S-I-convergence of sequences
In this article, we use the notions of a semi-open set and topological ideal, in order to define and study a new variant of the classical concept of convergence of sequences in topological spaces, namely, the S-I-convergence. Some basic properties of S-I-convergent sequences and their preservation un...
- Autores:
-
Guevara, Andrés
Sanabria, José
ROSAS, ENNIS
Rosas, Ennis
- Tipo de recurso:
- http://purl.org/coar/resource_type/c_816b
- Fecha de publicación:
- 2020
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/6180
- Acceso en línea:
- https://hdl.handle.net/11323/6180
https://repositorio.cuc.edu.co/
- Palabra clave:
- I-convergence
Semi-open sets
S-I-convergence
Semi-closure
Semi-compactness
Semicontinuous function
Irresolute function
- Rights
- openAccess
- License
- CC0 1.0 Universal
id |
RCUC2_85ca0d107d6de8d3e538243655166dd0 |
---|---|
oai_identifier_str |
oai:repositorio.cuc.edu.co:11323/6180 |
network_acronym_str |
RCUC2 |
network_name_str |
REDICUC - Repositorio CUC |
repository_id_str |
|
dc.title.spa.fl_str_mv |
S-I-convergence of sequences |
title |
S-I-convergence of sequences |
spellingShingle |
S-I-convergence of sequences I-convergence Semi-open sets S-I-convergence Semi-closure Semi-compactness Semicontinuous function Irresolute function |
title_short |
S-I-convergence of sequences |
title_full |
S-I-convergence of sequences |
title_fullStr |
S-I-convergence of sequences |
title_full_unstemmed |
S-I-convergence of sequences |
title_sort |
S-I-convergence of sequences |
dc.creator.fl_str_mv |
Guevara, Andrés Sanabria, José ROSAS, ENNIS Rosas, Ennis |
dc.contributor.author.spa.fl_str_mv |
Guevara, Andrés Sanabria, José ROSAS, ENNIS |
dc.contributor.author.none.fl_str_mv |
Rosas, Ennis |
dc.subject.spa.fl_str_mv |
I-convergence Semi-open sets S-I-convergence Semi-closure Semi-compactness Semicontinuous function Irresolute function |
topic |
I-convergence Semi-open sets S-I-convergence Semi-closure Semi-compactness Semicontinuous function Irresolute function |
description |
In this article, we use the notions of a semi-open set and topological ideal, in order to define and study a new variant of the classical concept of convergence of sequences in topological spaces, namely, the S-I-convergence. Some basic properties of S-I-convergent sequences and their preservation under certain types of functions are investigated. Also, we study the notions related to compactness and cluster points by using semi-open sets and ideals. Finally, we explore the Iconvergence of sequences in the cartesian product space |
publishDate |
2020 |
dc.date.accessioned.none.fl_str_mv |
2020-04-14T20:30:18Z |
dc.date.available.none.fl_str_mv |
2020-04-14T20:30:18Z |
dc.date.issued.none.fl_str_mv |
2020 |
dc.type.spa.fl_str_mv |
Pre-Publicación |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_816b |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/preprint |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ARTOTR |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
format |
http://purl.org/coar/resource_type/c_816b |
status_str |
acceptedVersion |
dc.identifier.uri.spa.fl_str_mv |
https://hdl.handle.net/11323/6180 |
dc.identifier.instname.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.identifier.reponame.spa.fl_str_mv |
REDICUC - Repositorio CUC |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.cuc.edu.co/ |
url |
https://hdl.handle.net/11323/6180 https://repositorio.cuc.edu.co/ |
identifier_str_mv |
Corporación Universidad de la Costa REDICUC - Repositorio CUC |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.rights.spa.fl_str_mv |
CC0 1.0 Universal |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/publicdomain/zero/1.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
