Análisis Exergético de la Generación de Vapor Integrada a Gasificación de Biomasa

Introducción: La biomasa es una fuente de energía que adquiere relevancia, ya que tiene alto potencial y produce bajo impacto medioambiental. La biomasa puede ser aprovechada procesos termoquímicos como la gasificación, la combustión y el pirólisis. La gasificación de biomasa es un proceso bien estu...

Full description

Autores:
Sofan German, Stiven Javier
Mendoza Fandiño, Jorge Mario
Rhenals Julio, Jesús David
Jimenez Lopez, Julissa
De la Vega González, Taylor De Jesus
Tipo de recurso:
Article of journal
Fecha de publicación:
2024
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
spa
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/13745
Acceso en línea:
https://doi.org/10.17981/ingecuc.20.1.2024.03
Palabra clave:
Renewable energy
Gasification
biomass
aspen plus
Exergetic Analysis
Syngas
irreversibility
Energías renovables
Gasificación
Aspen Plus
analisis exergetico
syngas
irreversibilidades
biomasa
Rights
openAccess
License
Inge Cuc - 2024
id RCUC2_85ec20e57d03721b80f2f0161436b700
oai_identifier_str oai:repositorio.cuc.edu.co:11323/13745
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.spa.fl_str_mv Análisis Exergético de la Generación de Vapor Integrada a Gasificación de Biomasa
dc.title.translated.eng.fl_str_mv Exergy Analysis of Steam Generation Integrated with Biomass Gasification
title Análisis Exergético de la Generación de Vapor Integrada a Gasificación de Biomasa
spellingShingle Análisis Exergético de la Generación de Vapor Integrada a Gasificación de Biomasa
Renewable energy
Gasification
biomass
aspen plus
Exergetic Analysis
Syngas
irreversibility
Energías renovables
Gasificación
Aspen Plus
analisis exergetico
syngas
irreversibilidades
biomasa
title_short Análisis Exergético de la Generación de Vapor Integrada a Gasificación de Biomasa
title_full Análisis Exergético de la Generación de Vapor Integrada a Gasificación de Biomasa
title_fullStr Análisis Exergético de la Generación de Vapor Integrada a Gasificación de Biomasa
title_full_unstemmed Análisis Exergético de la Generación de Vapor Integrada a Gasificación de Biomasa
title_sort Análisis Exergético de la Generación de Vapor Integrada a Gasificación de Biomasa
dc.creator.fl_str_mv Sofan German, Stiven Javier
Mendoza Fandiño, Jorge Mario
Rhenals Julio, Jesús David
Jimenez Lopez, Julissa
De la Vega González, Taylor De Jesus
dc.contributor.author.spa.fl_str_mv Sofan German, Stiven Javier
Mendoza Fandiño, Jorge Mario
Rhenals Julio, Jesús David
Jimenez Lopez, Julissa
De la Vega González, Taylor De Jesus
dc.subject.eng.fl_str_mv Renewable energy
Gasification
biomass
aspen plus
Exergetic Analysis
Syngas
irreversibility
topic Renewable energy
Gasification
biomass
aspen plus
Exergetic Analysis
Syngas
irreversibility
Energías renovables
Gasificación
Aspen Plus
analisis exergetico
syngas
irreversibilidades
biomasa
dc.subject.spa.fl_str_mv Energías renovables
Gasificación
Aspen Plus
analisis exergetico
syngas
irreversibilidades
biomasa
description Introducción: La biomasa es una fuente de energía que adquiere relevancia, ya que tiene alto potencial y produce bajo impacto medioambiental. La biomasa puede ser aprovechada procesos termoquímicos como la gasificación, la combustión y el pirólisis. La gasificación de biomasa es un proceso bien estudiado ya que permite la producción de gases combustibles con propiedades que dependen del agente gasificante utilizado. Objetivo: realizar un análisis exergético a la generación de vapor mediante la gasificación de residuos agroindustriales del maíz. Metodología: Primeramente, se realizó una caracterización de la biomasa para determinar sus propiedades. Luego se realizó un modelo computacional en Aspen Plus® del proceso de gasificación de biomasa. El modelo se realizó en estado estacionario y se tuvo en cuenta que todos los gases se comporten de manera ideal. Resultados: el modelo desarrollado estima un syngas con poder calorífico inferior (LHV) de 6.18 MJ/Nm3, el cual posteriormente se inyectó a una caldera para la generación de vapor del sistema. Luego de esto se realizó un análisis exergético con los datos arrojados en la simulación, que arrojó como resultado que 14.37 kW son los utilizados en la generación de vapor, así mismo se determinó que la eficiencia exergética del sistema es de un 35%. Conclusiones: Se pudieron obtener datos teóricos de un sistema de gasificación acoplado a una caldera que permite generar vapor para su uso en diversas aplicaciones. Así mismo, se observa que gran parte de la energía que se produce no es utilizada, debido a perdidas e irreversibilidades del sistema.
publishDate 2024
dc.date.accessioned.none.fl_str_mv 2024-05-22 13:20:08
dc.date.available.none.fl_str_mv 2024-05-22 13:20:08
dc.date.issued.none.fl_str_mv 2024-05-22
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.local.eng.fl_str_mv Journal article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.issn.none.fl_str_mv 0122-6517
dc.identifier.url.none.fl_str_mv https://doi.org/10.17981/ingecuc.20.1.2024.03
dc.identifier.doi.none.fl_str_mv 10.17981/ingecuc.20.1.2024.03
dc.identifier.eissn.none.fl_str_mv 2382-4700
identifier_str_mv 0122-6517
10.17981/ingecuc.20.1.2024.03
2382-4700
url https://doi.org/10.17981/ingecuc.20.1.2024.03
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.ispartofjournal.spa.fl_str_mv Inge CuC
dc.relation.references.spa.fl_str_mv R. L. Lesme, J. Martillo, and L. Oliva, “Estudio de la gasificación de la tusa del maíz para la generación de electricidad Study of the corn cob gasification of the for the electricity generation Métodos y Materiales,” vol. 23, no. 3, pp. 1–9, 2020. [2] Compañía Especialista en Vapor, “Aplicaciones Principales para el Vapor de Agua | TLV - Compañía Especialista en Vapor (America Latina),” 2021. https://www.tlv.com/global/LA/steam-theory/principal-applications-for-steam.html (accessed May 12, 2022). [3] R. D. Gómez, D. A. Camargo, and C. C. Soto, “Synergistic evaluation of residual biomass gasification in mixtures of corn and cotton,” Inf. Tecnológica, vol. 30, no. 6, pp. 11–20, 2019. [4] J. A. Ruiz, M. C. Juárez, M. P. Morales, P. Muñoz, and M. A. Mendívil, “Biomass gasification for electricity generation: Review of current technology barriers,” Renewable and Sustainable Energy Reviews, vol. 18. Pergamon, pp. 174–183, Feb. 01, 2013, doi: 10.1016/j.rser.2012.10.021. [5] A. Bejan, “Advanced Engineering Thermodynamics,” Adv. Eng. Thermodyn., pp. 1–746, Sep. 2016, doi: 10.1002/9781119245964. [6] F. Kock and H. Herwig, “Local entropy production in turbulent shear flows: A high-Reynolds number model with wall functions,” Int. J. Heat Mass Transf., vol. 47, no. 10–11, pp. 2205–2215, 2004, doi: 10.1016/j.ijheatmasstransfer.2003.11.025. [7] I. Joaquina and N. García, “Energía y Exergía: Enfoques hacia la Sostenibilidad mediante el Análisis de Ciclo de Vida,” pp. 1–5, 2012. [8] Ministerio de Agricultura, “Maíz Dirección de Cadenas Agrícolas y Forestales,” Mar. 31, 2020. https://sioc.minagricultura.gov.co/AlimentosBalanceados/Documentos/2020-03-31 Cifras Sectoriales Maíz.pdf (accessed May 19, 2022). [9] E. Biagini, F. Barontini, and L. Tognotti, “Gasification of agricultural residues in a demonstrative plant: Corn cobs,” Bioresour. Technol., vol. 173, pp. 110–116, 2015, doi: 10.1016/j.biortech.2014.09.086. [10] A. Gagliano, F. Nocera, M. Bruno, and G. Cardillo, “Development of an Equilibrium-based Model of Gasification of Biomass by Aspen Plus,” Energy Procedia, vol. 111, pp. 1010–1019, 2017, doi: 10.1016/j.egypro.2017.03.264. [11] S. Begum, M. G. Rasul, D. Akbar, and N. Ramzan, “Performance analysis of an integrated fixed bed gasifier model for different biomass feedstocks,” Energies, vol. 6, no. 12, pp. 6508–6524, 2013, doi: 10.3390/en6126508. [12] A. J. Keche, A. P. R. Gaddale, and R. G. Tated, “Simulation of biomass gasification in downdraft gasifier for different biomass fuels using ASPEN PLUS,” Clean Technol. Environ. Policy, vol. 17, no. 2, pp. 465–473, 2015, doi: 10.1007/s10098-014-0804-x. [13] U. Kumar and M. C. Paul, “CFD modelling of biomass gasification with a volatile break-up approach,” Chem. Eng. Sci., vol. 195, pp. 413–422, 2019, doi: 10.1016/j.ces.2018.09.038. [14] K. N. Dhanavath, K. Shah, S. K. Bhargava, S. Bankupalli, and R. Parthasarathy, “Oxygen-steam gasification of karanja press seed cake: Fixed bed experiments, ASPEN Plus process model development and benchmarking with saw dust, rice husk and sunflower husk,” J. Environ. Chem. Eng., vol. 6, no. 2, pp. 3061–3069, 2018, doi: 10.1016/j.jece.2018.04.046. [15] M. Faraji and M. Saidi, “Hydrogen-rich syngas production via integrated configuration of pyrolysis and air gasification processes of various algal biomass: Process simulation and evaluation using Aspen Plus software,” Int. J. Hydrogen Energy, vol. 46, no. 36, pp. 18844–18856, 2021, doi: 10.1016/j.ijhydene.2021.03.047. [16] M. Fernandez-Lopez, J. Pedroche, J. L. Valverde, and L. Sanchez-Silva, “Simulation of the gasification of animal wastes in a dual gasifier using Aspen Plus®,” Energy Convers. Manag., vol. 140, pp. 211–217, 2017, doi: 10.1016/j.enconman.2017.03.008. [17] L. P. R. Pala, Q. Wang, G. Kolb, and V. Hessel, “Steam gasification of biomass with subsequent syngas adjustment using shift reaction for syngas production: An Aspen Plus model,” Renew. Energy, vol. 101, pp. 484–492, 2017, doi: 10.1016/j.renene.2016.08.069. [18] J. Han et al., “Modeling downdraft biomass gasification process by restricting chemical reaction equilibrium with Aspen Plus,” Energy Convers. Manag., vol. 153, no. October, pp. 641–648, 2017, doi: 10.1016/j.enconman.2017.10.030. [19] A. Mahapatro, A. Kumar, and P. Mahanta, “Parametric study and exergy analysis of the gasification of sugarcane bagasse in a pressurized circulating fluidized bed gasifier,” J. Therm. Anal. Calorim., vol. 141, no. 6, pp. 2635–2645, 2020, doi: 10.1007/s10973-020-10108-z. [20] X. Zhang, K. Li, C. Zhang, and A. Wang, “Performance analysis of biomass gasification coupled with a coal-fired boiler system at various loads,” Waste Manag., vol. 105, pp. 84–91, 2020, doi: 10.1016/j.wasman.2020.01.039. [21] Q. Zhang et al., “Energy-exergy analysis and energy efficiency improvement of coal-fired industrial boilers based on thermal test data,” Appl. Therm. Eng., vol. 144, pp. 614–627, 2018, doi: 10.1016/j.applthermaleng.2018.08.069. [22] E. S. Dogbe, M. A. Mandegari, and J. F. Görgens, “Exergetic diagnosis and performance analysis of a typical sugar mill based on Aspen Plus® simulation of the process,” Energy, vol. 145, pp. 614–625, 2018, doi: 10.1016/j.energy.2017.12.134. [23] G. Vilardi, C. Bassano, P. Deiana, and N. Verdone, “Exergy and energy analysis of three biogas upgrading processes,” Energy Convers. Manag., vol. 224, no. June, p. 113323, 2020, doi: 10.1016/j.enconman.2020.113323. [24] G. Li et al., “Advanced exergy analysis of ash agglomerating fluidized bed gasification,” Energy Convers. Manag., vol. 199, no. 2001, 2019, doi: 10.1016/j.enconman.2019.111952. [25] M. Ucar and O. Arslan, “Assessment of improvement potential of a condensed combi boiler via advanced exergy analysis,” Therm. Sci. Eng. Prog., vol. 23, no. January, p. 100853, 2021, doi: 10.1016/j.tsep.2021.100853. [26] D. M. Mitrović, B. V. Stojanović, J. N. Janevski, M. G. Ignjatović, and G. D. Vučković, “Exergy and exergoeconomic analysis of a steam boiler,” Therm. Sci., vol. 22, pp. S1601–S1612, 2018, doi: 10.2298/TSCI18S5601M. [27] J. Cai et al., “Synergistic effects of co-gasification of municipal solid waste and biomass in fixed-bed gasifier,” Process Saf. Environ. Prot., vol. 148, pp. 1–12, 2021, doi: 10.1016/j.psep.2020.09.063. [28] F. Guo, Y. Dong, L. Dong, and C. Guo, “Effect of design and operating parameters on the gasification process of biomass in a downdraft fixed bed: An experimental study,” Int. J. Hydrogen Energy, vol. 39, no. 11, pp. 5625–5633, Apr. 2014, doi: 10.1016/J.IJHYDENE.2014.01.130. [29] V. F. Ramos, O. S. Pinheiro, E. Ferreira da Costa, and A. O. Souza da Costa, “A method for exergetic analysis of a real kraft biomass boiler,” Energy, vol. 183, pp. 946–957, Sep. 2019, doi: 10.1016/J.ENERGY.2019.07.001. [30] A. Behbahaninia, S. Ramezani, and M. Lotfi Hejrandoost, “A loss method for exergy auditing of steam boilers,” Energy, vol. 140, pp. 253–260, 2017, doi: 10.1016/J.ENERGY.2017.08.090. [31] I. O. Ohijeagbon, M. A. Waheed, and S. O. Jekayinfa, “Methodology for the physical and chemical exergetic analysis of steam boilers,” Energy, vol. 53, pp. 153–164, May 2013, doi: 10.1016/J.ENERGY.2013.02.039.
dc.relation.citationendpage.none.fl_str_mv 37
dc.relation.citationstartpage.none.fl_str_mv 24
dc.relation.citationissue.spa.fl_str_mv 1
dc.relation.citationvolume.spa.fl_str_mv 20
dc.relation.bitstream.none.fl_str_mv https://revistascientificas.cuc.edu.co/ingecuc/article/download/4398/5351
dc.relation.citationedition.spa.fl_str_mv Núm. 1 , Año 2024 : (Enero - Junio)
dc.rights.spa.fl_str_mv Inge Cuc - 2024
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Inge Cuc - 2024
http://creativecommons.org/licenses/by-nc-nd/4.0
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad de la Costa
dc.source.spa.fl_str_mv https://revistascientificas.cuc.edu.co/ingecuc/article/view/4398
institution Corporación Universidad de la Costa
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/54e5fe82-932f-4d38-9f22-1587a25e837d/download
bitstream.checksum.fl_str_mv 3aca272deb872d0158f96f3e601f0bc3
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1828166572011683840
spelling Sofan German, Stiven JavierMendoza Fandiño, Jorge MarioRhenals Julio, Jesús DavidJimenez Lopez, JulissaDe la Vega González, Taylor De Jesus2024-05-22 13:20:082024-05-22 13:20:082024-05-220122-6517https://doi.org/10.17981/ingecuc.20.1.2024.0310.17981/ingecuc.20.1.2024.032382-4700Introducción: La biomasa es una fuente de energía que adquiere relevancia, ya que tiene alto potencial y produce bajo impacto medioambiental. La biomasa puede ser aprovechada procesos termoquímicos como la gasificación, la combustión y el pirólisis. La gasificación de biomasa es un proceso bien estudiado ya que permite la producción de gases combustibles con propiedades que dependen del agente gasificante utilizado. Objetivo: realizar un análisis exergético a la generación de vapor mediante la gasificación de residuos agroindustriales del maíz. Metodología: Primeramente, se realizó una caracterización de la biomasa para determinar sus propiedades. Luego se realizó un modelo computacional en Aspen Plus® del proceso de gasificación de biomasa. El modelo se realizó en estado estacionario y se tuvo en cuenta que todos los gases se comporten de manera ideal. Resultados: el modelo desarrollado estima un syngas con poder calorífico inferior (LHV) de 6.18 MJ/Nm3, el cual posteriormente se inyectó a una caldera para la generación de vapor del sistema. Luego de esto se realizó un análisis exergético con los datos arrojados en la