Association rules implementation for affinity analysis between elements composing multimedia objects

The multimedia objects are a constantly growing resource in the world wide web, consequently it has generated as a necessity the design of methods and tools that allow to obtain new knowledge from the information analyzed. Association rules are a technique of Data Mining, whose purpose is to search...

Full description

Autores:
Mendoza Palechor, Fabio
Carrascal Oviedo, Ana
De la Hoz, Emiro
Tipo de recurso:
Article of journal
Fecha de publicación:
2019
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/5262
Acceso en línea:
https://hdl.handle.net/11323/5262
https://repositorio.cuc.edu.co/
Palabra clave:
Association rules
Multimedia object
Data mining
Data-Set
Correlations
Rights
openAccess
License
CC0 1.0 Universal
id RCUC2_84b94352350dc90ebd59371ee3e4708c
oai_identifier_str oai:repositorio.cuc.edu.co:11323/5262
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.spa.fl_str_mv Association rules implementation for affinity analysis between elements composing multimedia objects
title Association rules implementation for affinity analysis between elements composing multimedia objects
spellingShingle Association rules implementation for affinity analysis between elements composing multimedia objects
Association rules
Multimedia object
Data mining
Data-Set
Correlations
title_short Association rules implementation for affinity analysis between elements composing multimedia objects
title_full Association rules implementation for affinity analysis between elements composing multimedia objects
title_fullStr Association rules implementation for affinity analysis between elements composing multimedia objects
title_full_unstemmed Association rules implementation for affinity analysis between elements composing multimedia objects
title_sort Association rules implementation for affinity analysis between elements composing multimedia objects
dc.creator.fl_str_mv Mendoza Palechor, Fabio
Carrascal Oviedo, Ana
De la Hoz, Emiro
dc.contributor.author.spa.fl_str_mv Mendoza Palechor, Fabio
Carrascal Oviedo, Ana
De la Hoz, Emiro
dc.subject.spa.fl_str_mv Association rules
Multimedia object
Data mining
Data-Set
Correlations
topic Association rules
Multimedia object
Data mining
Data-Set
Correlations
description The multimedia objects are a constantly growing resource in the world wide web, consequently it has generated as a necessity the design of methods and tools that allow to obtain new knowledge from the information analyzed. Association rules are a technique of Data Mining, whose purpose is to search for correlations between elements of a collection of data (data) as support for decision making from the identification and analysis of these correlations. Using algorithms such as: A priori, Frequent Parent Growth, QFP Algorithm, CBA, CMAR, CPAR, among others. On the other hand, multimedia applications today require the processing of unstructured data provided by multimedia objects, which are made up of text, images, audio and videos. For the storage, processing and management of multimedia objects, solutions have been generated that allow efficient search of data of interest to the end user, considering that the semantics of a multimedia object must be expressed by all the elements that composed of. In this article an analysis of the state of the art in relation to the implementation of the Association Rules in the processing of Multimedia objects is made, in addition the analysis of the consulted literature allows to generate questions about the possibility of generating a method of association rules for the analysis of these objects.
