Atmospheric corrosion of weathering steels. Overview for engineers. Part I: Basic concepts

The atmospheric corrosion of weathering steel (WS) has been extensively discussed in the scientific literature, but a comprehensive overview of this topic from an engineering viewpoint is currently lacking. The present publication seeks to fill this gap, providing engineers, designers and steel manu...

Full description

Autores:
Morcillo, M.
Díaz, I.
Cano Cuadro, Heidis Patricia
Chico, B.
de la Fuente, D.
Tipo de recurso:
http://purl.org/coar/resource_type/c_816b
Fecha de publicación:
2019
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/4846
Acceso en línea:
https://hdl.handle.net/11323/4846
https://repositorio.cuc.edu.co/
Palabra clave:
Weathering steel
Atmospheric corrosion
Engineering
Rights
openAccess
License
Attribution-NonCommercial-NoDerivatives 4.0 International
id RCUC2_8437c6afb2909d6876d763f0702c6b29
oai_identifier_str oai:repositorio.cuc.edu.co:11323/4846
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.spa.fl_str_mv Atmospheric corrosion of weathering steels. Overview for engineers. Part I: Basic concepts
title Atmospheric corrosion of weathering steels. Overview for engineers. Part I: Basic concepts
spellingShingle Atmospheric corrosion of weathering steels. Overview for engineers. Part I: Basic concepts
Weathering steel
Atmospheric corrosion
Engineering
title_short Atmospheric corrosion of weathering steels. Overview for engineers. Part I: Basic concepts
title_full Atmospheric corrosion of weathering steels. Overview for engineers. Part I: Basic concepts
title_fullStr Atmospheric corrosion of weathering steels. Overview for engineers. Part I: Basic concepts
title_full_unstemmed Atmospheric corrosion of weathering steels. Overview for engineers. Part I: Basic concepts
title_sort Atmospheric corrosion of weathering steels. Overview for engineers. Part I: Basic concepts
dc.creator.fl_str_mv Morcillo, M.
Díaz, I.
Cano Cuadro, Heidis Patricia
Chico, B.
de la Fuente, D.
dc.contributor.author.spa.fl_str_mv Morcillo, M.
Díaz, I.
Cano Cuadro, Heidis Patricia
Chico, B.
de la Fuente, D.
dc.subject.spa.fl_str_mv Weathering steel
Atmospheric corrosion
Engineering
topic Weathering steel
Atmospheric corrosion
Engineering
description The atmospheric corrosion of weathering steel (WS) has been extensively discussed in the scientific literature, but a comprehensive overview of this topic from an engineering viewpoint is currently lacking. The present publication seeks to fill this gap, providing engineers, designers and steel manufacturers with an insight into the current state of knowledge on this important structural material and presenting key research findings in a way that promotes their practical application. The Part I of this review is addressed to various aspects of WS atmospheric corrosion, such as corrosion mechanisms, corrosion products and layers, effect of exposure environment conditions and long term performance. A number of design and metallurgical considerations is also focused.
publishDate 2019
dc.date.accessioned.none.fl_str_mv 2019-06-10T16:16:28Z
dc.date.available.none.fl_str_mv 2019-06-10T16:16:28Z
dc.date.issued.none.fl_str_mv 2019-03-30
dc.type.spa.fl_str_mv Pre-Publicación
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_816b
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/preprint
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ARTOTR
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_816b
status_str acceptedVersion
dc.identifier.uri.spa.fl_str_mv https://hdl.handle.net/11323/4846
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
url https://hdl.handle.net/11323/4846
https://repositorio.cuc.edu.co/
identifier_str_mv Corporación Universidad de la Costa
REDICUC - Repositorio CUC
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.references.spa.fl_str_mv [1] G. Smith, Steels fit for the countryside, New Scientist (1971) 211–213. [2] A-242/A-242M-04Standard Specification for High-Strength Low-alloy Structural Steel, American Society for Testing and Materials, Philadelphia, 2007. [3] A-588/A-588MStandard Specification for High-strength Low Alloy Structural Steel with 50 ksi [345 MPa] Minimum Yield Point to 4-in. [100 mm] Thick, American Society for Testing and Materials, Philadelphia, 2005. [4] A709/A709MStandard Specification for Structural Steel for Bridges, American Society for Testing and Materials, Philadelphia, 2009. [5] A.D. Wilson, Properties of recent production of A709 HPS 70W bridge steels, in: International Symposium on Steel for Fabricated Structures, ASM International, Cincinnati, 1999, pp. 41–49. [6] A. Azizinamini, High-Performance Steel: New Horizon in Steel Bridge Construction, Transportation Research Board, Washington, D.C., 1998. [7] BS EN 10155Structural Steels with Improved Atmospheric Corrosion Resistance – Technical Delivery Conditions, British Standards