simulación, que arrojó como resultado que 14.37 kW son los utilizados en la generación de vapor, así mismo se determinó que la eficiencia exergética del sistema es de un 35%. Conclusiones: Se pudieron obtener datos teóricos de un sistema de gasificación acoplado a una caldera que permite generar vapor para su uso en diversas aplicaciones. Así mismo, se observa que gran parte de la energía que se produce no es utilizada, debido a perdidas e irreversibilidades del sistema.Introduction: Biomass is an important energy source, as it has high potential and produces low environmental impact. Biomass can be harnessed thermochemical processes such as gasification, combustion and pyrolysis. Biomass gasification is a well-studied process as it allows the production of combustible gases with properties that depend on the gasifying agent used. Objective: perform an exergetic analysis of steam generation by gasification of agro-industrial corn residues. Method: First, a biomass characterization was performed to determine its properties. A computational model of the biomass gasification process was then performed in Aspen Plus. The model was made in a stationary state and it was taken into account that all the gases behave in an ideal way. Results: the developed model estimates a syngas with lower heating value (LHV) of 6.18 MJ/Nm3, which was subsequently injected into a boiler for the generation of steam of the system. After this, an exergetic analysis was made with the data thrown in the simulation, which resulted in 14.37 kW are used in the generation of steam, likewise it was determined that the exergetic efficiency of the system is of 35%. Conclusions: Theoretical data could be obtained from a gasification system coupled to a boiler that allows generating steam for use in various applications. Also, it is observed that much of the energy that is produced is not used, due to losses and irreversibility of the system.application/pdfspaUniversidad de la CostaInge Cuc - 2024http://creativecommons.org/licenses/by-nc-nd/4.0info:eu-repo/semantics/openAccessEsta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.http://purl.org/coar/access_right/c_abf2https://revistascientificas.cuc.edu.co/ingecuc/article/view/4398Renewable energyGasificationbiomassaspen plusExergetic AnalysisSyngasirreversibilityEnergías renovablesGasificaciónAspen Plusanalisis exergeticosyngasirreversibilidadesbiomasaAnálisis Exergético de la Generación de Vapor Integrada a Gasificación de BiomasaExergy Analysis of Steam Generation Integrated with Biomass GasificationArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articleJournal articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85Inge CuCR. L. Lesme, J. Martillo, and L. Oliva, “Estudio de la gasificación de la tusa del maíz para la generación de electricidad Study of the corn cob gasification of the for the electricity generation Métodos y Materiales,” vol. 23, no. 3, pp. 1–9, 2020. [2] Compañía Especialista en Vapor, “Aplicaciones Principales para el Vapor de Agua | TLV - Compañía Especialista en Vapor (America Latina),” 2021. https://www.tlv.com/global/LA/steam-theory/principal-applications-for-steam.html (accessed May 12, 2022). [3] R. D. Gómez, D. A. Camargo, and C. C. Soto, “Synergistic evaluation of residual biomass gasification in mixtures of corn and cotton,” Inf. Tecnológica, vol. 30, no. 6, pp. 11–20, 2019. [4] J. A. Ruiz, M. C. Juárez, M. P. Morales, P. Muñoz, and