publishDate 2019
dc.date.accessioned.none.fl_str_mv 2019-09-12T15:42:59Z
dc.date.available.none.fl_str_mv 2019-09-12T15:42:59Z
dc.date.issued.none.fl_str_mv 2019-03-31
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_6501
status_str acceptedVersion
dc.identifier.issn.spa.fl_str_mv 1817-3195
1992-8645
dc.identifier.uri.spa.fl_str_mv https://hdl.handle.net/11323/5262
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
identifier_str_mv 1817-3195
1992-8645
Corporación Universidad de la Costa
REDICUC - Repositorio CUC
url https://hdl.handle.net/11323/5262
https://repositorio.cuc.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.references.spa.fl_str_mv [1] Hu, C., Xu, Z., Liu, Y., Mei, L., Chen, L., & Luo, X. (2014). Semantic link network-based model for organizing multimedia big data. IEEE Transactions on Emerging Topics in Computing, 2(3), 376-387. [2] Tešic, J., Newsam, S., & Manjunath, B. S. (2003). Mining image datasets using perceptual association rules. In Proc. SIAM Sixth Workshop on Mining Scientific and Engineering Datasets in conjunction with SDM. [3] Zheng, Q. F., Wang, W. Q., & Gao, W. (2006, October). Effective and efficient object-based image retrieval using visual phrases. In Proceedings of the 14th ACM international conference on Multimedia (pp. 77-80). ACM. [4] Jiang, T., & Tan, A. H. (2009). Learning image-text associations. IEEE Transactions on Knowledge and Data Engineering, 21(2), 161- 177. [5] Alghamdi, R. A., Taileb, M., & Ameen, M. (2014, April). A new multimodal fusion method based on association rules mining for image retrieval. In Mediterranean Electrotechnical Conference (MELECON), 2014 17th IEEE (pp. 493-499). IEEE. [6] Grosky, W. I. (1997). Managing multimedia information in database systems. Communications of the ACM, 40(12), 72-80. [7] Yang, Y., Zhuang, Y. T., Wu, F., & Pan, Y. H. (2008). Harmonizing hierarchical manifolds for multimedia document semantics understanding and cross-media retrieval. Multimedia, IEEE Transactions on, 10(3), 437-446. [8] Zhuang, Y. T., Yang, Y., & Wu, F. (2008). Mining semantic correlation of heterogeneous multimedia data for cross-media retrieval. Multimedia, IEEE Transactions on, 10(2), 221- 229. [9] Hunter, J., & Choudhury, S. (2003). Implementing preservation strategies for complex multimedia objects. In Research and Advanced Technology for Digital Libraries (pp. 473-486). Springer Berlin Heidelberg. [10] Swain, M. J., & Ballard, D. H. (1991). Color indexing. International journal of computer vision, 7(1), 11-32. [11] Little, T. D., & Ghafoor, A. (1990). Synchronization and storage models for multimedia objects. Selected Areas in Communications, IEEE Journal on, 8(3), 413- 427. [12] W. Ma and B. S. Manjunath, \A texture thesaurus for browsing large aerial photographs," Journal of the American Society of Information Science, 1998. [13] Malik, H. H., & Kender, J. R. (2006, July). Clustering web images using association rules, interestingness measures, and hypergraph partitions. In Proceedings of the 6th international conference on Web engineering (pp. 48-55). ACM. [14] Chen, C. L., Tseng, F. S., & Liang, T. (2010). An integration of WordNet and fuzzy association rule mining for multi-label document clustering. Data & Knowledge Engineering, 69(11), 1208-1226. [15] Agrawal, R., Imieliński, T., & Swami, A. (1993, June). Mining association rules between sets of items in large databases. In ACM SIGMOD Record (Vol. 22, No. 2, pp. 207- 216). ACM. [16] Mustafa, M. D., Nabila, N. F., Evans, D. J., Saman, M. Y., & Mamat, A. (2006). Association rules on significant rare data using second support. International Journal of Computer Mathematics, 83(1), 69-80. [17] Agrawal, R., & Srikant, R. (1994, September). Fast algorithms for