Institution, 1993. [8] ASTM G 101-04Standard Guide for Estimating The Atmospheric Corrosion Resistance of Low-alloy Steels, American Society for Testing and Materials, Philadelphia, 2004. [9] M. Morcillo, B. Chico, I. Díaz, H. Cano, D. De la Fuente, Atmospheric corrosion data of weathering steels. A review, Corros. Sci. 77 (2013) 6–24. [10] M. Morcillo, I. Díaz, B. Chico, H. Cano, D. de la Fuente, Weathering steels: from empirical development to scientific design. A review, Corros. Sci. 83 (2014) 6– 31. [11] J.B. Horton, The Composition, Structure and Growth of The Atmospheric Rust on Various Steels (Doctoral Thesis), Lehigh University, 1964. [12] T. Misawa, K. Asami, K. Hashimoto, S. Shimodaira, Mechanism of atmospheric rusting and protective amorphous rust on low-alloy steel, Corros. Sci. 14 (1974) 279–289. [13] T. Misawa, Y. Kyuno, W. Suëtaka, S. Shimodaira, The mechanism of atmospheric rusting and the effect of Cu and P on the rust formation of lowalloy steels, Corros. Sci. 11 (1971) 35–48. [14] M. Stratmann, K. Bohnenkamp, H.J. Engell, An electrochemical study of phasetransitions in rust layers, Corros. Sci. 23 (1983) 969–985. [15] U.R. Evans, C.A.J. Taylor, Mechanism of atmospheric rusting, Corros. Sci. 12 (1972) 227–246. [16] M. Stratmann, J. Müller, The mechanism of the oxygen reduction on rustcovered metal substrates, Corros. Sci. 36 (1994) 327–359. [17] M. Yamashita, H. Miyuki, Y. Matsuda, H. Nagano, The long term growth of the protective rust layer formed on weathering steel by atmospheric corrosion during a quarter of a century, Corros. Sci. 36 (1994) 283–299. [18] X. Zhang, C. Leygraf, I. Odnevall, Atmospheric corrosion of galfan coatings on steel in chloride-rich environments, Corros. Sci. 73 (2013) 62–71. [19] T. Nishimura, H. Katayama, K. Noda, T. Kodama, Electrochemical behavior of rust formed on carbon steel in a wet/dry environment containing chloride ions, Corrosion 56 (2000) 935–941. [20] T. Nishimura, K. Tanaka, Y. Shimizu, Effect of NaCl on rusting of steel in wet and dry corrosion cycle, J. Iron Steel Inst. Jpn. 81 (1995) 1079–1084. [21] J. Alcántara, D. de la Fuente, B. Chico, J. Simancas, I. Díaz, M. Morcillo, Marine atmospheric corrosion of carbon steel: a review, Materials 10 (2017) 406. [22] R.M. Cornell, U. Schwertmann, The Iron Oxides: Structure, Properties, Reactions, Occurrences and Uses, 2nd ed., Wiley-VCH Verlag GmbH, Weinheim, 2003. [23] I. Díaz, H. Cano, P. Lopesino, D. de la Fuente, B. Chico, J.A. Jiménez, S.F. Medina, M. Morcillo, Five-year atmospheric corrosion of Cu, Cr and Ni weathering steels in a wide range of environments, Corros. Sci. 141 (2018) 146–157. [24] UN/ECEInternational Cooperative Programme on Effects on Materials including Historic and Cultural Monuments, Report N. 12: Corrosion attack on weathering steel, zinc and aluminium, Evaluation After 4 Years of Exposure, SVUOM, Prague, 1993. [25] EN ISO 9223Corrosion of Metals and Alloys – Corrosivity of Atmospheres – Classification, Determination and Estimation, European Committee for Standardization, Brussels, 2012. [26] I. Díaz, Corrosión atmosférica de aceros patinables de nueva generación (Doctoral Thesis), Universidad Complutense de Madrid, 2012. [27] J. Calero, J. Alcántara, B. Chico, I. Díaz, J. Simancas, D. De la Fuente, M. Morcillo, Wet/dry accelerated laboratory test to simulate the formation of multilayered rust on carbon steel in marine atmospheres, Corros, Eng. Sci. Technol. 52 (2017) 178–187. [28] B. Chico, J. Alcántara, E. Pino, I. Díaz, J. Simancas, A. Torres-Pardo, D. De la Fuente, J.A. Jiménez, J.F. Marco, J.M. González-Calbet, M. Morcillo, Rust exfoliation on carbon steels in chloride-rich atmospheres, Corros. Rev. 33 (2015) 263–282. [29] M. Morcillo, B. Chico, D. De la Fuente, J. Alcántara, I. Odnevall Wallinder, C. Leygraf, On the mechanism of rust exfoliation in marine environments, J. Electrochem. Soc. 164 (2017) C8–C16. [30] D.C. Cook, Spectroscopic identification of protective and non-protective corrosion coatings on steel structures in marine environments, Corros. Sci. 47 (2005) 2550–2570. [31] S. Hara, T. Kamimura, H. Miyuki, M. Yamashita, Taxonomy for protective ability of rust layer using its composition formed on weathering steel bridge, Corros. Sci. 49 (2007) 1131–1142. [32] H. Cano, D. Neff, M. Morcillo, P. Dillmann, I. Díaz, D. De la Fuente, Characterization of corrosion products formed on Ni 2.4 wt%–Cu 0.5 wt%–Cr 0.5 wt% weathering steel exposed in marine atmospheres, Corros. Sci. 87 (2014) 438–451. [33] K. Asami, M. Kikuchi, In-depth distribution of rusts on a plain carbon steel and weathering steels exposed to coastal–industrial atmosphere for 17 years, Corros. Sci. 45 (2003) 2671–2688. [34] K. Asami, Characterization of rust layers on a plain-carbon steel and weathering steels exposed to industrial and coastal atmosphere for years, in: Y. Waseda, S. Suzuki (Eds.), Characterization of Corrosion Products on Steel Surfaces, Advances in Materials Research, Springer, Heidelberg, 2006, pp. 159– 197. [35] J. Alcántara, B. Chico, I. Díaz, D. de la Fuente, M. Morcillo, Airborne chloride deposit and its effect on marine atmospheric corrosion of mild steel, Corros. Sci. 97 (2015) 74–88. [36] J. Honzák, Schutz von Stahlkonstruktion gegen Atmospharische Korrosion (Protection of Steel Structures against Atmospheric Corrosion), 57 Veranstaltung EFK, Prague, 1971. [37] I. Díaz, H. Cano, D. Crespo, B. Chico, D. de la Fuente, M. Morcillo, Atmospheric corrosion of ASTM A-242 and ASTM A-588 weathering steels in different type of atmospheres, Corros. Eng. Sci. Tech 53 (2018) 449–459. [38] T. Ishikawa, R. Katoh, A. Yasukawa, K. Kandori, T. Nakayama, F. Yuse, Influences of metal ions on the formation of b-FeOOH particles, Corros. Sci. 43 (2001) 1727–1738. [39] D. de la Fuente, I. Diaz, J. Simancas, B. Chico, M. Morcillo, Long-term atmospheric corrosion of mild steel, Corros. Sci. 53 (2011) 604–617. [40] M. Morcillo, D. De la Fuente, I. Díaz, H. Cano, Atmospheric corrosion of mild steel. A review, Rev. Metal. Madrid 47 (2011) 426–444. [41] T. Ishikawa, M. Kumagai, A. Yasukawa, K. Kandori, Characterization of rust on weathering steel by gas adsorption, Corrosion 57 (2001) 346–352. [42] T. Ishikawa, Assessment of rust layers formed on WS in saline environment by gas adsorption, Mater. Corros. 66 (2015) 1460–1466. [43] T. Ishikawa, T. Yoshida, K. Kandori, T. Nakayama, S. Hara, Assessment of protective function of steel rust layers by N2 adsorption, Corros. Sci. 49 (2007) 1468–1477. [44] C. Leygraf, I. Odnevall Wallinder, J. Tidblad, T. Graedel, Atmospheric Corrosion, The Electrochemical Society Series, 2nd ed., John Wiley and Sons, Hoboken, New Jersey, 2016. [45] C.P. Larrabee, S.K. Coburn, The atmospheric corrosion of steels as influenced by changes in chemical composition, in: Proceedings of the 1st International Congress on Metallic Corrosion, 1961, London. pp. 279–285. [46] Guideline for designing and construction of bridges by weathering steel, Kozai Club, Tokyo, Technical Report, 1993. [47] Specification for highway bridges, I y II (Steel Bridge), Japan Road Association, Tokio, 2002-3. [48] D.C. Cook, The corrosion of high performance steel in adverse environments, in: M. Gracia, J.F. Marco, F. Plazaola (Eds.), Industrial Applications of the Mössbauer Effects, American Institute of Physics, 2005, pp. 63–72. [49] UN/ECEInternational Cooperative Programme on Effects on Materials including Historic and Cultural Monuments, Report N. 22: Corrosion attack on weathering steel, zinc and aluminium, Evaluation After 8 Years of Exposure, SVUOM, Prague, 1998. [50] J. Zoccola, Eight Year Corrosion Test Report – Eight Mile Road Interchange, Bethlehem Steel, Bethlehem, 1976. [51] The highway agency: design manual for roads and bridges, BD 7/01, weathering steel for highway structures, the Stationery Office, London, 1981. [52] The highway agency: design manual for roads and bridges, Vol. 2 Sec. 3 BD 7/ 01, weathering steel for highway structures, the Stationery Office, London, 2001. [53] M. Takebe, M. Ohya, S. Ajiki, T. Furukawa, R. Adachi, R. Gan-ei, N. Kitagawa, J. Ota, Y. Matsuzaki, T. Aso, Estimation of quantity of Cl from deicing salts on weathering steel used for bridges, Int. J. Steel Struct. 8 (2008) 73–81. [54] S.S. Kim, Appropriate environmental sphere of application for unpainted WS, J. Ind. Eng. Chem. 9 (2003) 212–218. [55] U.S. Department of Transportation, Federal Highway Administration: Technical Advisory, T5140.22, 1989. [56] D. Knotkova, J. Vlckova, J. Honzak, Atmospheric corrosion of weathering steels, in: S.W. Dean, E.C. Rhea (Eds.), Atmospheric Corrosion of Metals, ASTM STP 767, American Society for Testing and Materials, Philadelphia, 1982, pp. 7–44. [57] National Academy of SciencesAn analysis of atmospheric corrosion tests in low-alloy steels – Applicability of test results to highway bridges No. 204, Highway Research Record, Nat. Acad. Sci., Washington DC, 1967. [58] M. Mackenzie (Ed.), Proc. of The Conference ‘‘The Performance of In-situ Weathering Steel in Bridges”, Bridge Management Forum at University of Surrey, Thomas Telford, London, 2000. [59] C.P. Larrabee, Corrosion resistance of high-strength low-alloy steels as influenced by composition and environment, Corrosion 9 (1953) 259–271. [60] K. Park, Corrosion Resistance of Weathering Steels (Doctoral Thesis), University of Maryland, Department of Civil and Environmental Engineering, 2004. [61] I. Matsushima, T. Ueno, On the protective nature of atmospheric rust on lowalloy steel, Corros. Sci. 11 (1971) 129–140. [62] S.K. Coburn, M.E. Komp, S.C. Lore, Atmospheric corrosion rates of weathering steels at test sites in the eastern United States. Effect of environment and test panel orientation, in: W.W. Kirk, H.H. Lawson (Eds.), Atmospheric Corrosion, ASTM STP 1239, American