M. A. Mendívil, “Biomass gasification for electricity generation: Review of current technology barriers,” Renewable and Sustainable Energy Reviews, vol. 18. Pergamon, pp. 174–183, Feb. 01, 2013, doi: 10.1016/j.rser.2012.10.021. [5] A. Bejan, “Advanced Engineering Thermodynamics,” Adv. Eng. Thermodyn., pp. 1–746, Sep. 2016, doi: 10.1002/9781119245964. [6] F. Kock and H. Herwig, “Local entropy production in turbulent shear flows: A high-Reynolds number model with wall functions,” Int. J. Heat Mass Transf., vol. 47, no. 10–11, pp. 2205–2215, 2004, doi: 10.1016/j.ijheatmasstransfer.2003.11.025. [7] I. Joaquina and N. García, “Energía y Exergía: Enfoques hacia la Sostenibilidad mediante el Análisis de Ciclo de Vida,” pp. 1–5, 2012. [8] Ministerio de Agricultura, “Maíz Dirección de Cadenas Agrícolas y Forestales,” Mar. 31, 2020. https://sioc.minagricultura.gov.co/AlimentosBalanceados/Documentos/2020-03-31 Cifras Sectoriales Maíz.pdf (accessed May 19, 2022). [9] E. Biagini, F. Barontini, and L. Tognotti, “Gasification of agricultural residues in a demonstrative plant: Corn cobs,” Bioresour. Technol., vol. 173, pp. 110–116, 2015, doi: 10.1016/j.biortech.2014.09.086. [10] A. Gagliano, F. Nocera, M. Bruno, and G. Cardillo, “Development of an Equilibrium-based Model of Gasification of Biomass by Aspen Plus,” Energy Procedia, vol. 111, pp. 1010–1019, 2017, doi: 10.1016/j.egypro.2017.03.264. [11] S. Begum, M. G. Rasul, D. Akbar, and N. Ramzan, “Performance analysis of an integrated fixed bed gasifier model for different biomass feedstocks,” Energies, vol. 6, no. 12, pp. 6508–6524, 2013, doi: 10.3390/en6126508. [12] A. J. Keche, A. P. R. Gaddale, and R. G. Tated, “Simulation of biomass gasification in downdraft gasifier for different biomass fuels using ASPEN PLUS,” Clean Technol. Environ. Policy, vol. 17, no. 2, pp. 465–473, 2015, doi: 10.1007/s10098-014-0804-x. [13] U. Kumar and M. C. Paul, “CFD modelling of biomass gasification with a volatile break-up approach,” Chem. Eng. Sci., vol. 195, pp. 413–422, 2019, doi: 10.1016/j.ces.2018.09.038. [14] K. N. Dhanavath, K. Shah, S. K. Bhargava, S. Bankupalli, and R. Parthasarathy, “Oxygen-steam gasification of karanja press seed cake: Fixed bed experiments, ASPEN Plus process model development and benchmarking with saw dust, rice husk and sunflower husk,” J. Environ. Chem. Eng., vol. 6, no. 2, pp. 3061–3069, 2018, doi: 10.1016/j.jece.2018.04.046. [15] M. Faraji and M. Saidi, “Hydrogen-rich syngas production via integrated configuration of pyrolysis and air gasification processes of various algal biomass: Process simulation and evaluation using Aspen Plus software,” Int. J. Hydrogen Energy, vol. 46, no. 36, pp. 18844–18856, 2021, doi: 10.1016/j.ijhydene.2021.03.047. [16] M. Fernandez-Lopez, J. Pedroche, J. L. Valverde, and L. Sanchez-Silva, “Simulation of the gasification of animal wastes in a dual gasifier using Aspen Plus®,” Energy Convers. Manag., vol. 140, pp. 211–217, 2017, doi: 10.1016/j.enconman.2017.03.008. [17] L. P. R. Pala, Q. Wang, G. Kolb, and V. Hessel, “Steam gasification of biomass with subsequent syngas adjustment using shift reaction for syngas production: An Aspen Plus model,” Renew. Energy, vol. 101, pp. 484–492, 2017, doi: 10.1016/j.renene.2016.08.069. [18] J. Han et al., “Modeling downdraft biomass gasification process by restricting chemical reaction equilibrium with Aspen Plus,” Energy Convers. Manag., vol. 153, no. October, pp. 