mining association rules. In Proc. 20th int. conf. very large data bases, VLDB (Vol. 1215, pp. 487-499). [18] Agrawal, R., & Shafer, J. C. (1996). Parallel mining of association rules. IEEE Transactions on Knowledge & Data Engineering, (6), 962- 969. [19] Han, J., Pei, J., Yin, Y., & Mao, R. (2004). Mining frequent patterns without candidate generation: A frequent-pattern tree approach. Data mining and knowledge discovery, 8(1), 53-87. [20] Hanguang, L., & Yu, N. (2012). Intrusion detection technology research based on apriori algorithm. Physics Procedia, 24, 1615-1620. [21] Xiang, L. I. (2012). Simulation System of Car Crash Test in C-NCAP Analysis Based on an Improved Apriori Algorithm*. Physics Procedia, 25, 2066-2071. [22] Tsuji, K., Takizawa, N., Sato, S., Ikeuchi, U., Ikeuchi, A., Yoshikane, F., & Itsumura, H. (2014). Book Recommendation Based on Library Loan Records and Bibliographic Information. Procedia-Social and Behavioral Sciences, 147, 478-486. [23] Xu, Y., Li, Y., & Shaw, G. (2011). Reliable representations for association rules. Data & Knowledge Engineering, 70(6), 555-575. [24] Domingues., M. (2004).Generalization of association rules (Tesis de Maestria). Escola de Engenharia de São Carlos, Brasil. [25] Zaki, M. J., Parthasarathy, S., Ogihara, M., & Li, W. (1997, August). New Algorithms for Fast Discovery of Association Rules. In KDD (Vol. 97, pp. 283-286). [26] Han, J., Pei, J., & Yin, Y. (2000, May). Mining frequent patterns without candidate generation. In ACM SIGMOD Record (Vol. 29, No. 2, pp. 1-12). ACM. [27] Savasere, A., Omiecinski, E. R., & Navathe, S. B. (1995). An efficient algorithm for mining association rules in large databases. [28] Liu., B., Hsu., W., & Ma., Y. (1998, August). Integrating classification and association rule mining. In Proceedings of the fourth international conference on knowledge discovery and data mining. [29] Das, A., Ng, W. K., & Woon, Y. K. (2001, October). Rapid association rule mining. In Proceedings of the tenth international conference on Information and knowledge management (pp. 474-481). ACM. [30] Li, W., Han, J., & Pei, J. (2001). CMAR: Accurate and efficient classification based on multiple class-association rules. In Data Mining, 2001. ICDM 2001, Proceedings IEEE International Conference on (pp. 369-376). IEEE. [31] Yin, X., & Han, J. (2003, May). CPAR: Classification based on Predictive Association Rules. In SDM (Vol. 3, pp. 369-376). [32] Thabtah, F., Cowling, P., & Peng, Y. (2004, November). MMAC: A new multi-class, multilabel associative classification approach. In Data Mining, 2004. ICDM'04. Fourth IEEE International Conference on (pp. 217-224). IEEE. [33] Juan, L., & De-ting, M. (2010, October). Research of an association rule mining algorithm based on FP tree. In Intelligent Computing and Intelligent Systems (ICIS), 2010 IEEE International Conference on (Vol. 1, pp. 559-563). IEEE. [34] Narvekar, M., & Syed, S. F. (2015). An Optimized Algorithm for Association Rule Mining Using FP Tree. Procedia Computer Science, 45, 101-110. [35] Bhandari, A., Gupta, A., & Das, D. (2015). Improvised Apriori Algorithm using frequent pattern tree for real time applications in data mining. Procedia Computer Science, 46, 644- 651. [36] Pinho., J. (2010). Métodos de Clasificación basados en asociación aplicados a sistemas de Recomendación (Tesis de Doctorado). Universidad de Salamanca, España. [37] Kotsiantis, S., & Kanellopoulos, D. (2006). Association rules mining: A recent overview. GESTS International Transactions on Computer Science and Engineering, 32(1), 71- 82. [38] Azevedo, P. J., & Jorge, A. M. (2007). Comparing rule measures for predictive association rules. In Machine Learning: ECML 2007 (pp. 510-517). Springer Berlin Heidelberg.
dc.rights.spa.fl_str_mv CC0 1.0 Universal
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/publicdomain/zero/1.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv CC0 1.0 Universal
http://creativecommons.org/publicdomain/zero/1.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.publisher.spa.fl_str_mv Journal of Theoretical and Applied Information Technology
institution Corporación Universidad de la Costa
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/8caff977-95c9-4040-943c-3c8bb454f75a/download
https://repositorio.cuc.edu.co/bitstreams/5b40dff2-af33-4d6e-96cb-c7fe4bde66ff/download
https://repositorio.cuc.edu.co/bitstreams/c954a276-e472-4864-9f7a-00267ff48e62/download
https://repositorio.cuc.edu.co/bitstreams/15a3a5b8-28ee-4532-8e81-cd577317a09c/download
https://repositorio.cuc.edu.co/bitstreams/db6ec2b9-9467-426e-b31f-e61b4c6a523d/download
bitstream.checksum.fl_str_mv 2eff435775709656f3014c69820a2570
42fd4ad1e89814f5e4a476b409eb708c
8a4605be74aa9ea9d79846c1fba20a33
fde6437d9871b76aa8df99eaef287640
0733ef91d57395da8411f5413ade7e2f
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1811760782448263168
spelling Mendoza Palechor, FabioCarrascal Oviedo, AnaDe la Hoz, Emiro2019-09-12T15:42:59Z2019-09-12T15:42:59Z2019-03-311817-31951992-8645https://hdl.handle.net/11323/5262Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/The multimedia objects are a constantly growing resource in the world wide web, consequently it has generated as a necessity the design of methods and tools that allow to obtain new knowledge from the information analyzed. Association rules are a technique of Data Mining, whose purpose is to search for correlations between elements of a collection of data (data) as support for decision making from the identification and analysis of these correlations. Using algorithms such as: A priori, Frequent Parent Growth, QFP Algorithm, CBA, CMAR, CPAR, among others. On the other hand, multimedia applications today require the processing of unstructured data provided by multimedia objects, which are made up of text, images, audio and videos. For the storage, processing and management of multimedia objects, solutions have been generated that allow efficient search of data of interest to the end user, considering that the semantics of a multimedia object must be expressed by all the elements that composed of. In this article an analysis of the state of the art in relation to the implementation of the Association Rules in the processing of Multimedia objects is made, in addition the analysis of the consulted literature allows to generate questions about the possibility of generating a method of association rules for the analysis of these objects.Universidad de la Costa, Universidad Pontificia Bolivariana.Mendoza Palechor, Fabio-will be generated-orcid-0000-0002-2755-0841-600Carrascal Oviedo, AnaDe la Hoz, Emiro-will be generated-orcid-0000-0002-4926-7414-600engJournal of Theoretical and Applied Information TechnologyCC0 1.0 Universalhttp://creativecommons.org/publicdomain/zero/1.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Association rulesMultimedia objectData miningData-SetCorrelationsAssociation rules implementation for affinity analysis between elements composing multimedia objectsArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersion[1] Hu, C., Xu, Z., Liu, Y., Mei, L., Chen, L., & Luo, X. (2014). Semantic link network-based model for organizing multimedia big data. IEEE Transactions on Emerging Topics in Computing, 2(3), 376-387. [2] Tešic, J., Newsam, S., & Manjunath, B. S. (2003). Mining image datasets using perceptual association rules. In Proc. SIAM Sixth Workshop on Mining Scientific and Engineering Datasets in conjunction with SDM. [3] Zheng, Q. F., Wang, W. Q., & Gao, W. (2006, October). Effective and