CC0 1.0 Universal http://creativecommons.org/publicdomain/zero/1.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.publisher.spa.fl_str_mv |
Universidad de la Costa |
institution |
Corporación Universidad de la Costa |
bitstream.url.fl_str_mv |
https://repositorio.cuc.edu.co/bitstreams/0a06f3a2-4f92-450a-a314-0b4f1bf14090/download https://repositorio.cuc.edu.co/bitstreams/02bb5ac3-c7d3-4d32-b7d6-091bb32e9d1a/download https://repositorio.cuc.edu.co/bitstreams/d1e926a3-2df9-4b33-b475-5cf4dbc6c1fd/download https://repositorio.cuc.edu.co/bitstreams/c83c9863-740e-4e49-96ad-34941489405e/download https://repositorio.cuc.edu.co/bitstreams/5b224065-cef8-4c57-a63b-66283c1f72b4/download |
bitstream.checksum.fl_str_mv |
db897ec11667c1422f63069f999919af 42fd4ad1e89814f5e4a476b409eb708c 8a4605be74aa9ea9d79846c1fba20a33 547b8968e58c98744b9e354ba4e416b1 a3b5f4c2ffade1880869f42273f9462d |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad de la Costa CUC |
repository.mail.fl_str_mv |
repdigital@cuc.edu.co |
_version_ |
1828166907740553216 |
spelling |
Guevara, AndrésSanabria, JoséROSAS, ENNISRosas, Ennisvirtual::954-12020-04-14T20:30:18Z2020-04-14T20:30:18Z2020https://hdl.handle.net/11323/6180Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/In this article, we use the notions of a semi-open set and topological ideal, in order to define and study a new variant of the classical concept of convergence of sequences in topological spaces, namely, the S-I-convergence. Some basic properties of S-I-convergent sequences and their preservation under certain types of functions are investigated. Also, we study the notions related to compactness and cluster points by using semi-open sets and ideals. Finally, we explore the Iconvergence of sequences in the cartesian product spaceGuevara, AndrésSanabria, JoséROSAS, ENNIS-will be generated-orcid-0000-0001-8123-9344-600engUniversidad de la CostaCC0 1.0 Universalhttp://creativecommons.org/publicdomain/zero/1.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2I-convergenceSemi-open setsS-I-convergenceSemi-closureSemi-compactnessSemicontinuous functionIrresolute functionS-I-convergence of sequencesPre-Publicaciónhttp://purl.org/coar/resource_type/c_816bTextinfo:eu-repo/semantics/preprinthttp://purl.org/redcol/resource_type/ARTOTRinfo:eu-repo/semantics/acceptedVersionPublicationcb99d9b4-4dcd-4481-8c8a-83af4176c505virtual::954-1cb99d9b4-4dcd-4481-8c8a-83af4176c505virtual::954-1https://scholar.google.com/citations?user=KZvdbkwAAAAJ&hl=esvirtual::954-10000-0001-8123-9344virtual::954-1ORIGINALS-I-CONVERGENCE OF SEQUENCES.pdfS-I-CONVERGENCE OF SEQUENCES.pdfapplication/pdf72908https://repositorio.cuc.edu.co/bitstreams/0a06f3a2-4f92-450a-a314-0b4f1bf14090/downloaddb897ec11667c1422f63069f999919afMD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8701https://repositorio.cuc.edu.co/bitstreams/02bb5ac3-c7d3-4d32-b7d6-091bb32e9d1a/download42fd4ad1e89814f5e4a476b409eb708cMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.cuc.edu.co/bitstreams/d1e926a3-2df9-4b33-b475-5cf4dbc6c1fd/download8a4605be74aa9ea9d79846c1fba20a33MD53THUMBNAILS-I-CONVERGENCE OF SEQUENCES.pdf.jpgS-I-CONVERGENCE OF SEQUENCES.pdf.jpgimage/jpeg32039https://repositorio.cuc.edu.co/bitstreams/c83c9863-740e-4e49-96ad-34941489405e/download547b8968e58c98744b9e354ba4e416b1MD54TEXTS-I-CONVERGENCE OF SEQUENCES.pdf.txtS-I-CONVERGENCE OF SEQUENCES.pdf.txttext/plain779https://repositorio.cuc.edu.co/bitstreams/5b224065-cef8-4c57-a63b-66283c1f72b4/downloada3b5f4c2ffade1880869f42273f9462dMD5511323/6180oai:repositorio.cuc.edu.co:11323/61802025-03-07 16:32:05.028http://creativecommons.org/publicdomain/zero/1.0/CC0 1.0 Universalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |