CDRIME-MTIS: An enhanced rime optimization-driven multi-threshold segmentation for COVID-19 X-ray images
To improve the detection of COVID-19, this paper researches and proposes an effective swarm intelligence algorithm-driven multi-threshold image segmentation (MTIS) method. First, this paper proposes a novel RIME structure integrating the Co-adaptive hunting and dispersed foraging strategies, called...
- Autores:
-
Li, Yupeng
Zhao, Dong
Ma, Chao
Escorcia Gutierrez, José
Aljehane, Nojood O.
Ye, Xia
- Tipo de recurso:
- Article of investigation
- Fecha de publicación:
- 2023
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/13355
- Acceso en línea:
- https://hdl.handle.net/11323/13355
- Palabra clave:
- Benchmark
COVID-19
Medical diagnosis
Image segmentation
Population-based method
RIME
- Rights
- embargoedAccess
- License
- Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
id |
RCUC2_83c353b58778f893582df1305ba9ce41 |
---|---|
oai_identifier_str |
oai:repositorio.cuc.edu.co:11323/13355 |
network_acronym_str |
RCUC2 |
network_name_str |
REDICUC - Repositorio CUC |
repository_id_str |
|
dc.title.eng.fl_str_mv |
CDRIME-MTIS: An enhanced rime optimization-driven multi-threshold segmentation for COVID-19 X-ray images |
title |
CDRIME-MTIS: An enhanced rime optimization-driven multi-threshold segmentation for COVID-19 X-ray images |
spellingShingle |
CDRIME-MTIS: An enhanced rime optimization-driven multi-threshold segmentation for COVID-19 X-ray images Benchmark COVID-19 Medical diagnosis Image segmentation Population-based method RIME |
title_short |
CDRIME-MTIS: An enhanced rime optimization-driven multi-threshold segmentation for COVID-19 X-ray images |
title_full |
CDRIME-MTIS: An enhanced rime optimization-driven multi-threshold segmentation for COVID-19 X-ray images |
title_fullStr |
CDRIME-MTIS: An enhanced rime optimization-driven multi-threshold segmentation for COVID-19 X-ray images |
title_full_unstemmed |
CDRIME-MTIS: An enhanced rime optimization-driven multi-threshold segmentation for COVID-19 X-ray images |
title_sort |
CDRIME-MTIS: An enhanced rime optimization-driven multi-threshold segmentation for COVID-19 X-ray images |
dc.creator.fl_str_mv |
Li, Yupeng Zhao, Dong Ma, Chao Escorcia Gutierrez, José Aljehane, Nojood O. Ye, Xia |
dc.contributor.author.none.fl_str_mv |
Li, Yupeng Zhao, Dong Ma, Chao Escorcia Gutierrez, José Aljehane, Nojood O. Ye, Xia |
dc.subject.proposal.eng.fl_str_mv |
Benchmark COVID-19 Medical diagnosis Image segmentation Population-based method |
topic |
Benchmark COVID-19 Medical diagnosis Image segmentation Population-based method RIME |
dc.subject.proposal.none.fl_str_mv |
RIME |
description |
To improve the detection of COVID-19, this paper researches and proposes an effective swarm intelligence algorithm-driven multi-threshold image segmentation (MTIS) method. First, this paper proposes a novel RIME structure integrating the Co-adaptive hunting and dispersed foraging strategies, called CDRIME. Specifically, the Co-adaptive hunting strategy works in coordination with the basic search rules of RIME at the individual level, which not only facilitates the algorithm to explore the global optimal solution but also enriches the population diversity to a certain extent. The dispersed foraging strategy further enriches the population diversity to help the algorithm break the limitation of local search and thus obtain better convergence. Then, on this basis, a new multi-threshold image segmentation method is proposed by combining the 2D non-local histogram with 2D Kapur entropy, called CDRIME-MTIS. Finally, the results of experiments based on IEEE CEC2017, IEEE CEC2019, and IEEE CEC2022 demonstrate that CDRIME has superior performance than some other basic, advanced, and state-of-the-art algorithms in terms of global search, convergence performance, and escape from local optimality. Meanwhile, the segmentation experiments on COVID-19 X-ray images demonstrate that CDRIME is more advantageous than RIME and other peers in terms of segmentation effect and adaptability to different threshold levels. In conclusion, the proposed CDRIME significantly enhances the global optimization performance and image segmentation of RIME and has great potential to improve COVID-19 diagnosis. |
publishDate |
2023 |
dc.date.issued.none.fl_str_mv |
2023-12-15 |
dc.date.accessioned.none.fl_str_mv |
2024-09-23T20:38:46Z |
dc.date.available.none.fl_str_mv |
2024-12-15 2024-09-23T20:38:46Z |
dc.type.none.fl_str_mv |
Artículo de revista |
dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.content.none.fl_str_mv |
Text |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.none.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
dc.type.version.none.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.coarversion.none.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
format |
http://purl.org/coar/resource_type/c_2df8fbb1 |
status_str |
publishedVersion |
dc.identifier.citation.none.fl_str_mv |
Yupeng Li, Dong Zhao, Chao Ma, José Escorcia-Gutierrez, Nojood O. Aljehane, Xia Ye, CDRIME-MTIS: An enhanced rime optimization-driven multi-threshold segmentation for COVID-19 X-ray images, Computers in Biology and Medicine, Volume 169, 2024, 107838, ISSN 0010-4825, https://doi.org/10.1016/j.compbiomed.2023.107838. |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/11323/13355 |
dc.identifier.doi.none.fl_str_mv |
10.1016/j.compbiomed.2023.107838 |
identifier_str_mv |
Yupeng Li, Dong Zhao, Chao Ma, José Escorcia-Gutierrez, Nojood O. Aljehane, Xia Ye, CDRIME-MTIS: An enhanced rime optimization-driven multi-threshold segmentation for COVID-19 X-ray images, Computers in Biology and Medicine, Volume 169, 2024, 107838, ISSN 0010-4825, https://doi.org/10.1016/j.compbiomed.2023.107838. 10.1016/j.compbiomed.2023.107838 |
url |
https://hdl.handle.net/11323/13355 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartofjournal.none.fl_str_mv |
Computers in Biology and Medicine |
dc.relation.references.none.fl_str_mv |