Society for Testing and Materials, Philadelphia, 1995, pp. 101–113. [63] C.P. Larrabee, The effect of specimen position on atmospheric corrosion testing of steel, Trans. Electrochem. Soc. 85 (1944) 297–306. [64] T. Moroishi, J. Satake, The influence of the inclination and direction of specimen surface on atmospheric corrosion of steels, Tetsu - to - Hagane 59 (1973) 125–130. [65] J. Satake, T. Moroishi, Y. Nishida, S. Tanaka, Sumitomo Metals 22 (1970) 516– 520 (in Japanese). [66] I. Matsushima, Y. Ishizu, T. Ueno, M. Kanasashi, K. Horikawa, Effect of structural and environmental factors on the practical use of low-alloy weathering steel, Corros. Eng. 23 (1974) 177–182. [67] D.M. Buck, Recent progress in corrosion resistance, Iron Age (1915) 1231– 1239. [68] H. Schwitter, H. Bohni, Influence of accelerated weathering on the corrosion of low-alloy steels, J. Electrochem. Soc. 127 (1980) 15–20. [69] M. Yamashita, T. Shimizu, H. Konishi, J. Mizuki, H. Uchida, Structure and protective performance of atmospheric corrosion product of Fe-Cr alloy film analyzed by Mössbauer spectroscopy and with synchrotron radiation X-rays, Corros. Sci. 45 (2003) 381–394. [70] H.R. Copson, Long-time atmospheric corrosion tests on low-alloy steels, Proc. ASTM 60 (1960) 1–16. [71] P.F. Weiser, Atmospheric corrosion of carbon and low alloy cast steels, in: W.H. Ailor (Ed.), Atmospheric Corrosion, John Wiley and Sons, New York, 1982, pp. 453–473. [72] C.W. Briggs, Atmospheric corrosion of carbon and low alloy cast steels, in: Metal Corrosion in the Atmosphere, ASTM STP 435, American Society for Testing and Materials, Philadelphia, 1968, pp. 271–284. [73] G.B. Mannweiler, Corrosion test results of fifteen ferrous metals after sevenyears atmospheric exposure, in: Metal Corrosion in the Atmosphere, ASTM STP 435, American Society for Testing and Materials, Philadelphia, 1968, pp. 211– 222. [74] H.E. Townsend, Atmospheric corrosion performance of quenched-andtempered, high-strength weathering steel, Corrosion 56 (2000) 883–886. [75] A. Kondo, Fatigue of 10-year weathered welded joints of weathering and structural steel, in: Proceedings of the Japan Society of Civil Engineers, 1994, pp. 121–127 (in Japanese). [76] C. Miki, K. Homma, T. Tominaga, High strength and high performance steels and their use in bridge structures, J. Constr. Steel Res. 58 (2002) 3–20. [77] J.W. Stewart, J.A. Charles, E.R. Wallach, Iron-phosphorus-carbon system: Part I – Mechanical properties of low carbon iron-phosphorus alloys, Mater. Sci. Technol. 16 (2000) 275–282. [78] V. Raghavan, C-Fe-P (Carbon-Iron-Phosphorus), J. Phase Equilib. Diffus. 25 (2004) 541–542. [79] H. Cano, Aceros patinables (Cu, Cr, Ni): Resistencia a la corrosión atmosférica y soldabilidad (Doctoral Thesis), Universidad Complutense de Madrid, 2013. [80] The Use of Weathering Steel in Bridges, European Convention for Constructional Steelwork. ECCS CECM EKS, n 81, Brussels. [81] ASTM F3125/F3125-15aStandard specification for high strength structural bolts, steel and alloy steel, heat treated, 120 ksi (830 MPa) and 150 ksi (1040 MPa) minimum tensile strength, inch and metric dimensions, ASTM International, West Conshohocken, PA, 2015. [82] R.H. McCuen, P. Albrecht, J.G. Cheng, A new approach to power-model regression of corrosion penetration data, in: V. Chaker (Ed.), Corrosion Forms and Control for Infrastructure, ASTM STP 1137, American Society for Testing and Materials, Philadelphia, 1992, pp. 46–76. [83] M. Pourbaix, The linear bilogarithmic law for atmospheric corrosion, in: W.H. Ailor (Ed.), Atmospheric Corrosion, John Wiley and Sons, New York, 1982, pp. 107–121. [84] P. Albrecht, T.T. Hall, Atmospheric corrosion resistance of structural steels, J. Mater. Civ. Eng. 15 (2003) 2–24. [85] EN ISO 9224Corrosion of Metals and Alloys – Corrosivity of Atmospheres – Guiding Values for The Corrosivity Categories, European Committee for Standardization, Brussels, 2012. [86] V. Kucera, Mapping Effects on Materials in Manual Mapping Critical Load, ICP Materials, Coordination Centre, Stockholm, 2004. Vol. http://icpmapping.org. [87] D.E. Klinesmith, R.H. McCuen, P. Albrecht, Effect of environmental conditions on corrosion rates, J. Mater. Civ. Eng. 19 (2007) 121–129. [88] R. Landolfo, L. Cascini, F. Portioli, Modeling of metal structure corrosion damage: a state of the art report, Sustainability 2 (2010) 2163–2175. [89] EN 12500Corrosion Likelihood in Atmospheric Environment, European Committee for Standardization (CEN), Brussels, 2000. [90] H.E. Townsend, The effects of alloying elements on the corrosion of steel in industrial atmospheres, Proceedings of 14th International Corrosion Congress, Corrosion Institute of Southern Africa, Cape Town, 1999. [91] S.W. Dean, D. Knotkova, J.K. Kreislova, ISOCORRAG International Atmospheric Exposure Program: Summary of Results, ASTM Series 71, ASTM International, West Conshohocken, 2011.
dc.rights.spa.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.publisher.spa.fl_str_mv Universidad de la Costa
institution Corporación Universidad de la Costa
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/9da19c21-f635-4745-821e-f3516ac0480f/download
https://repositorio.cuc.edu.co/bitstreams/c78027fa-1a86-4e6f-8c33-e9e8eb3ee010/download
https://repositorio.cuc.edu.co/bitstreams/e368c0b0-740c-4cc6-95c4-da31b99408ad/download
https://repositorio.cuc.edu.co/bitstreams/aeb0deec-6902-4d2d-a655-5bf2882c2581/download
https://repositorio.cuc.edu.co/bitstreams/364fbe7f-5cf7-4093-8063-8eedc8541c88/download
bitstream.checksum.fl_str_mv 3f3ab2d77bf6438de059139aa6199738
4460e5956bc1d1639be9ae6146a50347
8a4605be74aa9ea9d79846c1fba20a33
329975148b63579b0a3e71d479eb4e5c
2f16d30c817b363462e7ba5331755b6c
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1828166646459531264
spelling Morcillo, M.Díaz, I.Cano Cuadro, Heidis PatriciaChico, B.de la Fuente, D.2019-06-10T16:16:28Z2019-06-10T16:16:28Z2019-03-30https://hdl.handle.net/11323/4846Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/The atmospheric corrosion of weathering steel (WS) has been extensively discussed in the scientific literature, but a comprehensive overview of this topic from an engineering viewpoint is currently lacking. The present publication seeks to fill this gap, providing engineers, designers and steel manufacturers with an insight into the current state of knowledge on this important structural material and presenting key research findings in a way that promotes their practical application. The Part I of this review is addressed to various aspects of WS atmospheric corrosion, such as corrosion mechanisms, corrosion products and layers, effect of exposure environment conditions and long term performance. A number of design and metallurgical considerations is also focused.Morcillo, M.-046c6867-b365-41f1-bf7a-8d04f4703ce6-0Díaz, I.-ab3e6412-31da-42ed-bbac-db7ba6920102-0Cano Cuadro, Heidis Patricia-0000-0003-2811-5769-600Chico, B.-3f2b0cb4-4d0b-497f-9ab7-b7a57e5e7ce4-0de la Fuente, D.-80fd5a54-ffb7-492b-a0b3-f5e0b91d06b5-0engUniversidad de la CostaAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Weathering steelAtmospheric corrosionEngineeringAtmospheric corrosion of weathering steels. Overview for engineers. Part I: Basic conceptsPre-Publicaciónhttp://purl.org/coar/resource_type/c_816bTextinfo:eu-repo/semantics/preprinthttp://purl.org/redcol/resource_type/ARTOTRinfo:eu-repo/semantics/acceptedVersion[1] G. Smith, Steels fit for the countryside, New Scientist (1971) 211–213. [2] A-242/A-242M-04Standard Specification for High-Strength Low-alloy Structural Steel, American Society for Testing and Materials, Philadelphia, 2007. [3] A-588/A-588MStandard Specification for High-strength Low Alloy Structural Steel with 50 ksi [345 MPa] Minimum Yield Point to 4-in. [100 mm] Thick, American Society for Testing and Materials, Philadelphia, 2005. [4] A709/A709MStandard Specification for Structural Steel for Bridges, American Society for Testing and Materials, Philadelphia, 2009. [5] A.D. Wilson, Properties of recent production of A709 HPS 70W bridge steels, in: International Symposium on Steel for Fabricated Structures, ASM International, Cincinnati, 1999, pp. 41–49. [6] A. Azizinamini, High-Performance Steel: New Horizon in Steel Bridge Construction, Transportation Research Board, Washington, D.C., 1998. [7] BS EN 10155Structural Steels with Improved Atmospheric Corrosion Resistance – Technical Delivery Conditions, British Standards Institution, 1993. [8] ASTM G 101-04Standard Guide for Estimating The Atmospheric Corrosion Resistance of Low-alloy Steels, American Society for Testing and Materials, Philadelphia, 2004. [9] M. Morcillo, B. Chico, I. Díaz, H. Cano, D. De la Fuente, Atmospheric corrosion data of weathering steels. A review, Corros. Sci. 77 (2013) 6–24. [10] M. Morcillo, I. Díaz, B. Chico, H. Cano, D. de la Fuente, Weathering steels: from empirical development to scientific design. A review, Corros. Sci. 83 (2014) 6– 31. [11] J.B. Horton, The Composition, Structure and Growth of The Atmospheric Rust on Various Steels (Doctoral Thesis), Lehigh University, 1964. [12] T. Misawa, K. Asami, K. Hashimoto, S. Shimodaira, Mechanism of atmospheric rusting and protective amorphous rust on low-alloy steel, Corros. Sci. 14 (1974) 279–289. [13] T. Misawa, Y. Kyuno, W. Suëtaka, S. Shimodaira, The mechanism of atmospheric rusting and the effect of Cu and P on the rust formation of lowalloy steels, Corros. Sci. 11 (1971) 35–48. [14] M. Stratmann, K. Bohnenkamp, H.J. Engell, An electrochemical study of phasetransitions in rust layers, Corros. Sci. 23 (1983) 969–985. [15] U.R. Evans, C.A.J. Taylor, Mechanism of atmospheric rusting, Corros. Sci. 12 (1972) 227–246. [16] M. Stratmann, J. Müller, The mechanism of the oxygen reduction on rustcovered metal substrates, Corros. Sci. 36 (1994) 327–359. [17] M. Yamashita, H. Miyuki, Y. Matsuda, H. Nagano, The long term growth of the protective rust layer formed on weathering steel by atmospheric corrosion during a quarter of a century, Corros. Sci. 36 (1994) 283–299. [18] X. Zhang, C. Leygraf, I. Odnevall, Atmospheric corrosion of galfan coatings on steel in chloride-rich environments, Corros. Sci. 73 (2013) 62–71. [19] T. Nishimura, H. Katayama, K. Noda, T. Kodama, Electrochemical behavior of rust formed on carbon steel in a wet/dry environment containing chloride ions, Corrosion 56 (2000) 935–941. [20] T. Nishimura, K. Tanaka, Y. Shimizu, Effect of NaCl on rusting of steel in wet and dry corrosion cycle, J. Iron Steel Inst. Jpn. 81 (1995) 1079–1084. [21] J. Alcántara, D. de la Fuente, B. Chico, J. Simancas, I. Díaz, M. Morcillo, Marine atmospheric corrosion of carbon steel: a review, Materials 10 (2017) 406. [22] R.M. Cornell, U. Schwertmann, The Iron Oxides: Structure, Properties, Reactions, Occurrences and Uses, 2nd ed., Wiley-VCH Verlag GmbH, Weinheim, 2003. [23] I. Díaz, H. Cano, P. Lopesino, D. de la Fuente, B. Chico, J.A. Jiménez, S.F. Medina, M. Morcillo, Five-year atmospheric corrosion of Cu, Cr and Ni weathering steels in a wide range of environments, Corros. Sci. 141 (2018) 146–157. [24] UN/ECEInternational Cooperative Programme on Effects on Materials including Historic and Cultural Monuments, Report N. 12: Corrosion attack on weathering steel, zinc and aluminium, Evaluation After 4 Years of Exposure, SVUOM, Prague, 1993. [25] EN ISO 9223Corrosion of Metals and Alloys – Corrosivity of Atmospheres – Classification, Determination and Estimation, European Committee for Standardization, Brussels, 2012. [26] I. Díaz, Corrosión atmosférica de aceros patinables de nueva generación (Doctoral Thesis), Universidad Complutense de Madrid, 2012. [27] J. Calero, J. Alcántara, B. Chico, I. Díaz, J. Simancas, D. De la Fuente, M. Morcillo, Wet/dry accelerated laboratory test to simulate the formation of multilayered rust on carbon steel in marine atmospheres, Corros, Eng. Sci. Technol. 52 (2017) 178–187. [28] B. Chico, J. Alcántara, E. Pino, I. Díaz, J. Simancas, A. Torres-Pardo, D. De la Fuente, J.A. Jiménez, J.F. Marco, J.M. González-Calbet, M. Morcillo, Rust exfoliation on carbon steels in chloride-rich atmospheres, Corros. Rev. 33 (2015) 263–282. [29] M. Morcillo, B. Chico, D. De la Fuente, J. Alcántara, I. Odnevall Wallinder, C. Leygraf, On the mechanism of rust exfoliation in marine environments, J. Electrochem. Soc. 164 (2017) C8–C16. [30] D.C. Cook, Spectroscopic identification of protective and non-protective corrosion coatings on steel structures in marine environments, Corros. Sci. 47 (2005) 2550–2570. [31] S. Hara, T. Kamimura, H. Miyuki, M. Yamashita, Taxonomy for protective ability of rust layer using its composition formed on weathering steel bridge, Corros. Sci. 49 (2007) 1131–1142. [32] H. Cano, D. Neff, M. Morcillo, P. Dillmann, I. Díaz, D. De la Fuente, Characterization of corrosion products formed on Ni 2.4 wt%–Cu 0.5 wt%–Cr 0.5 wt% weathering steel exposed in marine atmospheres, Corros. Sci. 87 (2014) 438–451. [33] K. Asami, M. Kikuchi, In-depth distribution of rusts on a plain carbon steel and weathering steels exposed to coastal–industrial atmosphere for 17 years, Corros. Sci. 45 (2003) 2671–2688. [34] K. Asami, Characterization of rust layers on a plain-carbon steel and weathering steels exposed to industrial and coastal atmosphere for years, in: Y. Waseda, S. Suzuki (Eds.), Characterization of Corrosion Products on Steel Surfaces, Advances in Materials Research, Springer, Heidelberg, 2006, pp. 159– 197. [35] J. Alcántara, B. Chico, I. Díaz, D. de la Fuente, M. Morcillo, Airborne chloride deposit and its effect on marine atmospheric corrosion of mild steel, Corros. Sci. 97 (2015) 74–88. [36] J. Honzák, Schutz von Stahlkonstruktion gegen Atmospharische Korrosion (Protection of Steel Structures against Atmospheric Corrosion), 57 Veranstaltung EFK, Prague, 1971. [37] I. Díaz, H. Cano, D. Crespo, B. Chico, D. de la Fuente, M. Morcillo, Atmospheric corrosion of ASTM A-242 and ASTM A-588 weathering steels in different type of atmospheres, Corros. Eng. Sci. Tech 53 (2018) 449–459. [38] T. Ishikawa, R. Katoh, A. Yasukawa, K. Kandori, T. Nakayama, F. Yuse, Influences of metal ions on the formation of b-FeOOH particles, Corros. Sci. 43 (2001) 1727–1738. [39] D. de la Fuente, I. Diaz, J. Simancas, B. Chico, M. Morcillo, Long-term atmospheric corrosion of mild steel, Corros. Sci. 53 (2011) 604–617. [40] M. Morcillo, D. De la Fuente, I. Díaz, H. Cano, Atmospheric corrosion of mild steel. A review, Rev. Metal. Madrid 47 (2011) 426–444. [41] T. Ishikawa, M. Kumagai, A. Yasukawa, K. Kandori, Characterization of rust on weathering steel by gas adsorption, Corrosion 57 (2001) 346–352. [42] T. Ishikawa, Assessment of rust layers formed on WS in saline environment by gas adsorption, Mater. Corros. 66 (2015) 1460–1466. [43] T. Ishikawa, T. Yoshida, K. Kandori, T. Nakayama, S. Hara, Assessment of protective function of steel rust layers by N2 adsorption, Corros. Sci. 49 (2007) 1468–1477. [44] C. Leygraf, I. Odnevall Wallinder, J. Tidblad, T. Graedel, Atmospheric Corrosion, The Electrochemical Society Series, 2nd ed., John Wiley and Sons, Hoboken, New Jersey, 2016. [45] C.P. Larrabee, S.K. Coburn, The atmospheric corrosion of steels as influenced by changes in chemical composition, in: Proceedings of the 1st International Congress on Metallic Corrosion, 1961, London. pp. 279–285. [46] Guideline for designing and construction of bridges by weathering steel, Kozai Club, Tokyo, Technical Report, 1993. [47] Specification for highway bridges, I y II (Steel Bridge), Japan Road Association, Tokio, 2002-3. [48] D.C. Cook, The corrosion of high performance steel in adverse environments, in: M. Gracia, J.F. Marco, F. Plazaola (Eds.), Industrial Applications of the Mössbauer Effects, American Institute of Physics, 2005, pp. 63–72. [49] UN/ECEInternational Cooperative Programme on Effects on Materials including Historic and Cultural Monuments, Report N. 22: Corrosion attack on weathering steel, zinc and aluminium, Evaluation After 8 Years of Exposure, SVUOM, Prague, 1998. [50] J. Zoccola, Eight Year Corrosion Test Report – Eight Mile Road Interchange, Bethlehem Steel, Bethlehem, 1976. [51] The highway agency: design manual for roads and bridges, BD 7/01, weathering steel for highway structures, the Stationery Office, London, 1981. [52] The highway agency: design manual for roads and bridges, Vol. 2 Sec. 3 BD 7/ 01, weathering steel for highway structures, the Stationery Office, London, 2001. [53] M. Takebe, M. Ohya, S. Ajiki, T. Furukawa, R. Adachi, R. Gan-ei, N. Kitagawa, J. Ota, Y. Matsuzaki, T. Aso, Estimation of quantity of Cl from deicing salts on weathering steel used for bridges, Int. J. Steel Struct. 8 (2008) 73–81. [54] S.S. Kim, Appropriate environmental sphere of application for unpainted WS, J. Ind. Eng. Chem. 9 (2003) 212–218. [55] U.S. Department of Transportation, Federal Highway Administration: Technical Advisory, T5140.22, 1989. [56] D. Knotkova, J. Vlckova, J. Honzak, Atmospheric corrosion of weathering steels, in: S.W. Dean, E.C. Rhea (Eds.), Atmospheric Corrosion of Metals, ASTM STP 767, American Society for Testing and Materials, Philadelphia, 1982, pp. 7–44. [57] National Academy of SciencesAn analysis of atmospheric corrosion tests in low-alloy steels – Applicability of test results to highway bridges No. 204, Highway Research Record, Nat. Acad. Sci., Washington DC, 1967. [58] M. Mackenzie (Ed.), Proc. of The Conference ‘‘The Performance of In-situ Weathering Steel in Bridges”, Bridge Management Forum at University of Surrey, Thomas Telford, London, 2000. [59] C.P. Larrabee, Corrosion resistance of high-strength low-alloy steels as influenced by composition and environment, Corrosion 9 (1953) 259–271. [60] K. Park, Corrosion Resistance of Weathering Steels (Doctoral Thesis), University of Maryland, Department of Civil and Environmental Engineering, 2004. [61] I. Matsushima, T. Ueno, On the protective nature of atmospheric rust on lowalloy steel, Corros. Sci. 11 (1971) 129–140. [62] S.K. Coburn, M.E. Komp, S.C. Lore, Atmospheric corrosion rates of weathering steels at test sites in the eastern United States. Effect of environment and test panel orientation, in: W.W. Kirk, H.H. Lawson (Eds.), Atmospheric Corrosion, ASTM STP 1239, American Society for Testing and Materials, Philadelphia, 1995, pp. 101–113. [63] C.P. Larrabee, The effect of specimen position on atmospheric corrosion testing of steel, Trans. Electrochem. Soc. 85 (1944) 297–306. [64] T. Moroishi, J. Satake, The influence of the inclination and direction of specimen surface on atmospheric corrosion of steels, Tetsu - to - Hagane 59 (1973) 125–130. [65] J. Satake, T. Moroishi, Y. Nishida, S. Tanaka, Sumitomo Metals 22 (1970) 516– 520 (in Japanese). [66] I. Matsushima, Y. Ishizu, T. Ueno, M. Kanasashi, K. Horikawa, Effect of structural and environmental factors on the practical use of low-alloy weathering steel, Corros. Eng. 23 (1974) 177–182. [67] D.M. Buck, Recent progress in corrosion resistance, Iron Age (1915) 1231– 1239. [68] H. Schwitter, H. Bohni, Influence of accelerated weathering on the corrosion of low-alloy steels, J. Electrochem. Soc. 127 (1980) 15–20. [69] M. Yamashita, T. Shimizu, H. Konishi, J. Mizuki, H. Uchida, Structure and protective performance of atmospheric corrosion product of Fe-Cr alloy film analyzed by Mössbauer spectroscopy and with synchrotron radiation X-rays, Corros. Sci. 45 (2003) 381–394. [70] H.R. Copson, Long-time atmospheric corrosion tests on low-alloy steels, Proc. ASTM 60 (1960) 1–16. [71] P.F. Weiser, Atmospheric corrosion of carbon and low alloy cast steels, in: W.H. Ailor (Ed.), Atmospheric Corrosion, John Wiley and Sons, New York, 1982, pp. 453–473. [72] C.W. Briggs, Atmospheric corrosion of carbon and low alloy cast steels, in: Metal Corrosion in the Atmosphere, ASTM STP 435, American Society for Testing and Materials, Philadelphia, 1968, pp. 271–284. [73] G.B. Mannweiler, Corrosion test results of fifteen ferrous metals after sevenyears atmospheric exposure, in: Metal Corrosion in the Atmosphere, ASTM STP 435, American Society for Testing and Materials, Philadelphia, 1968, pp. 211– 222. [74] H.E. Townsend, Atmospheric corrosion performance of quenched-andtempered, high-strength weathering steel, Corrosion 56 (2000) 883–886. [75] A. Kondo, Fatigue of 10-year weathered welded joints of weathering and structural steel, in: Proceedings of the Japan Society of Civil Engineers, 1994, pp. 121–127 (in Japanese). [76] C. Miki, K. Homma, T. Tominaga, High strength and high performance steels and their use in bridge structures, J. Constr. Steel Res. 58 (2002) 3–20. [77] J.W. Stewart, J.A. Charles, E.R. Wallach, Iron-phosphorus-carbon system: Part I – Mechanical properties of low carbon iron-phosphorus alloys, Mater. Sci. Technol. 16 (2000) 275–282. [78] V. Raghavan, C-Fe-P (Carbon-Iron-Phosphorus), J. Phase Equilib. Diffus. 25 (2004) 541–542. [79] H. Cano, Aceros patinables (Cu, Cr, Ni): Resistencia a la corrosión atmosférica y soldabilidad (Doctoral Thesis), Universidad Complutense de Madrid, 2013. [80] The Use of Weathering Steel in Bridges, European Convention for Constructional Steelwork. ECCS CECM EKS, n 81, Brussels. [81] ASTM F3125/F3125-15aStandard specification for high strength structural bolts, steel and alloy steel, heat treated, 120 ksi (830 MPa) and 150 ksi (1040 MPa) minimum tensile strength, inch and metric dimensions, ASTM International, West Conshohocken, PA, 2015. [82] R.H. McCuen, P. Albrecht, J.G. Cheng, A new approach to power-model regression of corrosion penetration data, in: V. Chaker (Ed.), Corrosion Forms and Control for Infrastructure, ASTM STP 1137, American Society for Testing and Materials, Philadelphia, 1992, pp. 46–76. [83] M. Pourbaix, The linear bilogarithmic law for atmospheric corrosion, in: W.H. Ailor (Ed.), Atmospheric Corrosion, John Wiley and Sons, New York, 1982, pp. 107–121. [84] P. Albrecht, T.T. Hall, Atmospheric corrosion resistance of structural steels, J. Mater. Civ. Eng. 15 (2003) 2–24. [85] EN ISO 9224Corrosion of Metals and Alloys – Corrosivity of Atmospheres – Guiding Values for The Corrosivity Categories, European Committee for Standardization, Brussels, 2012. [86] V. Kucera, Mapping Effects on Materials in Manual Mapping Critical Load, ICP Materials, Coordination Centre, Stockholm, 2004. Vol. http://icpmapping.org. [87] D.E. Klinesmith, R.H. McCuen, P. Albrecht, Effect of environmental conditions on corrosion rates, J. Mater. Civ. Eng. 19 (2007) 121–129. [88] R. Landolfo, L. Cascini, F. Portioli, Modeling of metal structure corrosion damage: a state of the art report, Sustainability 2 (2010) 2163–2175. [89] EN 12500Corrosion Likelihood in Atmospheric Environment, European Committee for Standardization (CEN), Brussels, 2000. [90] H.E. Townsend, The effects of alloying elements on the corrosion of steel in industrial atmospheres, Proceedings of 14th International Corrosion Congress, Corrosion Institute of Southern Africa, Cape Town, 1999. [91] S.W. Dean, D. Knotkova, J.K. Kreislova, ISOCORRAG International Atmospheric Exposure Program: Summary of Results, ASTM Series 71, ASTM International, West Conshohocken, 2011.PublicationORIGINALAtmospheric corrosion of weathering steels. Overview for engineers. Part I Basic concepts.pdfAtmospheric corrosion of weathering steels. Overview for engineers. Part I Basic concepts.pdfapplication/pdf176375https://repositorio.cuc.edu.co/bitstreams/9da19c21-f635-4745-821e-f3516ac0480f/download3f3ab2d77bf6438de059139aa6199738MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.cuc.edu.co/bitstreams/c78027fa-1a86-4e6f-8c33-e9e8eb3ee010/download4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.cuc.edu.co/bitstreams/e368c0b0-740c-4cc6-95c4-da31b99408ad/download8a4605be74aa9ea9d79846c1fba20a33MD53THUMBNAILAtmospheric corrosion of weathering steels. Overview for engineers. Part I Basic concepts.pdf.jpgAtmospheric corrosion of weathering steels. Overview for engineers. Part I Basic concepts.pdf.jpgimage/jpeg32527https://repositorio.cuc.edu.co/bitstreams/aeb0deec-6902-4d2d-a655-5bf2882c2581/download329975148b63579b0a3e71d479eb4e5cMD55TEXTAtmospheric corrosion of weathering steels. Overview for engineers. Part I Basic concepts.pdf.txtAtmospheric corrosion of weathering steels. Overview for engineers. Part I Basic concepts.pdf.txttext/plain1014https://repositorio.cuc.edu.co/bitstreams/364fbe7f-5cf7-4093-8063-8eedc8541c88/download2f16d30c817b363462e7ba5331755b6cMD5611323/4846oai:repositorio.cuc.edu.co:11323/48462024-09-17 10:55:33.368http://creativecommons.org/licenses/by-nc-nd/4.0/Attribution-NonCommercial-NoDerivatives 4.0 Internationalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=