efficient object-based image retrieval using visual phrases. In Proceedings of the 14th ACM international conference on Multimedia (pp. 77-80). ACM. [4] Jiang, T., & Tan, A. H. (2009). Learning image-text associations. IEEE Transactions on Knowledge and Data Engineering, 21(2), 161- 177. [5] Alghamdi, R. A., Taileb, M., & Ameen, M. (2014, April). A new multimodal fusion method based on association rules mining for image retrieval. In Mediterranean Electrotechnical Conference (MELECON), 2014 17th IEEE (pp. 493-499). IEEE. [6] Grosky, W. I. (1997). Managing multimedia information in database systems. Communications of the ACM, 40(12), 72-80. [7] Yang, Y., Zhuang, Y. T., Wu, F., & Pan, Y. H. (2008). Harmonizing hierarchical manifolds for multimedia document semantics understanding and cross-media retrieval. Multimedia, IEEE Transactions on, 10(3), 437-446. [8] Zhuang, Y. T., Yang, Y., & Wu, F. (2008). Mining semantic correlation of heterogeneous multimedia data for cross-media retrieval. Multimedia, IEEE Transactions on, 10(2), 221- 229. [9] Hunter, J., & Choudhury, S. (2003). Implementing preservation strategies for complex multimedia objects. In Research and Advanced Technology for Digital Libraries (pp. 473-486). Springer Berlin Heidelberg. [10] Swain, M. J., & Ballard, D. H. (1991). Color indexing. International journal of computer vision, 7(1), 11-32. [11] Little, T. D., & Ghafoor, A. (1990). Synchronization and storage models for multimedia objects. Selected Areas in Communications, IEEE Journal on, 8(3), 413- 427. [12] W. Ma and B. S. Manjunath, \A texture thesaurus for browsing large aerial photographs," Journal of the American Society of Information Science, 1998. [13] Malik, H. H., & Kender, J. R. (2006, July). Clustering web images using association rules, interestingness measures, and hypergraph partitions. In Proceedings of the 6th international conference on Web engineering (pp. 48-55). ACM. [14] Chen, C. L., Tseng, F. S., & Liang, T. (2010). An integration of WordNet and fuzzy association rule mining for multi-label document clustering. Data & Knowledge Engineering, 69(11), 1208-1226. [15] Agrawal, R., Imieliński, T., & Swami, A. (1993, June). Mining association rules between sets of items in large databases. In ACM SIGMOD Record (Vol. 22, No. 2, pp. 207- 216). ACM. [16] Mustafa, M. D., Nabila, N. F., Evans, D. J., Saman, M. Y., & Mamat, A. (2006). Association rules on significant rare data using second support. International Journal of Computer Mathematics, 83(1), 69-80. [17] Agrawal, R., & Srikant, R. (1994, September). Fast algorithms for mining association rules. In Proc. 20th int. conf. very large data bases, VLDB (Vol. 1215, pp. 487-499). [18] Agrawal, R., & Shafer, J. C. (1996). Parallel mining of association rules. IEEE Transactions on Knowledge & Data Engineering, (6), 962- 969. [19] Han, J., Pei, J., Yin, Y., & Mao, R. (2004). Mining frequent patterns without candidate generation: A frequent-pattern tree approach. Data mining and knowledge discovery, 8(1), 53-87. [20] Hanguang, L., & Yu, N. (2012). Intrusion detection technology research based on apriori algorithm. Physics Procedia, 24, 1615-1620. [21] Xiang, L. I. (2012). Simulation System of Car Crash Test in C-NCAP Analysis Based on an Improved Apriori Algorithm*. Physics Procedia, 25, 2066-2071. [22] Tsuji, K., Takizawa, N., Sato, S., Ikeuchi, U., Ikeuchi, A., Yoshikane, F., & Itsumura, H. (2014). Book Recommendation Based on Library Loan Records and Bibliographic Information. Procedia-Social and Behavioral Sciences, 147, 478-486. [23] Xu, Y., Li, Y., & Shaw, G. (2011). Reliable representations for association rules. Data & Knowledge Engineering, 70(6), 555-575. [24] Domingues., M. (2004).Generalization of association rules (Tesis de Maestria). Escola de Engenharia de São Carlos, Brasil. [25] Zaki, M. J., Parthasarathy, S., Ogihara, M., & Li, W. (1997, August). New Algorithms for Fast Discovery of Association Rules. In KDD (Vol. 97, pp. 283-286). [26] Han, J., Pei, J., & Yin, Y. (2000, May). Mining frequent patterns without candidate generation. In ACM SIGMOD Record (Vol. 29, No. 2, pp. 1-12). ACM. [27] Savasere, A., Omiecinski, E. R., & Navathe, S. B. (1995). An efficient algorithm for mining association rules in large databases. [28] Liu., B., Hsu., W., & Ma., Y. (1998, August). Integrating classification and association rule mining. In Proceedings of the fourth international conference on knowledge discovery and data mining. [29] Das, A., Ng, W. K., & Woon, Y. K. (2001, October). Rapid association rule mining. In Proceedings of the tenth international conference on Information and knowledge management (pp. 474-481). ACM. [30] Li, W., Han, J., & Pei, J. (2001). CMAR: Accurate and efficient classification based on multiple class-association rules. In Data Mining, 2001. ICDM 2001, Proceedings IEEE International Conference on (pp. 369-376). IEEE. [31] Yin, X., & Han, J. (2003, May). CPAR: Classification based on Predictive Association Rules. In SDM (Vol. 3, pp. 369-376). [32] Thabtah, F., Cowling, P., & Peng, Y. (2004, November). MMAC: A new multi-class, multilabel associative classification approach. In Data Mining, 2004. ICDM'04. Fourth IEEE International Conference on (pp. 217-224). IEEE. [33] Juan, L., & De-ting, M. (2010, October). Research of an association rule mining algorithm based on FP tree. In Intelligent Computing and Intelligent Systems (ICIS), 2010 IEEE International Conference on (Vol. 1, pp. 559-563). IEEE. [34] Narvekar, M., & Syed, S. F. (2015). An Optimized Algorithm for Association Rule Mining Using FP Tree. Procedia Computer Science, 45, 101-110. [35] Bhandari, A., Gupta, A., & Das, D. (2015). Improvised Apriori Algorithm using frequent pattern tree for real time applications in data mining. Procedia Computer Science, 46, 644- 651. [36] Pinho., J. (2010). Métodos de Clasificación basados en asociación aplicados a sistemas de Recomendación (Tesis de Doctorado). Universidad de Salamanca, España. [37] Kotsiantis, S., & Kanellopoulos, D. (2006). Association rules mining: A recent overview. GESTS International Transactions on Computer Science and Engineering, 32(1), 71- 82. [38] Azevedo, P. J., & Jorge, A. M. (2007). Comparing rule measures for predictive association rules. In Machine Learning: ECML 2007 (pp. 510-517). Springer Berlin Heidelberg.PublicationORIGINALASSOCIATION RULES IMPLEMENTATION FOR AFFINITY.pdfASSOCIATION RULES IMPLEMENTATION FOR AFFINITY.pdfapplication/pdf539028https://repositorio.cuc.edu.co/bitstreams/8caff977-95c9-4040-943c-3c8bb454f75a/download2eff435775709656f3014c69820a2570MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8701https://repositorio.cuc.edu.co/bitstreams/5b40dff2-af33-4d6e-96cb-c7fe4bde66ff/download42fd4ad1e89814f5e4a476b409eb708cMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.cuc.edu.co/bitstreams/c954a276-e472-4864-9f7a-00267ff48e62/download8a4605be74aa9ea9d79846c1fba20a33MD53THUMBNAILASSOCIATION RULES IMPLEMENTATION FOR AFFINITY.pdf.jpgASSOCIATION RULES IMPLEMENTATION FOR AFFINITY.pdf.jpgimage/jpeg69299https://repositorio.cuc.edu.co/bitstreams/15a3a5b8-28ee-4532-8e81-cd577317a09c/downloadfde6437d9871b76aa8df99eaef287640MD55TEXTASSOCIATION RULES IMPLEMENTATION FOR AFFINITY.pdf.txtASSOCIATION RULES IMPLEMENTATION FOR AFFINITY.pdf.txttext/plain41178https://repositorio.cuc.edu.co/bitstreams/db6ec2b9-9467-426e-b31f-e61b4c6a523d/download0733ef91d57395da8411f5413ade7e2fMD5611323/5262oai:repositorio.cuc.edu.co:11323/52622024-09-17 11:07:58.181http://creativecommons.org/publicdomain/zero/1.0/CC0 1.0 Universalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=