Simos, T.E. Real-time estimation of R0 for COVID-19 spread (2021) Mathematics, 9 (6), p. 664. Li, Q. Prevalence and factors for anxiety during the coronavirus disease 2019 (COVID-19) epidemic among the teachers in China (2020) J. Affect. Disord., 277, pp. 153-158. Xie, X. Evaluating cancer-related biomarkers based on pathological images: a systematic review (2021) Front. Oncol., 11. Lin, Q. A novel approach of surface texture mapping for cone-beam computed tomography in image-guided surgical navigation (2023) IEEE J. Biomed. Health Inform. Motta, P.C. Automatic COVID-19 and common-acquired pneumonia diagnosis using chest CT scans (2023) Bioengineering, 10 (5), p. 529. Gao, Z. Automatic interpretation and clinical evaluation for fundus fluorescein angiography images of diabetic retinopathy patients by deep learning (2022) Br. J. Ophthalmol., bjophthalmol-2022 Li, M. Explainable COVID-19 infections identification and delineation using calibrated pseudo labels (2023) IEEE Trans. Emerg. Topics Comput. Intellig., 7 (1), pp. 26-35. Maguolo, G., Nanni, L. A critic evaluation of methods for covid-19 automatic detection from x-ray images (2021) Inf. Fusion, 76, pp. 1-7. Ye, Q. Robust weakly supervised learning for COVID-19 recognition using multi-center CT images (2022) Appl. Soft Comput., 116. Hu, S. Weakly supervised deep learning for COVID-19 infection detection and classification from CT images (2020) IEEE Access, 8, pp. 118869-118883. Su, H. Multilevel threshold image segmentation for COVID-19 chest radiography: a framework using horizontal and vertical multiverse optimization (2022) Comput. Biol. Med., p. 146. Hao, S. Multi-threshold image segmentation using an enhanced fruit fly optimization for COVID-19 X-ray images (2023) Biomed. Signal Process Control Su, H. RIME: a physics-based optimization (2023) Neurocomputing, 532, pp. 183-214. Wu, G., Mallipeddi, R., Suganthan, P. Problem Definitions and Evaluation Criteria for the CEC 2017 Competition and Special Session on Constrained Single Objective Real-Parameter Optimization (2016), Price, K. Problem definitions and evaluation criteria for the 100-digit challenge special session and competition on single objective numerical optimization (2018) Technical Report, Nanyang Technological University Singapore Kumar, A. Problem Definitions and Evaluation Criteria for the CEC 2022 Special Session and Competition on Single Objective Bound Constrained Numerical Optimization (2022) García, S. Advanced nonparametric tests for multiple comparisons in the design of experiments in computational intelligence and data mining: experimental analysis of power (2010) Inf. Sci., 180 (10), pp. 2044-2064. Derrac, J. A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms (2011) Swarm Evol. Comput., 1 (1), pp. 3-18. Zhang, L. FSIM: a feature similarity index for image quality assessment (2011) IEEE Trans. Image Process., 20 (8), pp. 2378-2386. Huynh-Thu, Q., Ghanbari, M. Scope of validity of PSNR in image/video quality assessment (2008) Electron. Lett., 44, pp. 800-801. Zhou, W. Image quality assessment: from error visibility to structural similarity (2004) IEEE Trans. Image Process., 13 (4), pp. 600-612. Zhang, Q. Gaussian barebone salp swarm algorithm with stochastic fractal search for medical image segmentation: a COVID-19 case study (2021) Comput. Biol. Med., 139. Zhao, X.Z. An enhanced ant colony optimizer with Cauchy-Gaussian fusion and novel movement strategy for multi-threshold COVID-19 X-ray image segmentation (2023) Front. Neuroinf., 17. Das, G. A non-entropy-based optimal multilevel threshold selection technique for COVID-19 X-ray images using chance-based birds' intelligence (2023) Soft Comput., 27 (24), pp. 18991-19011. Su, H. Horizontal and vertical search artificial bee colony for image segmentation of COVID-19 X-ray images (2022) Comput. Biol. Med., p. 142. Xing, J. Elite levy spreading differential evolution via ABC shrink-wrap for multi-threshold segmentation of breast cancer images (2023) Biomed. Signal Process Control, 82. Houssein, E.H. An improved opposition-based marine predators algorithm for global optimization and multilevel thresholding image segmentation (2021) Knowl. Base Syst., 229. Tang, H. Predicting green consumption behaviors of students using efficient firefly grey wolf-assisted K-nearest neighbor classifiers (2020) IEEE Access, 8, pp. 35546-35562. Liu, G. Predicting cervical hyperextension injury: a covariance guided sine cosine support vector machine (2020) IEEE Access, 8, pp. 46895-46908. Mirjalili, S. Moth-flame optimization algorithm: a novel nature-inspired heuristic paradigm (2015) Knowl. Base Syst., 89, pp. 228-249. Li, S. Slime mould algorithm: a new method for stochastic optimization (2020) Future Generat. Comput. Syst., 111, pp. 300-323. Kennedy, J., Eberhart, R. Particle swarm optimization (1995) Proceedings of ICNN'95 - International Conference on Neural Networks. Storn, R., Price, K. Differential evolution – a simple and efficient heuristic for global optimization over continuous spaces (1997), 11 (4), pp. 341-359. Mirjalili, S., Lewis, A. The whale optimization algorithm (2016) Adv. Eng. Software, 95, pp. 51-67. Heidari, A.A. Harris hawks optimization: algorithm and applications (2019) Future Generat. Comput. Syst., 97, pp. 849-872. Karaboga, D. An Idea Based on Honey Bee Swarm for Numerical Optimization (2005). Mirjalili, S. SCA: a sine cosine algorithm for solving optimization problems (2016) Knowl. Base Syst., 96, pp. 120-133. Chen, X. An efficient multilevel thresholding image segmentation method based on the slime mould algorithm with bee foraging mechanism: a real case with lupus nephritis images (2022) Comput. Biol. Med., 142. Nenavath, H., Jatoth, R.K. Hybridizing sine cosine algorithm with differential evolution for global optimization and object tracking (2018) Appl. Soft Comput., 62, pp. 1019-1043. Xu, Y. Enhanced Moth-flame optimizer with mutation strategy for global optimization (2019) Inf. Sci., 492, pp. 181-203. Song, S. Dimension decided Harris hawks optimization with Gaussian mutation: balance analysis and diversity patterns (2021) Knowl. Base Syst., 215. Chen, W. Particle swarm optimization with an aging leader and challengers (2013) IEEE Trans. Evol. Comput., 17 (2), pp. 241-258. Qi, A. Directional mutation and crossover for immature performance of whale algorithm with application to engineering optimization (2022) Journal of Computational Design and Engineering, 9 (2), pp. 519-563. Wolpert, D.H., Macready, W.G. No free lunch theorems for optimization (1997), 1 (1), pp. 67-82. Tang, D. Spherical evolution for solving continuous optimization problems (2019) Appl. Soft Comput., 81. Mirjalili, S., Mirjalili, S.M., Hatamlou, A. Multi-Verse Optimizer: a nature-inspired algorithm for global optimization (2016) Neural Comput. Appl., 27 (2), pp. 495-513. Mirjalili, S. Salp Swarm Algorithm: a bio-inspired optimizer for engineering design problems (2017) Adv. Eng. Software, 114, pp. 163-191. Shan, W. Multi-strategies boosted mutative crow search algorithm for global tasks: cases of continuous and discrete optimization (2022) Journal of Bionic Engineering, 19 (6), pp. 1830-1849. Xia, J. Adaptive barebones salp swarm algorithm with quasi-oppositional learning for medical diagnosis systems: a comprehensive analysis (2022) Journal of Bionic Engineering, 19 (1), pp. 240-256. Xia, J. Generalized oppositional Moth flame optimization with crossover strategy: an approach for medical diagnosis (2021) Journal of Bionic Engineering, 18 (4), pp. 991-1010. Lin, C. A boosted communicational salp swarm algorithm: performance optimization and comprehensive analysis (2023) Journal of Bionic Engineering, 20 (3), pp. 1296-1332. Tu, Q., Chen, X., Liu, X. Multi-strategy ensemble grey wolf optimizer and its application to feature selection (2019) Appl. Soft Comput., 76, pp. 16-30. Hu, J. Dispersed foraging slime mould algorithm: continuous and binary variants for global optimization and wrapper-based feature selection (2022) Knowl. Base Syst., 237. Gao, W.F., Liu, S.Y., Huang, L.L. A novel artificial bee colony algorithm based on modified search equation and orthogonal learning (2013) IEEE Trans. Cybern., 43 (3), pp. 1011-1024. Li, X., Yin, M. Modified cuckoo search algorithm with self adaptive parameter method (2015) Inf. Sci., 298, pp. 80-97. Buades, A., Coll, B., Morel, J. A non-local algorithm for image denoising (2005) 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR'05) Xing, J. Boosting whale optimizer with quasi-oppositional learning and Gaussian barebone for feature selection and COVID-19 image segmentation (2023) Journal of Bionic Engineering, 20 (2), pp. 797-818. Han, Y. Multi-verse optimizer with rosenbrock and diffusion mechanisms for multilevel threshold image segmentation from COVID-19 chest X-ray images (2023) Journal of Bionic Engineering, 20 (3), pp. 1198-1262. Mittal, H., Saraswat, M. An optimum multi-level image thresholding segmentation using non-local means 2D histogram and exponential Kbest gravitational search algorithm (2018) Eng. Appl. Artif. Intell., 71, pp. 226-235. Zhao, D. Chaotic Random Spare Ant Colony Optimization for Multi-Threshold Image Segmentation of 2D Kapur Entropy (2020), Knowledge-Based Systems Shi, B. Evolutionary warning system for COVID-19 severity: colony predation algorithm enhanced extreme learning machine (2021) Comput. Biol. Med., 136. Ewees, A.A., Ismail, F.H., Sahlol, A.T. Gradient-based optimizer improved by Slime Mould Algorithm for global optimization and feature selection for diverse computation problems (2023) Expert Syst. Appl., 213. Shan, W. An efficient rotational direction heap-based optimization with orthogonal structure for medical diagnosis (2022) Comput. Biol. Med., 146. Hu, J. Chaotic diffusion-limited aggregation enhanced grey wolf optimizer: insights, analysis, binarization, and feature selection (Intelligent Systems, impact factor:8.709) (2021) Int. J. Intell. Syst., Socha, K., Dorigo, M. Ant colony optimization for continuous domains (2008) Eur. J. Oper. Res., 185 (3), pp. 1155-1173. Mirjalili, S., Mirjalili, S.M., Lewis, A. Grey wolf optimizer (2014) Adv. Eng. Software, 69, pp. 46-61. Ahmadianfar, I. RUN beyond the Metaphor: an Efficient Optimization Algorithm Based on Runge Kutta Method (2021), Expert Systems with Applications Zhao, D. Chaotic random spare ant colony optimization for multi-threshold image segmentation of 2D Kapur entropy (2020) Knowl. Base Syst., 216. Cai, Z. Evolving an optimal kernel extreme learning machine by using an enhanced grey wolf optimization strategy (2019) Expert Syst. Appl., 138. Adarsh, B.R. Economic dispatch using chaotic bat algorithm (2016) Energy, 96, pp. 666-675. Qi, A. Directional mutation and crossover boosted ant colony optimization with application to COVID-19 X-ray image segmentation (2022) Comput. Biol. Med., 148. Li, C. Memetic Harris Hawks Optimization: developments and perspectives on project scheduling and QoS-aware web service composition (2021) Expert Syst. Appl., 171. Hu, J. Chaotic diffusion-limited aggregation enhanced grey wolf optimizer: insights, analysis, binarization, and feature selection (2022) Int. J. Intell. Syst., 37 (8), pp. 4864-4927. Li, Y. bSRWPSO-FKNN: a boosted PSO with fuzzy K-nearest neighbor classifier for predicting atopic dermatitis disease (2023) Front. Neuroinf., 16. Weng, X. Laplacian Nelder-Mead spherical evolution for parameter estimation of photovoltaic models (2021) Energy Convers. Manag., 243. Yang, X. An optimized machine learning framework for predicting intradialytic hypotension using indexes of chronic kidney disease-mineral and bone disorders (2022) Comput. Biol. Med., 145. Yang, X. An adaptive quadratic interpolation and rounding mechanism sine cosine algorithm with application to constrained engineering optimization problems (2023) Expert Syst. Appl., 213. Zhou, W. Random learning gradient based optimization for efficient design of photovoltaic models (Energy Conversion and Management, Impact Factor: 9.709) (2021) Energy Convers. Manag., 230 (29). Eddaly, M. Combinatorial particle swarm optimization for solving blocking flowshop scheduling problem (2016), 3 (4), pp. 295-311. Yu, H. Apple Leaf Disease Recognition Method with Improved Residual Network (2022), Multimedia Tools and Applications. Hu, K. A novel object tracking algorithm by fusing color and depth information based on single valued neutrosophic cross-entropy (2017) J. Intell. Fuzzy Syst., 32 (3), pp. 1775-1786. Liang, Z. A hybrid of genetic transform and hyper-rectangle search strategies for evolutionary multi-tasking (2019) Expert Syst. Appl., p. 138. Hu, J. Identification of pulmonary hypertension animal models using a new evolutionary machine learning framework based on blood routine indicators (2023) Journal of Bionic Engineering, 20 (2), pp. 762-781. Zhang, H. Differential evolution-assisted salp swarm algorithm with chaotic structure for real-world problems (2022) Eng. Comput., Qiao, K. Self-adaptive resources allocation-based differential evolution for constrained evolutionary optimization (2022) Knowl. Base Syst., 235. Liang, J. Differential evolution with rankings-based fitness function for constrained optimization problems (2021) Appl. Soft Comput., 113. Cohen, J.P. Covid-19 Image Data Collection: Prospective Predictions Are the Future (2020), [Online]. Available: Yang, X.-S. A new metaheuristic bat-inspired algorithm (2010) Nature Inspired Cooperative Strategies for Optimization (NICSO 2010), pp. 65-74. Springer Chen, X. Biogeography-based learning particle swarm optimization (2017) Soft Comput., 21 (24), pp. 7519-7541. Tubishat, M. Improved whale optimization algorithm for feature selection in Arabic sentiment analysis (2019) Appl. Intell., 49 (5), pp. 1688-1707. Ren, L. Multi-level thresholding segmentation for pathological images: optimal performance design of a new modified differential evolution (2022) Comput. Biol. Med., 148. Sun, L. Few-shot class-incremental learning for medical time series classification (2023) IEEE J. Biomed. Health Inform., He, B. A new method for CTC images recognition based on machine learning (2020) Front. Bioeng. Biotechnol., 8, p. 897. |
dc.relation.citationvolume.none.fl_str_mv |
169 |
dc.rights.none.fl_str_mv |
© 2023 Published by Elsevier Ltd. |
dc.rights.license.none.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) |
dc.rights.uri.none.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/embargoedAccess |
dc.rights.coar.none.fl_str_mv |
http://purl.org/coar/access_right/c_f1cf |
rights_invalid_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) © 2023 Published by Elsevier Ltd. https://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_f1cf |
eu_rights_str_mv |
embargoedAccess |
dc.format.extent.none.fl_str_mv |
56 páginas |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Ltd |
dc.publisher.place.none.fl_str_mv |
United Kingdom |
publisher.none.fl_str_mv |
Elsevier Ltd |
institution |
Corporación Universidad de la Costa |
bitstream.url.fl_str_mv |
https://repositorio.cuc.edu.co/bitstreams/f17a1d56-236c-4634-8c64-99fcf40bae76/download https://repositorio.cuc.edu.co/bitstreams/d2be04a2-3aa6-4197-ad48-3bfdb679613c/download https://repositorio.cuc.edu.co/bitstreams/b5ae7962-02f4-4e25-8d4a-7b393f90ab3e/download https://repositorio.cuc.edu.co/bitstreams/c82fed49-6f78-4753-8547-7eb0661255ff/download |
bitstream.checksum.fl_str_mv |
22ad43eef0a1a2b9f3a3d89f0f8545b2 73a5432e0b76442b22b026844140d683 894febd437c2e5a57d2e65c5aff4f207 dbf03003d61e42faab3e95200ed5fa6e |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad de la Costa CUC |
repository.mail.fl_str_mv |
repdigital@cuc.edu.co |
_version_ |
1811760703551307776 |
spelling |
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)© 2023 Published by Elsevier Ltd.https://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/embargoedAccesshttp://purl.org/coar/access_right/c_f1cfLi, YupengZhao, DongMa, ChaoEscorcia Gutierrez, JoséAljehane, Nojood O.Ye, Xia2024-09-23T20:38:46Z2024-12-152024-09-23T20:38:46Z2023-12-15Yupeng Li, Dong Zhao, Chao Ma, José Escorcia-Gutierrez, Nojood O. Aljehane, Xia Ye, CDRIME-MTIS: An enhanced rime optimization-driven multi-threshold segmentation for COVID-19 X-ray images, Computers in Biology and Medicine, Volume 169, 2024, 107838, ISSN 0010-4825, https://doi.org/10.1016/j.compbiomed.2023.107838.https://hdl.handle.net/11323/1335510.1016/j.compbiomed.2023.107838To improve the detection of COVID-19, this paper researches and proposes an effective swarm intelligence algorithm-driven multi-threshold image segmentation (MTIS) method. First, this paper proposes a novel RIME structure integrating the Co-adaptive hunting and dispersed foraging strategies, called CDRIME. Specifically, the Co-adaptive hunting strategy works in coordination with the basic search rules of RIME at the individual level, which not only facilitates the algorithm to explore the global optimal solution but also enriches the population diversity to a certain extent. The dispersed foraging strategy further enriches the population diversity to help the algorithm break the limitation of local search and thus obtain better convergence. Then, on this basis, a new multi-threshold image segmentation method is proposed by combining the 2D non-local histogram with 2D Kapur entropy, called CDRIME-MTIS. Finally, the results of experiments based on IEEE CEC2017, IEEE CEC2019, and IEEE CEC2022 demonstrate that CDRIME has superior performance than some other basic, advanced, and state-of-the-art algorithms in terms of global search, convergence performance, and escape from local optimality. Meanwhile, the segmentation experiments on COVID-19 X-ray images demonstrate that CDRIME is more advantageous than RIME and other peers in terms of segmentation effect and adaptability to different threshold levels. In conclusion, the proposed CDRIME significantly enhances the global optimization performance and image segmentation of RIME and has great potential to improve COVID-19 diagnosis.56 páginasapplication/pdfengElsevier LtdUnited KingdomCDRIME-MTIS: An enhanced rime optimization-driven multi-threshold segmentation for COVID-19 X-ray imagesArtículo de revistahttp://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85Computers in Biology and MedicineSimos, T.E. Real-time estimation of R0 for COVID-19 spread (2021) Mathematics, 9 (6), p. 664.Li, Q. Prevalence and factors for anxiety during the coronavirus disease 2019 (COVID-19) epidemic among the teachers in China (2020) J. Affect. Disord., 277, pp. 153-158.Xie, X. Evaluating cancer-related biomarkers based on pathological images: a systematic review (2021) Front. Oncol., 11.Lin, Q. A novel approach of surface texture mapping for cone-beam computed tomography in image-guided surgical navigation (2023) IEEE J. Biomed. Health Inform.Motta, P.C. Automatic COVID-19 and common-acquired pneumonia diagnosis using chest CT scans (2023) Bioengineering, 10 (5), p. 529.Gao, Z. Automatic interpretation and clinical evaluation for fundus fluorescein angiography images of diabetic retinopathy patients by deep learning (2022) Br. J. Ophthalmol., bjophthalmol-2022Li, M. Explainable COVID-19 infections identification and delineation using calibrated pseudo labels (2023) IEEE Trans. Emerg. Topics Comput. Intellig., 7 (1), pp. 26-35.Maguolo, G., Nanni, L. A critic evaluation of methods for covid-19 automatic detection from x-ray images (2021) Inf. Fusion, 76, pp. 1-7.Ye, Q. Robust weakly supervised learning for COVID-19 recognition using multi-center CT images (2022) Appl. Soft Comput., 116.Hu, S. Weakly supervised deep learning for COVID-19 infection detection and classification from CT images (2020) IEEE Access, 8, pp. 118869-118883.Su, H. Multilevel threshold image segmentation for COVID-19 chest radiography: a framework using horizontal and vertical multiverse optimization (2022) Comput. Biol. Med., p. 146.Hao, S. Multi-threshold image segmentation using an enhanced fruit fly optimization for COVID-19 X-ray images (2023) Biomed. Signal Process ControlSu, H. RIME: a physics-based optimization (2023) Neurocomputing, 532, pp. 183-214.Wu, G., Mallipeddi, R., Suganthan, P. Problem Definitions and Evaluation Criteria for the CEC 2017 Competition and Special Session on Constrained Single Objective Real-Parameter Optimization (2016),Price, K. Problem definitions and evaluation criteria for the 100-digit challenge special session and competition on single objective numerical optimization (2018) Technical Report, Nanyang Technological University SingaporeKumar, A. Problem Definitions and Evaluation Criteria for the CEC 2022 Special Session and Competition on Single Objective Bound Constrained Numerical Optimization (2022)García, S. Advanced nonparametric tests for multiple comparisons in the design of experiments in computational intelligence and data mining: experimental analysis of power (2010) Inf. Sci., 180 (10), pp. 2044-2064.Derrac, J. A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms (2011) Swarm Evol. Comput., 1 (1), pp. 3-18.Zhang, L. FSIM: a feature similarity index for image quality assessment (2011) IEEE Trans. Image Process., 20 (8), pp. 2378-2386.Huynh-Thu, Q., Ghanbari, M. Scope of validity of PSNR in image/video quality assessment (2008) Electron. Lett., 44, pp. 800-801.Zhou, W. Image quality assessment: from error visibility to structural similarity (2004) IEEE Trans. Image Process., 13 (4), pp. 600-612.Zhang, Q. Gaussian barebone salp swarm algorithm with stochastic fractal search for medical image segmentation: a COVID-19 case study (2021) Comput. Biol. Med., 139.Zhao, X.Z. An enhanced ant colony optimizer with Cauchy-Gaussian fusion and novel movement strategy for multi-threshold COVID-19 X-ray image segmentation (2023) Front. Neuroinf., 17.Das, G. A non-entropy-based optimal multilevel threshold selection technique for COVID-19 X-ray images using chance-based birds' intelligence (2023) Soft Comput., 27 (24), pp. 18991-19011.Su, H. Horizontal and vertical search artificial bee colony for image segmentation of COVID-19 X-ray images (2022) Comput. Biol. Med., p. 142.Xing, J. Elite levy spreading differential evolution via ABC shrink-wrap for multi-threshold segmentation of breast cancer images (2023) Biomed. Signal Process Control, 82.Houssein, E.H. An improved opposition-based marine predators algorithm for global optimization and multilevel thresholding image segmentation (2021) Knowl. Base Syst., 229.Tang, H. Predicting green consumption behaviors of students using efficient firefly grey wolf-assisted K-nearest neighbor classifiers (2020) IEEE Access, 8, pp. 35546-35562.Liu, G. Predicting cervical hyperextension injury: a covariance guided sine cosine support vector machine (2020) IEEE Access, 8, pp. 46895-46908.Mirjalili, S. Moth-flame optimization algorithm: a novel nature-inspired heuristic paradigm (2015) Knowl. Base Syst., 89, pp. 228-249.Li, S. Slime mould algorithm: a new method for stochastic optimization (2020) Future Generat. Comput. Syst., 111, pp. 300-323.Kennedy, J., Eberhart, R. Particle swarm optimization (1995) Proceedings of ICNN'95 - International Conference on Neural Networks.Storn, R., Price, K. Differential evolution – a simple and efficient heuristic for global optimization over continuous spaces (1997), 11 (4), pp. 341-359.Mirjalili, S., Lewis, A. The whale optimization algorithm (2016) Adv. Eng. Software, 95, pp. 51-67.Heidari, A.A. Harris hawks optimization: algorithm and applications (2019) Future Generat. Comput. Syst., 97, pp. 849-872.Karaboga, D. An Idea Based on Honey Bee Swarm for Numerical Optimization (2005).Mirjalili, S. SCA: a sine cosine algorithm for solving optimization problems (2016) Knowl. Base Syst., 96, pp. 120-133.Chen, X. An efficient multilevel thresholding image segmentation method based on the slime mould algorithm with bee foraging mechanism: a real case with lupus nephritis images (2022) Comput. Biol. Med., 142.Nenavath, H., Jatoth, R.K. Hybridizing sine cosine algorithm with differential evolution for global optimization and object tracking (2018) Appl. Soft Comput., 62, pp. 1019-1043.Xu, Y. Enhanced Moth-flame optimizer with mutation strategy for global optimization (2019) Inf. Sci., 492, pp. 181-203.Song, S. Dimension decided Harris hawks optimization with Gaussian mutation: balance analysis and diversity patterns (2021) Knowl. Base Syst., 215.Chen, W. Particle swarm optimization with an aging leader and challengers (2013) IEEE Trans. Evol. Comput., 17 (2), pp. 241-258.Qi, A. Directional mutation and crossover for immature performance of whale algorithm with application to engineering optimization (2022) Journal of Computational Design and Engineering, 9 (2), pp. 519-563.Wolpert, D.H., Macready, W.G. No free lunch theorems for optimization (1997), 1 (1), pp. 67-82.Tang, D. Spherical evolution for solving continuous optimization problems (2019) Appl. Soft Comput., 81.Mirjalili, S., Mirjalili, S.M., Hatamlou, A. Multi-Verse Optimizer: a nature-inspired algorithm for global optimization (2016) Neural Comput. Appl., 27 (2), pp. 495-513.Mirjalili, S. Salp Swarm Algorithm: a bio-inspired optimizer for engineering design problems (2017) Adv. Eng. Software, 114, pp. 163-191.Shan, W. Multi-strategies boosted mutative crow search algorithm for global tasks: cases of continuous and discrete optimization (2022) Journal of Bionic Engineering, 19 (6), pp. 1830-1849.Xia, J. Adaptive barebones salp swarm algorithm with quasi-oppositional learning for medical diagnosis systems: a comprehensive analysis (2022) Journal of Bionic Engineering, 19 (1), pp. 240-256.Xia, J. Generalized oppositional Moth flame optimization with crossover strategy: an approach for medical diagnosis (2021) Journal of Bionic Engineering, 18 (4), pp. 991-1010.Lin, C. A boosted communicational salp swarm algorithm: performance optimization and comprehensive analysis (2023) Journal of Bionic Engineering, 20 (3), pp. 1296-1332.Tu, Q., Chen, X., Liu, X. Multi-strategy ensemble grey wolf optimizer and its application to feature selection (2019) Appl. Soft Comput., 76, pp. 16-30.Hu, J. Dispersed foraging slime mould algorithm: continuous and binary variants for global optimization and wrapper-based feature selection (2022) Knowl. Base Syst., 237.Gao, W.F., Liu, S.Y., Huang, L.L. A novel artificial bee colony algorithm based on modified search equation and orthogonal learning (2013) IEEE Trans. Cybern., 43 (3), pp. 1011-1024.Li, X., Yin, M. Modified cuckoo search algorithm with self adaptive parameter method (2015) Inf. Sci., 298, pp. 80-97.Buades, A., Coll, B., Morel, J. A non-local algorithm for image denoising (2005) 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR'05)Xing, J. Boosting whale optimizer with quasi-oppositional learning and Gaussian barebone for feature selection and COVID-19 image segmentation (2023) Journal of Bionic Engineering, 20 (2), pp. 797-818.Han, Y. Multi-verse optimizer with rosenbrock and diffusion mechanisms for multilevel threshold image segmentation from COVID-19 chest X-ray images (2023) Journal of Bionic Engineering, 20 (3), pp. 1198-1262.Mittal, H., Saraswat, M. An optimum multi-level image thresholding segmentation using non-local means 2D histogram and exponential Kbest gravitational search algorithm (2018) Eng. Appl. Artif. Intell., 71, pp. 226-235.Zhao, D. Chaotic Random Spare Ant Colony Optimization for Multi-Threshold Image Segmentation of 2D Kapur Entropy (2020), Knowledge-Based SystemsShi, B. Evolutionary warning system for COVID-19 severity: colony predation algorithm enhanced extreme learning machine (2021) Comput. Biol. Med., 136.Ewees, A.A., Ismail, F.H., Sahlol, A.T. Gradient-based optimizer improved by Slime Mould Algorithm for global optimization and feature selection for diverse computation problems (2023) Expert Syst. Appl., 213.Shan, W. An efficient rotational direction heap-based optimization with orthogonal structure for medical diagnosis (2022) Comput. Biol. Med., 146.Hu, J. Chaotic diffusion-limited aggregation enhanced grey wolf optimizer: insights, analysis, binarization, and feature selection (Intelligent Systems, impact factor:8.709) (2021) Int. J. Intell. Syst.,Socha, K., Dorigo, M. Ant colony optimization for continuous domains (2008) Eur. J. Oper. Res., 185 (3), pp. 1155-1173.Mirjalili, S., Mirjalili, S.M., Lewis, A. Grey wolf optimizer (2014) Adv. Eng. Software, 69, pp. 46-61.Ahmadianfar, I. RUN beyond the Metaphor: an Efficient Optimization Algorithm Based on Runge Kutta Method (2021), Expert Systems with ApplicationsZhao, D. Chaotic random spare ant colony optimization for multi-threshold image segmentation of 2D Kapur entropy (2020) Knowl. Base Syst., 216.Cai, Z. Evolving an optimal kernel extreme learning machine by using an enhanced grey wolf optimization strategy (2019) Expert Syst. Appl., 138.Adarsh, B.R. Economic dispatch using chaotic bat algorithm (2016) Energy, 96, pp. 666-675.Qi, A. Directional mutation and crossover boosted ant colony optimization with application to COVID-19 X-ray image segmentation (2022) Comput. Biol. Med., 148.Li, C. Memetic Harris Hawks Optimization: developments and perspectives on project scheduling and QoS-aware web service composition (2021) Expert Syst. Appl., 171.Hu, J. Chaotic diffusion-limited aggregation enhanced grey wolf optimizer: insights, analysis, binarization, and feature selection (2022) Int. J. Intell. Syst., 37 (8), pp. 4864-4927.Li, Y. bSRWPSO-FKNN: a boosted PSO with fuzzy K-nearest neighbor classifier for predicting atopic dermatitis disease (2023) Front. Neuroinf., 16.Weng, X. Laplacian Nelder-Mead spherical evolution for parameter estimation of photovoltaic models (2021) Energy Convers. Manag., 243.Yang, X. An optimized machine learning framework for predicting intradialytic hypotension using indexes of chronic kidney disease-mineral and bone disorders (2022) Comput. Biol. Med., 145.Yang, X. An adaptive quadratic interpolation and rounding mechanism sine cosine algorithm with application to constrained engineering optimization problems (2023) Expert Syst. Appl., 213.Zhou, W. Random learning gradient based optimization for efficient design of photovoltaic models (Energy Conversion and Management, Impact Factor: 9.709) (2021) Energy Convers. Manag., 230 (29).Eddaly, M. Combinatorial particle swarm optimization for solving blocking flowshop scheduling problem (2016), 3 (4), pp. 295-311.Yu, H. Apple Leaf Disease Recognition Method with Improved Residual Network (2022), Multimedia Tools and Applications.Hu, K. A novel object tracking algorithm by fusing color and depth information based on single valued neutrosophic cross-entropy (2017) J. Intell. Fuzzy Syst., 32 (3), pp. 1775-1786.Liang, Z. A hybrid of genetic transform and hyper-rectangle search strategies for evolutionary multi-tasking (2019) Expert Syst. Appl., p. 138.Hu, J. Identification of pulmonary hypertension animal models using a new evolutionary machine learning framework based on blood routine indicators (2023) Journal of Bionic Engineering, 20 (2), pp. 762-781.Zhang, H. Differential evolution-assisted salp swarm algorithm with chaotic structure for real-world problems (2022) Eng. Comput.,Qiao, K. Self-adaptive resources allocation-based differential evolution for constrained evolutionary optimization (2022) Knowl. Base Syst., 235.Liang, J. Differential evolution with rankings-based fitness function for constrained optimization problems (2021) Appl. Soft Comput., 113.Cohen, J.P. Covid-19 Image Data Collection: Prospective Predictions Are the Future (2020), [Online]. Available:Yang, X.-S. A new metaheuristic bat-inspired algorithm (2010) Nature Inspired Cooperative Strategies for Optimization (NICSO 2010), pp. 65-74. SpringerChen, X. Biogeography-based learning particle swarm optimization (2017) Soft Comput., 21 (24), pp. 7519-7541.Tubishat, M. Improved whale optimization algorithm for feature selection in Arabic sentiment analysis (2019) Appl. Intell., 49 (5), pp. 1688-1707.Ren, L. Multi-level thresholding segmentation for pathological images: optimal performance design of a new modified differential evolution (2022) Comput. Biol. Med., 148.Sun, L. Few-shot class-incremental learning for medical time series classification (2023) IEEE J. Biomed. Health Inform.,He, B. A new method for CTC images recognition based on machine learning (2020) Front. Bioeng. Biotechnol., 8, p. 897.169BenchmarkCOVID-19Medical diagnosisImage segmentationPopulation-based methodRIMEPublicationORIGINALCDRIME MTIS An enhanced rime optimization driven multi threshold.pdfCDRIME MTIS An enhanced rime optimization driven multi threshold.pdfapplication/pdf39111553https://repositorio.cuc.edu.co/bitstreams/f17a1d56-236c-4634-8c64-99fcf40bae76/download22ad43eef0a1a2b9f3a3d89f0f8545b2MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-815543https://repositorio.cuc.edu.co/bitstreams/d2be04a2-3aa6-4197-ad48-3bfdb679613c/download73a5432e0b76442b22b026844140d683MD52TEXTCDRIME MTIS An enhanced rime optimization driven multi threshold.pdf.txtCDRIME MTIS An enhanced rime optimization driven multi threshold.pdf.txtExtracted texttext/plain100778https://repositorio.cuc.edu.co/bitstreams/b5ae7962-02f4-4e25-8d4a-7b393f90ab3e/download894febd437c2e5a57d2e65c5aff4f207MD53THUMBNAILCDRIME MTIS An enhanced rime optimization driven multi threshold.pdf.jpgCDRIME MTIS An enhanced rime optimization driven multi threshold.pdf.jpgGenerated Thumbnailimage/jpeg14774https://repositorio.cuc.edu.co/bitstreams/c82fed49-6f78-4753-8547-7eb0661255ff/downloaddbf03003d61e42faab3e95200ed5fa6eMD5411323/13355oai:repositorio.cuc.edu.co:11323/133552024-09-24 03:00:34.29https://creativecommons.org/licenses/by-nc-nd/4.0/© 2023 Published by Elsevier Ltd.open.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coPHA+TEEgT0JSQSAoVEFMIFkgQ09NTyBTRSBERUZJTkUgTcOBUyBBREVMQU5URSkgU0UgT1RPUkdBIEJBSk8gTE9TIFRFUk1JTk9TIERFIEVTVEEgTElDRU5DSUEgUMOaQkxJQ0EgREUgQ1JFQVRJVkUgQ09NTU9OUyAo4oCcTFBDQ+KAnSBPIOKAnExJQ0VOQ0lB4oCdKS4gTEEgT0JSQSBFU1TDgSBQUk9URUdJREEgUE9SIERFUkVDSE9TIERFIEFVVE9SIFkvVSBPVFJBUyBMRVlFUyBBUExJQ0FCTEVTLiBRVUVEQSBQUk9ISUJJRE8gQ1VBTFFVSUVSIFVTTyBRVUUgU0UgSEFHQSBERSBMQSBPQlJBIFFVRSBOTyBDVUVOVEUgQ09OIExBIEFVVE9SSVpBQ0nDk04gUEVSVElORU5URSBERSBDT05GT1JNSURBRCBDT04gTE9TIFTDiVJNSU5PUyBERSBFU1RBIExJQ0VOQ0lBIFkgREUgTEEgTEVZIERFIERFUkVDSE8gREUgQVVUT1IuPC9wPgo8cD5NRURJQU5URSBFTCBFSkVSQ0lDSU8gREUgQ1VBTFFVSUVSQSBERSBMT1MgREVSRUNIT1MgUVVFIFNFIE9UT1JHQU4gRU4gRVNUQSBMSUNFTkNJQSwgVVNURUQgQUNFUFRBIFkgQUNVRVJEQSBRVUVEQVIgT0JMSUdBRE8gRU4gTE9TIFRFUk1JTk9TIFFVRSBTRSBTRcORQUxBTiBFTiBFTExBLiBFTCBMSUNFTkNJQU5URSBDT05DRURFIEEgVVNURUQgTE9TIERFUkVDSE9TIENPTlRFTklET1MgRU4gRVNUQSBMSUNFTkNJQSBDT05ESUNJT05BRE9TIEEgTEEgQUNFUFRBQ0nDk04gREUgU1VTIFRFUk1JTk9TIFkgQ09ORElDSU9ORVMuPC9wPgo8b2wgdHlwZT0iMSI+CiAgPGxpPgogICAgRGVmaW5pY2lvbmVzCiAgICA8b2wgdHlwZT1hPgogICAgICA8bGk+T2JyYSBDb2xlY3RpdmEgZXMgdW5hIG9icmEsIHRhbCBjb21vIHVuYSBwdWJsaWNhY2nDs24gcGVyacOzZGljYSwgdW5hIGFudG9sb2fDrWEsIG8gdW5hIGVuY2ljbG9wZWRpYSwgZW4gbGEgcXVlIGxhIG9icmEgZW4gc3UgdG90YWxpZGFkLCBzaW4gbW9kaWZpY2FjacOzbiBhbGd1bmEsIGp1bnRvIGNvbiB1biBncnVwbyBkZSBvdHJhcyBjb250cmlidWNpb25lcyBxdWUgY29uc3RpdHV5ZW4gb2JyYXMgc2VwYXJhZGFzIGUgaW5kZXBlbmRpZW50ZXMgZW4gc8OtIG1pc21hcywgc2UgaW50ZWdyYW4gZW4gdW4gdG9kbyBjb2xlY3Rpdm8uIFVuYSBPYnJhIHF1ZSBjb25zdGl0dXllIHVuYSBvYnJhIGNvbGVjdGl2YSBubyBzZSBjb25zaWRlcmFyw6EgdW5hIE9icmEgRGVyaXZhZGEgKGNvbW8gc2UgZGVmaW5lIGFiYWpvKSBwYXJhIGxvcyBwcm9ww7NzaXRvcyBkZSBlc3RhIGxpY2VuY2lhLiBhcXVlbGxhIHByb2R1Y2lkYSBwb3IgdW4gZ3J1cG8gZGUgYXV0b3JlcywgZW4gcXVlIGxhIE9icmEgc2UgZW5jdWVudHJhIHNpbiBtb2RpZmljYWNpb25lcywganVudG8gY29uIHVuYSBjaWVydGEgY2FudGlkYWQgZGUgb3RyYXMgY29udHJpYnVjaW9uZXMsIHF1ZSBjb25zdGl0dXllbiBlbiBzw60gbWlzbW9zIHRyYWJham9zIHNlcGFyYWRvcyBlIGluZGVwZW5kaWVudGVzLCBxdWUgc29uIGludGVncmFkb3MgYWwgdG9kbyBjb2xlY3Rpdm8sIHRhbGVzIGNvbW8gcHVibGljYWNpb25lcyBwZXJpw7NkaWNhcywgYW50b2xvZ8OtYXMgbyBlbmNpY2xvcGVkaWFzLjwvbGk+CiAgICAgIDxsaT5PYnJhIERlcml2YWRhIHNpZ25pZmljYSB1bmEgb2JyYSBiYXNhZGEgZW4gbGEgb2JyYSBvYmpldG8gZGUgZXN0YSBsaWNlbmNpYSBvIGVuIMOpc3RhIHkgb3RyYXMgb2JyYXMgcHJlZXhpc3RlbnRlcywgdGFsZXMgY29tbyB0cmFkdWNjaW9uZXMsIGFycmVnbG9zIG11c2ljYWxlcywgZHJhbWF0aXphY2lvbmVzLCDigJxmaWNjaW9uYWxpemFjaW9uZXPigJ0sIHZlcnNpb25lcyBwYXJhIGNpbmUsIOKAnGdyYWJhY2lvbmVzIGRlIHNvbmlkb+KAnSwgcmVwcm9kdWNjaW9uZXMgZGUgYXJ0ZSwgcmVzw7ptZW5lcywgY29uZGVuc2FjaW9uZXMsIG8gY3VhbHF1aWVyIG90cmEgZW4gbGEgcXVlIGxhIG9icmEgcHVlZGEgc2VyIHRyYW5zZm9ybWFkYSwgY2FtYmlhZGEgbyBhZGFwdGFkYSwgZXhjZXB0byBhcXVlbGxhcyBxdWUgY29uc3RpdHV5YW4gdW5hIG9icmEgY29sZWN0aXZhLCBsYXMgcXVlIG5vIHNlcsOhbiBjb25zaWRlcmFkYXMgdW5hIG9icmEgZGVyaXZhZGEgcGFyYSBlZmVjdG9zIGRlIGVzdGEgbGljZW5jaWEuIChQYXJhIGV2aXRhciBkdWRhcywgZW4gZWwgY2FzbyBkZSBxdWUgbGEgT2JyYSBzZWEgdW5hIGNvbXBvc2ljacOzbiBtdXNpY2FsIG8gdW5hIGdyYWJhY2nDs24gc29ub3JhLCBwYXJhIGxvcyBlZmVjdG9zIGRlIGVzdGEgTGljZW5jaWEgbGEgc2luY3Jvbml6YWNpw7NuIHRlbXBvcmFsIGRlIGxhIE9icmEgY29uIHVuYSBpbWFnZW4gZW4gbW92aW1pZW50byBzZSBjb25zaWRlcmFyw6EgdW5hIE9icmEgRGVyaXZhZGEgcGFyYSBsb3MgZmluZXMgZGUgZXN0YSBsaWNlbmNpYSkuPC9saT4KICAgICAgPGxpPkxpY2VuY2lhbnRlLCBlcyBlbCBpbmRpdmlkdW8gbyBsYSBlbnRpZGFkIHRpdHVsYXIgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHF1ZSBvZnJlY2UgbGEgT2JyYSBlbiBjb25mb3JtaWRhZCBjb24gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuPC9saT4KICAgICAgPGxpPkF1dG9yIG9yaWdpbmFsLCBlcyBlbCBpbmRpdmlkdW8gcXVlIGNyZcOzIGxhIE9icmEuPC9saT4KICAgICAgPGxpPk9icmEsIGVzIGFxdWVsbGEgb2JyYSBzdXNjZXB0aWJsZSBkZSBwcm90ZWNjacOzbiBwb3IgZWwgcsOpZ2ltZW4gZGUgRGVyZWNobyBkZSBBdXRvciB5IHF1ZSBlcyBvZnJlY2lkYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGVzdGEgbGljZW5jaWE8L2xpPgogICAgICA8bGk+VXN0ZWQsIGVzIGVsIGluZGl2aWR1byBvIGxhIGVudGlkYWQgcXVlIGVqZXJjaXRhIGxvcyBkZXJlY2hvcyBvdG9yZ2Fkb3MgYWwgYW1wYXJvIGRlIGVzdGEgTGljZW5jaWEgeSBxdWUgY29uIGFudGVyaW9yaWRhZCBubyBoYSB2aW9sYWRvIGxhcyBjb25kaWNpb25lcyBkZSBsYSBtaXNtYSByZXNwZWN0byBhIGxhIE9icmEsIG8gcXVlIGhheWEgb2J0ZW5pZG8gYXV0b3JpemFjacOzbiBleHByZXNhIHBvciBwYXJ0ZSBkZWwgTGljZW5jaWFudGUgcGFyYSBlamVyY2VyIGxvcyBkZXJlY2hvcyBhbCBhbXBhcm8gZGUgZXN0YSBMaWNlbmNpYSBwZXNlIGEgdW5hIHZpb2xhY2nDs24gYW50ZXJpb3IuPC9saT4KICAgIDwvb2w+CiAgPC9saT4KICA8