pZGFkIGNvbiBsYXMgY29uZGljaW9uZXMgZGUgZXN0YSBMaWNlbmNpYS4KCmQuCUF1dG9yIG9yaWdpbmFsLCBlcyBlbCBpbmRpdmlkdW8gcXVlIGNyZcOzIGxhIE9icmEuCgplLglPYnJhLCBlcyBhcXVlbGxhIG9icmEgc3VzY2VwdGlibGUgZGUgcHJvdGVjY2nDs24gcG9yIGVsIHLDqWdpbWVuIGRlIERlcmVjaG8gZGUgQXV0b3IgeSBxdWUgZXMgb2ZyZWNpZGEgZW4gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIGxpY2VuY2lhCgpmLglVc3RlZCwgZXMgZWwgaW5kaXZpZHVvIG8gbGEgZW50aWRhZCBxdWUgZWplcmNpdGEgbG9zIGRlcmVjaG9zIG90b3JnYWRvcyBhbCBhbXBhcm8gZGUgZXN0YSBMaWNlbmNpYSB5IHF1ZSBjb24gYW50ZXJpb3JpZGFkIG5vIGhhIHZpb2xhZG8gbGFzIGNvbmRpY2lvbmVzIGRlIGxhIG1pc21hIHJlc3BlY3RvIGEgbGEgT2JyYSwgbyBxdWUgaGF5YSBvYnRlbmlkbyBhdXRvcml6YWNpw7NuIGV4cHJlc2EgcG9yIHBhcnRlIGRlbCBMaWNlbmNpYW50ZSBwYXJhIGVqZXJjZXIgbG9zIGRlcmVjaG9zIGFsIGFtcGFybyBkZSBlc3RhIExpY2VuY2lhIHBlc2UgYSB1bmEgdmlvbGFjacOzbiBhbnRlcmlvci4KCjIuIERlcmVjaG9zIGRlIFVzb3MgSG9ucmFkb3MgeSBleGNlcGNpb25lcyBMZWdhbGVzLgpOYWRhIGVuIGVzdGEgTGljZW5jaWEgcG9kcsOhIHNlciBpbnRlcnByZXRhZG8gY29tbyB1bmEgZGlzbWludWNpw7NuLCBsaW1pdGFjacOzbiBvIHJlc3RyaWNjacOzbiBkZSBsb3MgZGVyZWNob3MgZGVyaXZhZG9zIGRlbCB1c28gaG9ucmFkbyB5IG90cmFzIGxpbWl0YWNpb25lcyBvIGV4Y2VwY2lvbmVzIGEgbG9zIGRlcmVjaG9zIGRlbCBhdXRvciBiYWpvIGVsIHLDqWdpbWVuIGxlZ2FsIHZpZ2VudGUgbyBkZXJpdmFkbyBkZSBjdWFscXVpZXIgb3RyYSBub3JtYSBxdWUgc2UgbGUgYXBsaXF1ZS4KCjMuIENvbmNlc2nDs24gZGUgbGEgTGljZW5jaWEuCkJham8gbG9zIHTDqXJtaW5vcyB5IGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIGVsIExpY2VuY2lhbnRlIG90b3JnYSBhIFVzdGVkIHVuYSBsaWNlbmNpYSBtdW5kaWFsLCBsaWJyZSBkZSByZWdhbMOtYXMsIG5vIGV4Y2x1c2l2YSB5IHBlcnBldHVhIChkdXJhbnRlIHRvZG8gZWwgcGVyw61vZG8gZGUgdmlnZW5jaWEgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yKSBwYXJhIGVqZXJjZXIgZXN0b3MgZGVyZWNob3Mgc29icmUgbGEgT2JyYSB0YWwgeSBjb21vIHNlIGluZGljYSBhIGNvbnRpbnVhY2nDs246CgphLglSZXByb2R1Y2lyIGxhIE9icmEsIGluY29ycG9yYXIgbGEgT2JyYSBlbiB1bmEgbyBtw6FzIE9icmFzIENvbGVjdGl2YXMsIHkgcmVwcm9kdWNpciBsYSBPYnJhIGluY29ycG9yYWRhIGVuIGxhcyBPYnJhcyBDb2xlY3RpdmFzLgoKYi4JRGlzdHJpYnVpciBjb3BpYXMgbyBmb25vZ3JhbWFzIGRlIGxhcyBPYnJhcywgZXhoaWJpcmxhcyBww7pibGljYW1lbnRlLCBlamVjdXRhcmxhcyBww7pibGljYW1lbnRlIHkvbyBwb25lcmxhcyBhIGRpc3Bvc2ljacOzbiBww7pibGljYSwgaW5jbHV5w6luZG9sYXMgY29