641–648, 2017, doi: 10.1016/j.enconman.2017.10.030. [19] A. Mahapatro, A. Kumar, and P. Mahanta, “Parametric study and exergy analysis of the gasification of sugarcane bagasse in a pressurized circulating fluidized bed gasifier,” J. Therm. Anal. Calorim., vol. 141, no. 6, pp. 2635–2645, 2020, doi: 10.1007/s10973-020-10108-z. [20] X. Zhang, K. Li, C. Zhang, and A. Wang, “Performance analysis of biomass gasification coupled with a coal-fired boiler system at various loads,” Waste Manag., vol. 105, pp. 84–91, 2020, doi: 10.1016/j.wasman.2020.01.039. [21] Q. Zhang et al., “Energy-exergy analysis and energy efficiency improvement of coal-fired industrial boilers based on thermal test data,” Appl. Therm. Eng., vol. 144, pp. 614–627, 2018, doi: 10.1016/j.applthermaleng.2018.08.069. [22] E. S. Dogbe, M. A. Mandegari, and J. F. Görgens, “Exergetic diagnosis and performance analysis of a typical sugar mill based on Aspen Plus® simulation of the process,” Energy, vol. 145, pp. 614–625, 2018, doi: 10.1016/j.energy.2017.12.134. [23] G. Vilardi, C. Bassano, P. Deiana, and N. Verdone, “Exergy and energy analysis of three biogas upgrading processes,” Energy Convers. Manag., vol. 224, no. June, p. 113323, 2020, doi: 10.1016/j.enconman.2020.113323. [24] G. Li et al., “Advanced exergy analysis of ash agglomerating fluidized bed gasification,” Energy Convers. Manag., vol. 199, no. 2001, 2019, doi: 10.1016/j.enconman.2019.111952. [25] M. Ucar and O. Arslan, “Assessment of improvement potential of a condensed combi boiler via advanced exergy analysis,” Therm. Sci. Eng. Prog., vol. 23, no. January, p. 100853, 2021, doi: 10.1016/j.tsep.2021.100853. [26] D. M. Mitrović, B. V. Stojanović, J. N. Janevski, M. G. Ignjatović, and G. D. Vučković, “Exergy and exergoeconomic analysis of a steam boiler,” Therm. Sci., vol. 22, pp. S1601–S1612, 2018, doi: 10.2298/TSCI18S5601M. [27] J. Cai et al., “Synergistic effects of co-gasification of municipal solid waste and biomass in fixed-bed gasifier,” Process Saf. Environ. Prot., vol. 148, pp. 1–12, 2021, doi: 10.1016/j.psep.2020.09.063. [28] F. Guo, Y. Dong, L. Dong, and C. Guo, “Effect of design and operating parameters on the gasification process of biomass in a downdraft fixed bed: An experimental study,” Int. J. Hydrogen Energy, vol. 39, no. 11, pp. 5625–5633, Apr. 2014, doi: 10.1016/J.IJHYDENE.2014.01.130. [29] V. F. Ramos, O. S. Pinheiro, E. Ferreira da Costa, and A. O. Souza da Costa, “A method for exergetic analysis of a real kraft biomass boiler,” Energy, vol. 183, pp. 946–957, Sep. 2019, doi: 10.1016/J.ENERGY.2019.07.001. [30] A. Behbahaninia, S. Ramezani, and M. Lotfi Hejrandoost, “A loss method for exergy auditing of steam boilers,” Energy, vol. 140, pp. 253–260, 2017, doi: 10.1016/J.ENERGY.2017.08.090. [31] I. O. Ohijeagbon, M. A. Waheed, and S. O. Jekayinfa, “Methodology for the physical and chemical exergetic analysis of steam boilers,” Energy, vol. 53, pp. 153–164, May 2013, doi: 10.1016/J.ENERGY.2013.02.039.3724120https://revistascientificas.cuc.edu.co/ingecuc/article/download/4398/5351Núm. 1 , Año 2024 : (Enero - Junio)OREORE.xmltext/xml2772https://repositorio.cuc.edu.co/bitstreams/54e5fe82-932f-4d38-9f22-1587a25e837d/download3aca272deb872d0158f96f3e601f0bc3MD5111323/13745oai:repositorio.cuc.edu.co:11323/137452025-01-21 03:30:29.601http://creativecommons.org/licenses/by-nc-nd/4.0Inge Cuc - 2024metadata.onlyhttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.co