tbyBpbmNvcnBvcmFkYXMgZW4gT2JyYXMgQ29sZWN0aXZhcywgc2Vnw7puIGNvcnJlc3BvbmRhLgoKYy4JRGlzdHJpYnVpciBjb3BpYXMgZGUgbGFzIE9icmFzIERlcml2YWRhcyBxdWUgc2UgZ2VuZXJlbiwgZXhoaWJpcmxhcyBww7pibGljYW1lbnRlLCBlamVjdXRhcmxhcyBww7pibGljYW1lbnRlIHkvbyBwb25lcmxhcyBhIGRpc3Bvc2ljacOzbiBww7pibGljYS4KTG9zIGRlcmVjaG9zIG1lbmNpb25hZG9zIGFudGVyaW9ybWVudGUgcHVlZGVuIHNlciBlamVyY2lkb3MgZW4gdG9kb3MgbG9zIG1lZGlvcyB5IGZvcm1hdG9zLCBhY3R1YWxtZW50ZSBjb25vY2lkb3MgbyBxdWUgc2UgaW52ZW50ZW4gZW4gZWwgZnV0dXJvLiBMb3MgZGVyZWNob3MgYW50ZXMgbWVuY2lvbmFkb3MgaW5jbHV5ZW4gZWwgZGVyZWNobyBhIHJlYWxpemFyIGRpY2hhcyBtb2RpZmljYWNpb25lcyBlbiBsYSBtZWRpZGEgcXVlIHNlYW4gdMOpY25pY2FtZW50ZSBuZWNlc2FyaWFzIHBhcmEgZWplcmNlciBsb3MgZGVyZWNob3MgZW4gb3RybyBtZWRpbyBvIGZvcm1hdG9zLCBwZXJvIGRlIG90cmEgbWFuZXJhIHVzdGVkIG5vIGVzdMOhIGF1dG9yaXphZG8gcGFyYSByZWFsaXphciBvYnJhcyBkZXJpdmFkYXMuIFRvZG9zIGxvcyBkZXJlY2hvcyBubyBvdG9yZ2Fkb3MgZXhwcmVzYW1lbnRlIHBvciBlbCBMaWNlbmNpYW50ZSBxdWVkYW4gcG9yIGVzdGUgbWVkaW8gcmVzZXJ2YWRvcywgaW5jbHV5ZW5kbyBwZXJvIHNpbiBsaW1pdGFyc2UgYSBhcXVlbGxvcyBxdWUgc2UgbWVuY2lvbmFuIGVuIGxhcyBzZWNjaW9uZXMgNChkKSB5IDQoZSkuCgo0LiBSZXN0cmljY2lvbmVzLgpMYSBsaWNlbmNpYSBvdG9yZ2FkYSBlbiBsYSBhbnRlcmlvciBTZWNjacOzbiAzIGVzdMOhIGV4cHJlc2FtZW50ZSBzdWpldGEgeSBsaW1pdGFkYSBwb3IgbGFzIHNpZ3VpZW50ZXMgcmVzdHJpY2Npb25lczoKCmEuCVVzdGVkIHB1ZWRlIGRpc3RyaWJ1aXIsIGV4aGliaXIgcMO6YmxpY2FtZW50ZSwgZWplY3V0YXIgcMO6YmxpY2FtZW50ZSwgbyBwb25lciBhIGRpc3Bvc2ljacOzbiBww7pibGljYSBsYSBPYnJhIHPDs2xvIGJham8gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIHkgVXN0ZWQgZGViZSBpbmNsdWlyIHVuYSBjb3BpYSBkZSBlc3RhIGxpY2VuY2lhIG8gZGVsIElkZW50aWZpY2Fkb3IgVW5pdmVyc2FsIGRlIFJlY3Vyc29zIGRlIGxhIG1pc21hIGNvbiBjYWRhIGNvcGlhIGRlIGxhIE9icmEgcXVlIGRpc3RyaWJ1eWEsIGV4aGliYSBww7pibGljYW1lbnRlLCBlamVjdXRlIHDDumJsaWNhbWVudGUgbyBwb25nYSBhIGRpc3Bvc2ljacOzbiBww7pibGljYS4gTm8gZXMgcG9zaWJsZSBvZnJlY2VyIG8gaW1wb25lciBuaW5ndW5hIGNvbmRpY2nDs24gc29icmUgbGEgT2JyYSBxdWUgYWx0ZXJlIG8gbGltaXRlIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhIG8gZWwgZWplcmNpY2lvIGRlIGxvcyBkZXJlY2hvcyBkZSBsb3MgZGVzdGluYXRhcmlvcyBvdG9yZ2Fkb3MgZW4gZXN0ZSBkb2N1bWVudG8uIE5vIGVzIHBvc2libGUgc3VibGljZW5jaWFyIGxhIE9icmEuIFVzdGVkIGRlYmUgbWFudGVuZXIgaW50YWN0b3MgdG9kb3MgbG9zIGF2aXNvcyBxdWUgaGFnYW4gcmVmZXJlbmNpYSBhIGVzdGEgTGljZW5jaWEgeSBhIGxhIGNsw6F1c3VsYSBkZSBsaW1pdGFjacOzbiBkZSBnYXJhbnTDrWFzLiBVc3RlZCBubyBwdWVkZSBkaXN0cmlidWlyLCBleGhpYmlyIHDDumJsaWNhbWVudGUsIGVqZWN1dGFyIHDDumJsaWNhbWVudGUsIG8gcG9uZXIgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBjb24gYWxndW5hIG1lZGlkYSB0ZWNub2zDs2dpY2EgcXVlIGNvbnRyb2xlIGVsIGFjY2VzbyBvIGxhIHV0aWxpemFjacOzbiBkZSBlbGxhIGRlIHVuYSBmb3JtYSBxdWUgc2VhIGluY29uc2lzdGVudGUgY29uIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLiBMbyBhbnRlcmlvciBzZSBhcGxpY2EgYSBsYSBPYnJhIGluY29ycG9yYWRhIGEgdW5hIE9icmEgQ29sZWN0aXZhLCBwZXJvIGVzdG8gbm8gZXhpZ2UgcXVlIGxhIE9icmEgQ29sZWN0aXZhIGFwYXJ0ZSBkZSBsYSBvYnJhIG1pc21hIHF1ZWRlIHN1amV0YSBhIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLiBTaSBVc3RlZCBjcmVhIHVuYSBPYnJhIENvbGVjdGl2YSwgcHJldmlvIGF2aXNvIGRlIGN1YWxxdWllciBMaWNlbmNpYW50ZSBkZWJlLCBlbiBsYSBtZWRpZGEgZGUgbG8gcG9zaWJsZSwgZWxpbWluYXIgZGUgbGEgT2JyYSBDb2xlY3RpdmEgY3VhbHF1aWVyIHJlZmVyZW5jaWEgYSBkaWNobyBMaWNlbmNpYW50ZSBvIGFsIEF1dG9yIE9yaWdpbmFsLCBzZWfDum4gbG8gc29saWNpdGFkbyBwb3IgZWwgTGljZW5jaWFudGUgeSBjb25mb3JtZSBsbyBleGlnZSBsYSBjbMOhdXN1bGEgNChjKS4KCmIuCVVzdGVkIG5vIHB1ZWRlIGVqZXJjZXIgbmluZ3VubyBkZSBsb3MgZGVyZWNob3MgcXVlIGxlIGhhbiBzaWRvIG90b3JnYWRvcyBlbiBsYSBTZWNjacOzbiAzIHByZWNlZGVudGUgZGUgbW9kbyBxdWUgZXN0w6luIHByaW5jaXBhbG1lbnRlIGRlc3RpbmFkb3MgbyBkaXJlY3RhbWVudGUgZGlyaWdpZG9zIGEgY29uc2VndWlyIHVuIHByb3ZlY2hvIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLiBFbCBpbnRlcmNhbWJpbyBkZSBsYSBPYnJhIHBvciBvdHJhcyBvYnJhcyBwcm90ZWdpZGFzIHBvciBkZXJlY2hvcyBkZSBhdXRvciwgeWEgc2VhIGEgdHJhdsOpcyBkZSB1biBzaXN0ZW1hIHBhcmEgY29tcGFydGlyIGFyY2hpdm9zIGRpZ2l0YWxlcyAoZGlnaXRhbCBmaWxlLXNoYXJpbmcpIG8gZGUgY3VhbHF1aWVyIG90cmEgbWFuZXJhIG5vIHNlcsOhIGNvbnNpZGVyYWRvIGNvbW8gZXN0YXIgZGVzdGluYWRvIHByaW5jaXBhbG1lbnRlIG8gZGlyaWdpZG8gZGlyZWN0YW1lbnRlIGEgY29uc2VndWlyIHVuIHByb3ZlY2hvIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLCBzaWVtcHJlIHF1ZSBubyBzZSByZWFsaWNlIHVuIHBhZ28gbWVkaWFudGUgdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIGVuIHJlbGFjacOzbiBjb24gZWwgaW50ZXJjYW1iaW8gZGUgb2JyYXMgcHJvdGVnaWRhcyBwb3IgZWwgZGVyZWNobyBkZSBhdXRvci4KCmMuCVNpIHVzdGVkIGRpc3RyaWJ1eWUsIGV4aGliZSBww7pibGljYW1lbnRlLCBlamVjdXRhIHDDumJsaWNhbWVudGUgbyBlamVjdXRhIHDDumJsaWNhbWVudGUgZW4gZm9ybWEgZGlnaXRhbCBsYSBPYnJhIG8gY3VhbHF1aWVyIE9icmEgRGVyaXZhZGEgdSBPYnJhIENvbGVjdGl2YSwgVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RhIHRvZGEgbGEgaW5mb3JtYWNpw7NuIGRlIGRlcmVjaG8gZGUgYXV0b3IgZGUgbGEgT2JyYSB5IHByb3BvcmNpb25hciwgZGUgZm9ybWEgcmF6b25hYmxlIHNlZ8O6biBlbCBtZWRpbyBvIG1hbmVyYSBxdWUgVXN0ZWQgZXN0w6kgdXRpbGl6YW5kbzogKGkpIGVsIG5vbWJyZSBkZWwgQXV0b3IgT3JpZ2luYWwgc2kgZXN0w6EgcHJvdmlzdG8gKG8gc2V1ZMOzbmltbywgc2kgZnVlcmUgYXBsaWNhYmxlKSwgeS9vIChpaSkgZWwgbm9tYnJlIGRlIGxhIHBhcnRlIG8gbGFzIHBhcnRlcyBxdWUgZWwgQXV0b3IgT3JpZ2luYWwgeS9vIGVsIExpY2VuY2lhbnRlIGh1YmllcmVuIGRlc2lnbmFkbyBwYXJhIGxhIGF0cmlidWNpw7NuICh2LmcuLCB1biBpbnN0aXR1dG8gcGF0cm9jaW5hZG9yLCBlZGl0b3JpYWwsIHB1YmxpY2FjacOzbikgZW4gbGEgaW5mb3JtYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZWwgTGljZW5jaWFudGUsIHTDqXJtaW5vcyBkZSBzZXJ2aWNpb3MgbyBkZSBvdHJhcyBmb3JtYXMgcmF6b25hYmxlczsgZWwgdMOtdHVsbyBkZSBsYSBPYnJhIHNpIGVzdMOhIHByb3Zpc3RvOyBlbiBsYSBtZWRpZGEgZGUgbG8gcmF6b25hYmxlbWVudGUgZmFjdGlibGUgeSwgc2kgZXN0w6EgcHJvdmlzdG8sIGVsIElkZW50aWZpY2Fkb3IgVW5pZm9ybWUgZGUgUmVjdXJzb3MgKFVuaWZvcm0gUmVzb3VyY2UgSWRlbnRpZmllcikgcXVlIGVsIExpY2VuY2lhbnRlIGVzcGVjaWZpY2EgcGFyYSBzZXIgYXNvY2lhZG8gY29uIGxhIE9icmEsIHNhbHZvIHF1ZSB0YWwgVVJJIG5vIHNlIHJlZmllcmEgYSBsYSBub3RhIHNvYnJlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBvIGEgbGEgaW5mb3JtYWNpw7NuIHNvYnJlIGVsIGxpY2VuY2lhbWllbnRvIGRlIGxhIE9icmE7IHkgZW4gZWwgY2FzbyBkZSB1bmEgT2JyYSBEZXJpdmFkYSwgYXRyaWJ1aXIgZWwgY3LDqWRpdG8gaWRlbnRpZmljYW5kbyBlbCB1c28gZGUgbGEgT2JyYSBlbiBsYSBPYnJhIERlcml2YWRhICh2LmcuLCAiVHJhZHVjY2nDs24gRnJhbmNlc2EgZGUgbGEgT2JyYSBkZWwgQXV0b3IgT3JpZ2luYWwsIiBvICJHdWnDs24gQ2luZW1hdG9ncsOhZmljbyBiYXNhZG8gZW4gbGEgT2JyYSBvcmlnaW5hbCBkZWwgQXV0b3IgT3JpZ2luYWwiKS4gVGFsIGNyw6lkaXRvIHB1ZWRlIHNlciBpbXBsZW1lbnRhZG8gZGUgY3VhbHF1aWVyIGZvcm1hIHJhem9uYWJsZTsgZW4gZWwgY2Fzbywgc2luIGVtYmFyZ28sIGRlIE9icmFzIERlcml2YWRhcyB1IE9icmFzIENvbGVjdGl2YXMsIHRhbCBjcsOpZGl0byBhcGFyZWNlcsOhLCBjb21vIG3DrW5pbW8sIGRvbmRlIGFwYXJlY2UgZWwgY3LDqWRpdG8gZGUgY3VhbHF1aWVyIG90cm8gYXV0b3IgY29tcGFyYWJsZSB5IGRlIHVuYSBtYW5lcmEsIGFsIG1lbm9zLCB0YW4gZGVzdGFjYWRhIGNvbW8gZWwgY3LDqWRpdG8gZGUgb3RybyBhdXRvciBjb21wYXJhYmxlLgoKZC4JUGFyYSBldml0YXIgdG9kYSBjb25mdXNpw7NuLCBlbCBMaWNlbmNpYW50ZSBhY2xhcmEgcXVlLCBjdWFuZG8gbGEgb2JyYSBlcyB1bmEgY29tcG9zaWNpw7NuIG11c2ljYWw6CgppLglSZWdhbMOtYXMgcG9yIGludGVycHJldGFjacOzbiB5IGVqZWN1Y2nDs24gYmFqbyBsaWNlbmNpYXMgZ2VuZXJhbGVzLiBFbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gZXhjbHVzaXZvIGRlIGF1dG9yaXphciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIG8gbGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGRlIGxhIG9icmEgeSBkZSByZWNvbGVjdGFyLCBzZWEgaW5kaXZpZHVhbG1lbnRlIG8gYSB0cmF2w6lzIGRlIHVuYSBzb2NpZWRhZCBkZSBnZXN0acOzbiBjb2xlY3RpdmEgZGUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIChwb3IgZWplbXBsbywgU0FZQ08pLCBsYXMgcmVnYWzDrWFzIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIG8gcG9yIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIChwb3IgZWplbXBsbyBXZWJjYXN0KSBsaWNlbmNpYWRhIGJham8gbGljZW5jaWFzIGdlbmVyYWxlcywgc2kgbGEgaW50ZXJwcmV0YWNpw7NuIG8gZWplY3VjacOzbiBkZSBsYSBvYnJhIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBvcmllbnRhZGEgcG9yIG8gZGlyaWdpZGEgYSBsYSBvYnRlbmNpw7NuIGRlIHVuYSB2ZW50YWphIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLgoKaWkuCVJlZ2Fsw61hcyBwb3IgRm9ub2dyYW1hcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSByZWNvbGVjdGFyLCBpbmRpdmlkdWFsbWVudGUgbyBhIHRyYXbDqXMgZGUgdW5hIHNvY2llZGFkIGRlIGdlc3Rpw7NuIGNvbGVjdGl2YSBkZSBkZXJlY2hvcyBkZSBhdXRvciB5IGRlcmVjaG9zIGNvbmV4b3MgKHBvciBlamVtcGxvLCBsb3MgY29uc2FncmFkb3MgcG9yIGxhIFNBWUNPKSwgdW5hIGFnZW5jaWEgZGUgZGVyZWNob3MgbXVzaWNhbGVzIG8gYWxnw7puIGFnZW50ZSBkZXNpZ25hZG8sIGxhcyByZWdhbMOtYXMgcG9yIGN1YWxxdWllciBmb25vZ3JhbWEgcXVlIFVzdGVkIGNyZWUgYSBwYXJ0aXIgZGUgbGEgb2JyYSAo4oCcdmVyc2nDs24gY292ZXLigJ0pIHkgZGlzdHJpYnV5YSwgZW4gbG9zIHTDqXJtaW5vcyBkZWwgcsOpZ2ltZW4gZGUgZGVyZWNob3MgZGUgYXV0b3IsIHNpIGxhIGNyZWFjacOzbiBvIGRpc3RyaWJ1Y2nDs24gZGUgZXNhIHZlcnNpw7NuIGNvdmVyIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkZXN0aW5hZGEgbyBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuCgplLglHZXN0acOzbiBkZSBEZXJlY2hvcyBkZSBBdXRvciBzb2JyZSBJbnRlcnByZXRhY2lvbmVzIHkgRWplY3VjaW9uZXMgRGlnaXRhbGVzIChXZWJDYXN0aW5nKS4gUGFyYSBldml0YXIgdG9kYSBjb25mdXNpw7NuLCBlbCBMaWNlbmNpYW50ZSBhY2xhcmEgcXVlLCBjdWFuZG8gbGEgb2JyYSBzZWEgdW4gZm9ub2dyYW1hLCBlbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gZXhjbHVzaXZvIGRlIGF1dG9yaXphciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8sIHdlYmNhc3QpIHkgZGUgcmVjb2xlY3RhciwgaW5kaXZpZHVhbG1lbnRlIG8gYSB0cmF2w6lzIGRlIHVuYSBzb2NpZWRhZCBkZSBnZXN0acOzbiBjb2xlY3RpdmEgZGUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIChwb3IgZWplbXBsbywgQUNJTlBSTyksIGxhcyByZWdhbMOtYXMgcG9yIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIChwb3IgZWplbXBsbywgd2ViY2FzdCksIHN1amV0YSBhIGxhcyBkaXNwb3NpY2lvbmVzIGFwbGljYWJsZXMgZGVsIHLDqWdpbWVuIGRlIERlcmVjaG8gZGUgQXV0b3IsIHNpIGVzdGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuCgo1LiBSZXByZXNlbnRhY2lvbmVzLCBHYXJhbnTDrWFzIHkgTGltaXRhY2lvbmVzIGRlIFJlc3BvbnNhYmlsaWRhZC4KQSBNRU5PUyBRVUUgTEFTIFBBUlRFUyBMTyBBQ09SREFSQU4gREUgT1RSQSBGT1JNQSBQT1IgRVNDUklUTywgRUwgTElDRU5DSUFOVEUgT0ZSRUNFIExBIE9CUkEgKEVOIEVMIEVTVEFETyBFTiBFTCBRVUUgU0UgRU5DVUVOVFJBKSDigJxUQUwgQ1VBTOKAnSwgU0lOIEJSSU5EQVIgR0FSQU5Uw41BUyBERSBDTEFTRSBBTEdVTkEgUkVTUEVDVE8gREUgTEEgT0JSQSwgWUEgU0VBIEVYUFJFU0EsIElNUEzDjUNJVEEsIExFR0FMIE8gQ1VBTFFVSUVSQSBPVFJBLCBJTkNMVVlFTkRPLCBTSU4gTElNSVRBUlNFIEEgRUxMQVMsIEdBUkFOVMONQVMgREUgVElUVUxBUklEQUQsIENPTUVSQ0lBQklMSURBRCwgQURBUFRBQklMSURBRCBPIEFERUNVQUNJw5NOIEEgUFJPUMOTU0lUTyBERVRFUk1JTkFETywgQVVTRU5DSUEgREUgSU5GUkFDQ0nDk04sIERFIEFVU0VOQ0lBIERFIERFRkVDVE9TIExBVEVOVEVTIE8gREUgT1RSTyBUSVBPLCBPIExBIFBSRVNFTkNJQSBPIEFVU0VOQ0lBIERFIEVSUk9SRVMsIFNFQU4gTyBOTyBERVNDVUJSSUJMRVMgKFBVRURBTiBPIE5PIFNFUiBFU1RPUyBERVNDVUJJRVJUT1MpLiBBTEdVTkFTIEpVUklTRElDQ0lPTkVTIE5PIFBFUk1JVEVOIExBIEVYQ0xVU0nDk04gREUgR0FSQU5Uw41BUyBJTVBMw41DSVRBUywgRU4gQ1VZTyBDQVNPIEVTVEEgRVhDTFVTScOTTiBQVUVERSBOTyBBUExJQ0FSU0UgQSBVU1RFRC4KCjYuIExpbWl0YWNpw7NuIGRlIHJlc3BvbnNhYmlsaWRhZC4KQSBNRU5PUyBRVUUgTE8gRVhJSkEgRVhQUkVTQU1FTlRFIExBIExFWSBBUExJQ0FCTEUsIEVMIExJQ0VOQ0lBTlRFIE5PIFNFUsOBIFJFU1BPTlNBQkxFIEFOVEUgVVNURUQgUE9SIERBw5FPIEFMR1VOTywgU0VBIFBPUiBSRVNQT05TQUJJTElEQUQgRVhUUkFDT05UUkFDVFVBTCwgUFJFQ09OVFJBQ1RVQUwgTyBDT05UUkFDVFVBTCwgT0JKRVRJVkEgTyBTVUJKRVRJVkEsIFNFIFRSQVRFIERFIERBw5FPUyBNT1JBTEVTIE8gUEFUUklNT05JQUxFUywgRElSRUNUT1MgTyBJTkRJUkVDVE9TLCBQUkVWSVNUT1MgTyBJTVBSRVZJU1RPUyBQUk9EVUNJRE9TIFBPUiBFTCBVU08gREUgRVNUQSBMSUNFTkNJQSBPIERFIExBIE9CUkEsIEFVTiBDVUFORE8gRUwgTElDRU5DSUFOVEUgSEFZQSBTSURPIEFEVkVSVElETyBERSBMQSBQT1NJQklMSURBRCBERSBESUNIT1MgREHDkU9TLiBBTEdVTkFTIExFWUVTIE5PIFBFUk1JVEVOIExBIEVYQ0xVU0nDk04gREUgQ0lFUlRBIFJFU1BPTlNBQklMSURBRCwgRU4gQ1VZTyBDQVNPIEVTVEEgRVhDTFVTScOTTiBQVUVERSBOTyBBUExJQ0FSU0UgQSBVU1RFRC4KCjcuIFTDqXJtaW5vLgoKYS4JRXN0YSBMaWNlbmNpYSB5IGxvcyBkZXJlY2hvcyBvdG9yZ2Fkb3MgZW4gdmlydHVkIGRlIGVsbGEgdGVybWluYXLDoW4gYXV0b23DoXRpY2FtZW50ZSBzaSBVc3RlZCBpbmZyaW5nZSBhbGd1bmEgY29uZGljacOzbiBlc3RhYmxlY2lkYSBlbiBlbGxhLiBTaW4gZW1iYXJnbywgbG9zIGluZGl2aWR1b3MgbyBlbnRpZGFkZXMgcXVlIGhhbiByZWNpYmlkbyBPYnJhcyBEZXJpdmFkYXMgbyBDb2xlY3RpdmFzIGRlIFVzdGVkIGRlIGNvbmZvcm1pZGFkIGNvbiBlc3RhIExpY2VuY2lhLCBubyB2ZXLDoW4gdGVybWluYWRhcyBzdXMgbGljZW5jaWFzLCBzaWVtcHJlIHF1ZSBlc3RvcyBpbmRpdmlkdW9zIG8gZW50aWRhZGVzIHNpZ2FuIGN1bXBsaWVuZG8gw61udGVncmFtZW50ZSBsYXMgY29uZGljaW9uZXMgZGUgZXN0YXMgbGljZW5jaWFzLiBMYXMgU2VjY2lvbmVzIDEsIDIsIDUsIDYsIDcsIHkgOCBzdWJzaXN0aXLDoW4gYSBjdWFscXVpZXIgdGVybWluYWNpw7NuIGRlIGVzdGEgTGljZW5jaWEuCgpiLglTdWpldGEgYSBsYXMgY29uZGljaW9uZXMgeSB0w6lybWlub3MgYW50ZXJpb3JlcywgbGEgbGljZW5jaWEgb3RvcmdhZGEgYXF1w60gZXMgcGVycGV0dWEgKGR1cmFudGUgZWwgcGVyw61vZG8gZGUgdmlnZW5jaWEgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGRlIGxhIG9icmEpLiBObyBvYnN0YW50ZSBsbyBhbnRlcmlvciwgZWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGEgcHVibGljYXIgeS9vIGVzdHJlbmFyIGxhIE9icmEgYmFqbyBjb25kaWNpb25lcyBkZSBsaWNlbmNpYSBkaWZlcmVudGVzIG8gYSBkZWphciBkZSBkaXN0cmlidWlybGEgZW4gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIExpY2VuY2lhIGVuIGN1YWxxdWllciBtb21lbnRvOyBlbiBlbCBlbnRlbmRpZG8sIHNpbiBlbWJhcmdvLCBxdWUgZXNhIGVsZWNjacOzbiBubyBzZXJ2aXLDoSBwYXJhIHJldm9jYXIgZXN0YSBsaWNlbmNpYSBvIHF1ZSBkZWJhIHNlciBvdG9yZ2FkYSAsIGJham8gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIGxpY2VuY2lhKSwgeSBlc3RhIGxpY2VuY2lhIGNvbnRpbnVhcsOhIGVuIHBsZW5vIHZpZ29yIHkgZWZlY3RvIGEgbWVub3MgcXVlIHNlYSB0ZXJtaW5hZGEgY29tbyBzZSBleHByZXNhIGF0csOhcy4gTGEgTGljZW5jaWEgcmV2b2NhZGEgY29udGludWFyw6Egc2llbmRvIHBsZW5hbWVudGUgdmlnZW50ZSB5IGVmZWN0aXZhIHNpIG5vIHNlIGxlIGRhIHTDqXJtaW5vIGVuIGxhcyBjb25kaWNpb25lcyBpbmRpY2FkYXMgYW50ZXJpb3JtZW50ZS4KCjguIFZhcmlvcy4KCmEuCUNhZGEgdmV6IHF1ZSBVc3RlZCBkaXN0cmlidXlhIG8gcG9uZ2EgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBvIHVuYSBPYnJhIENvbGVjdGl2YSwgZWwgTGljZW5jaWFudGUgb2ZyZWNlcsOhIGFsIGRlc3RpbmF0YXJpbyB1bmEgbGljZW5jaWEgZW4gbG9zIG1pc21vcyB0w6lybWlub3MgeSBjb25kaWNpb25lcyBxdWUgbGEgbGljZW5jaWEgb3RvcmdhZGEgYSBVc3RlZCBiYWpvIGVzdGEgTGljZW5jaWEuCgpiLglTaSBhbGd1bmEgZGlzcG9zaWNpw7NuIGRlIGVzdGEgTGljZW5jaWEgcmVzdWx0YSBpbnZhbGlkYWRhIG8gbm8gZXhpZ2libGUsIHNlZ8O6biBsYSBsZWdpc2xhY2nDs24gdmlnZW50ZSwgZXN0byBubyBhZmVjdGFyw6EgbmkgbGEgdmFsaWRleiBuaSBsYSBhcGxpY2FiaWxpZGFkIGRlbCByZXN0byBkZSBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhIHksIHNpbiBhY2Npw7NuIGFkaWNpb25hbCBwb3IgcGFydGUgZGUgbG9zIHN1amV0b3MgZGUgZXN0ZSBhY3VlcmRvLCBhcXXDqWxsYSBzZSBlbnRlbmRlcsOhIHJlZm9ybWFkYSBsbyBtw61uaW1vIG5lY2VzYXJpbyBwYXJhIGhhY2VyIHF1ZSBkaWNoYSBkaXNwb3NpY2nDs24gc2VhIHbDoWxpZGEgeSBleGlnaWJsZS4KCmMuCU5pbmfDum4gdMOpcm1pbm8gbyBkaXNwb3NpY2nDs24gZGUgZXN0YSBMaWNlbmNpYSBzZSBlc3RpbWFyw6EgcmVudW5jaWFkYSB5IG5pbmd1bmEgdmlvbGFjacOzbiBkZSBlbGxhIHNlcsOhIGNvbnNlbnRpZGEgYSBtZW5vcyBxdWUgZXNhIHJlbnVuY2lhIG8gY29uc2VudGltaWVudG8gc2VhIG90b3JnYWRvIHBvciBlc2NyaXRvIHkgZmlybWFkbyBwb3IgbGEgcGFydGUgcXVlIHJlbnVuY2llIG8gY29uc2llbnRhLgoKZC4JRXN0YSBMaWNlbmNpYSByZWZsZWphIGVsIGFjdWVyZG8gcGxlbm8gZW50cmUgbGFzIHBhcnRlcyByZXNwZWN0byBhIGxhIE9icmEgYXF1w60gbGljZW5jaWFkYS4gTm8gaGF5IGFycmVnbG9zLCBhY3VlcmRvcyBvIGRlY2xhcmFjaW9uZXMgcmVzcGVjdG8gYSBsYSBPYnJhIHF1ZSBubyBlc3TDqW4gZXNwZWNpZmljYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gRWwgTGljZW5jaWFudGUgbm8gc2UgdmVyw6EgbGltaXRhZG8gcG9yIG5pbmd1bmEgZGlzcG9zaWNpw7NuIGFkaWNpb25hbCBxdWUgcHVlZGEgc3VyZ2lyIGVuIGFsZ3VuYSBjb211bmljYWNpw7NuIGVtYW5hZGEgZGUgVXN0ZWQuIEVzdGEgTGljZW5jaWEgbm8gcHVlZGUgc2VyIG1vZGlmaWNhZGEgc2luIGVsIGNvbnNlbnRpbWllbnRvIG11dHVvIHBvciBlc2NyaXRvIGRlbCBMaWNlbmNpYW50ZSB5IFVzdGVkLgo=