YnIvPgogIDxsaT4KICAgIERlcmVjaG9zIGRlIFVzb3MgSG9ucmFkb3MgeSBleGNlcGNpb25lcyBMZWdhbGVzLgogICAgPHA+TmFkYSBlbiBlc3RhIExpY2VuY2lhIHBvZHLDoSBzZXIgaW50ZXJwcmV0YWRvIGNvbW8gdW5hIGRpc21pbnVjacOzbiwgbGltaXRhY2nDs24gbyByZXN0cmljY2nDs24gZGUgbG9zIGRlcmVjaG9zIGRlcml2YWRvcyBkZWwgdXNvIGhvbnJhZG8geSBvdHJhcyBsaW1pdGFjaW9uZXMgbyBleGNlcGNpb25lcyBhIGxvcyBkZXJlY2hvcyBkZWwgYXV0b3IgYmFqbyBlbCByw6lnaW1lbiBsZWdhbCB2aWdlbnRlIG8gZGVyaXZhZG8gZGUgY3VhbHF1aWVyIG90cmEgbm9ybWEgcXVlIHNlIGxlIGFwbGlxdWUuPC9wPgogIDwvbGk+CiAgPGxpPgogICAgQ29uY2VzacOzbiBkZSBsYSBMaWNlbmNpYS4KICAgIDxwPkJham8gbG9zIHTDqXJtaW5vcyB5IGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIGVsIExpY2VuY2lhbnRlIG90b3JnYSBhIFVzdGVkIHVuYSBsaWNlbmNpYSBtdW5kaWFsLCBsaWJyZSBkZSByZWdhbMOtYXMsIG5vIGV4Y2x1c2l2YSB5IHBlcnBldHVhIChkdXJhbnRlIHRvZG8gZWwgcGVyw61vZG8gZGUgdmlnZW5jaWEgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yKSBwYXJhIGVqZXJjZXIgZXN0b3MgZGVyZWNob3Mgc29icmUgbGEgT2JyYSB0YWwgeSBjb21vIHNlIGluZGljYSBhIGNvbnRpbnVhY2nDs246PC9wPgogICAgPG9sIHR5cGU9ImEiPgogICAgICA8bGk+UmVwcm9kdWNpciBsYSBPYnJhLCBpbmNvcnBvcmFyIGxhIE9icmEgZW4gdW5hIG8gbcOhcyBPYnJhcyBDb2xlY3RpdmFzLCB5IHJlcHJvZHVjaXIgbGEgT2JyYSBpbmNvcnBvcmFkYSBlbiBsYXMgT2JyYXMgQ29sZWN0aXZhcy48L2xpPgogICAgICA8bGk+RGlzdHJpYnVpciBjb3BpYXMgbyBmb25vZ3JhbWFzIGRlIGxhcyBPYnJhcywgZXhoaWJpcmxhcyBww7pibGljYW1lbnRlLCBlamVjdXRhcmxhcyBww7pibGljYW1lbnRlIHkvbyBwb25lcmxhcyBhIGRpc3Bvc2ljacOzbiBww7pibGljYSwgaW5jbHV5w6luZG9sYXMgY29tbyBpbmNvcnBvcmFkYXMgZW4gT2JyYXMgQ29sZWN0aXZhcywgc2Vnw7puIGNvcnJlc3BvbmRhLjwvbGk+CiAgICAgIDxsaT5EaXN0cmlidWlyIGNvcGlhcyBkZSBsYXMgT2JyYXMgRGVyaXZhZGFzIHF1ZSBzZSBnZW5lcmVuLCBleGhpYmlybGFzIHDDumJsaWNhbWVudGUsIGVqZWN1dGFybGFzIHDDumJsaWNhbWVudGUgeS9vIHBvbmVybGFzIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhLjwvbGk+CiAgICA8L29sPgogICAgPHA+TG9zIGRlcmVjaG9zIG1lbmNpb25hZG9zIGFudGVyaW9ybWVudGUgcHVlZGVuIHNlciBlamVyY2lkb3MgZW4gdG9kb3MgbG9zIG1lZGlvcyB5IGZvcm1hdG9zLCBhY3R1YWxtZW50ZSBjb25vY2lkb3MgbyBxdWUgc2UgaW52ZW50ZW4gZW4gZWwgZnV0dXJvLiBMb3MgZGVyZWNob3MgYW50ZXMgbWVuY2lvbmFkb3MgaW5jbHV5ZW4gZWwgZGVyZWNobyBhIHJlYWxpemFyIGRpY2hhcyBtb2RpZmljYWNpb25lcyBlbiBsYSBtZWRpZGEgcXVlIHNlYW4gdMOpY25pY2FtZW50ZSBuZWNlc2FyaWFzIHBhcmEgZWplcmNlciBsb3MgZGVyZWNob3MgZW4gb3RybyBtZWRpbyBvIGZvcm1hdG9zLCBwZXJvIGRlIG90cmEgbWFuZXJhIHVzdGVkIG5vIGVzdMOhIGF1dG9yaXphZG8gcGFyYSByZWFsaXphciBvYnJhcyBkZXJpdmFkYXMuIFRvZG9zIGxvcyBkZXJlY2hvcyBubyBvdG9yZ2Fkb3MgZXhwcmVzYW1lbnRlIHBvciBlbCBMaWNlbmNpYW50ZSBxdWVkYW4gcG9yIGVzdGUgbWVkaW8gcmVzZXJ2YWRvcywgaW5jbHV5ZW5kbyBwZXJvIHNpbiBsaW1pdGFyc2UgYSBhcXVlbGxvcyBxdWUgc2UgbWVuY2lvbmFuIGVuIGxhcyBzZWNjaW9uZXMgNChkKSB5IDQoZSkuPC9wPgogIDwvbGk+CiAgPGJyLz4KICA8bGk+CiAgICBSZXN0cmljY2lvbmVzLgogICAgPHA+TGEgbGljZW5jaWEgb3RvcmdhZGEgZW4gbGEgYW50ZXJpb3IgU2VjY2nDs24gMyBlc3TDoSBleHByZXNhbWVudGUgc3VqZXRhIHkgbGltaXRhZGEgcG9yIGxhcyBzaWd1aWVudGVzIHJlc3RyaWNjaW9uZXM6PC9wPgogICAgPG9sIHR5cGU9ImEiPgogICAgICA8bGk+VXN0ZWQgcHVlZGUgZGlzdHJpYnVpciwgZXhoaWJpciBww7pibGljYW1lbnRlLCBlamVjdXRhciBww7pibGljYW1lbnRlLCBvIHBvbmVyIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhIGxhIE9icmEgc8OzbG8gYmFqbyBsYXMgY29uZGljaW9uZXMgZGUgZXN0YSBMaWNlbmNpYSwgeSBVc3RlZCBkZWJlIGluY2x1aXIgdW5hIGNvcGlhIGRlIGVzdGEgbGljZW5jaWEgbyBkZWwgSWRlbnRpZmljYWRvciBVbml2ZXJzYWwgZGUgUmVjdXJzb3MgZGUgbGEgbWlzbWEgY29uIGNhZGEgY29waWEgZGUgbGEgT2JyYSBxdWUgZGlzdHJpYnV5YSwgZXhoaWJhIHDDumJsaWNhbWVudGUsIGVqZWN1dGUgcMO6YmxpY2FtZW50ZSBvIHBvbmdhIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhLiBObyBlcyBwb3NpYmxlIG9mcmVjZXIgbyBpbXBvbmVyIG5pbmd1bmEgY29uZGljacOzbiBzb2JyZSBsYSBPYnJhIHF1ZSBhbHRlcmUgbyBsaW1pdGUgbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEgbyBlbCBlamVyY2ljaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGxvcyBkZXN0aW5hdGFyaW9zIG90b3JnYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gTm8gZXMgcG9zaWJsZSBzdWJsaWNlbmNpYXIgbGEgT2JyYS4gVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RvcyB0b2RvcyBsb3MgYXZpc29zIHF1ZSBoYWdhbiByZWZlcmVuY2lhIGEgZXN0YSBMaWNlbmNpYSB5IGEgbGEgY2zDoXVzdWxhIGRlIGxpbWl0YWNpw7NuIGRlIGdhcmFudMOtYXMuIFVzdGVkIG5vIHB1ZWRlIGRpc3RyaWJ1aXIsIGV4aGliaXIgcMO6YmxpY2FtZW50ZSwgZWplY3V0YXIgcMO6YmxpY2FtZW50ZSwgbyBwb25lciBhIGRpc3Bvc2ljacOzbiBww7pibGljYSBsYSBPYnJhIGNvbiBhbGd1bmEgbWVkaWRhIHRlY25vbMOzZ2ljYSBxdWUgY29udHJvbGUgZWwgYWNjZXNvIG8gbGEgdXRpbGl6YWNpw7NuIGRlIGVsbGEgZGUgdW5hIGZvcm1hIHF1ZSBzZWEgaW5jb25zaXN0ZW50ZSBjb24gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuIExvIGFudGVyaW9yIHNlIGFwbGljYSBhIGxhIE9icmEgaW5jb3Jwb3JhZGEgYSB1bmEgT2JyYSBDb2xlY3RpdmEsIHBlcm8gZXN0byBubyBleGlnZSBxdWUgbGEgT2JyYSBDb2xlY3RpdmEgYXBhcnRlIGRlIGxhIG9icmEgbWlzbWEgcXVlZGUgc3VqZXRhIGEgbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuIFNpIFVzdGVkIGNyZWEgdW5hIE9icmEgQ29sZWN0aXZhLCBwcmV2aW8gYXZpc28gZGUgY3VhbHF1aWVyIExpY2VuY2lhbnRlIGRlYmUsIGVuIGxhIG1lZGlkYSBkZSBsbyBwb3NpYmxlLCBlbGltaW5hciBkZSBsYSBPYnJhIENvbGVjdGl2YSBjdWFscXVpZXIgcmVmZXJlbmNpYSBhIGRpY2hvIExpY2VuY2lhbnRlIG8gYWwgQXV0b3IgT3JpZ2luYWwsIHNlZ8O6biBsbyBzb2xpY2l0YWRvIHBvciBlbCBMaWNlbmNpYW50ZSB5IGNvbmZvcm1lIGxvIGV4aWdlIGxhIGNsw6F1c3VsYSA0KGMpLjwvbGk+CiAgICAgIDxsaT5Vc3RlZCBubyBwdWVkZSBlamVyY2VyIG5pbmd1bm8gZGUgbG9zIGRlcmVjaG9zIHF1ZSBsZSBoYW4gc2lkbyBvdG9yZ2Fkb3MgZW4gbGEgU2VjY2nDs24gMyBwcmVjZWRlbnRlIGRlIG1vZG8gcXVlIGVzdMOpbiBwcmluY2lwYWxtZW50ZSBkZXN0aW5hZG9zIG8gZGlyZWN0YW1lbnRlIGRpcmlnaWRvcyBhIGNvbnNlZ3VpciB1biBwcm92ZWNobyBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYS4gRWwgaW50ZXJjYW1iaW8gZGUgbGEgT2JyYSBwb3Igb3RyYXMgb2JyYXMgcHJvdGVnaWRhcyBwb3IgZGVyZWNob3MgZGUgYXV0b3IsIHlhIHNlYSBhIHRyYXbDqXMgZGUgdW4gc2lzdGVtYSBwYXJhIGNvbXBhcnRpciBhcmNoaXZvcyBkaWdpdGFsZXMgKGRpZ2l0YWwgZmlsZS1zaGFyaW5nKSBvIGRlIGN1YWxxdWllciBvdHJhIG1hbmVyYSBubyBzZXLDoSBjb25zaWRlcmFkbyBjb21vIGVzdGFyIGRlc3RpbmFkbyBwcmluY2lwYWxtZW50ZSBvIGRpcmlnaWRvIGRpcmVjdGFtZW50ZSBhIGNvbnNlZ3VpciB1biBwcm92ZWNobyBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYSwgc2llbXByZSBxdWUgbm8gc2UgcmVhbGljZSB1biBwYWdvIG1lZGlhbnRlIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBlbiByZWxhY2nDs24gY29uIGVsIGludGVyY2FtYmlvIGRlIG9icmFzIHByb3RlZ2lkYXMgcG9yIGVsIGRlcmVjaG8gZGUgYXV0b3IuPC9saT4KICAgICAgPGxpPlNpIHVzdGVkIGRpc3RyaWJ1eWUsIGV4aGliZSBww7pibGljYW1lbnRlLCBlamVjdXRhIHDDumJsaWNhbWVudGUgbyBlamVjdXRhIHDDumJsaWNhbWVudGUgZW4gZm9ybWEgZGlnaXRhbCBsYSBPYnJhIG8gY3VhbHF1aWVyIE9icmEgRGVyaXZhZGEgdSBPYnJhIENvbGVjdGl2YSwgVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RhIHRvZGEgbGEgaW5mb3JtYWNpw7NuIGRlIGRlcmVjaG8gZGUgYXV0b3IgZGUgbGEgT2JyYSB5IHByb3BvcmNpb25hciwgZGUgZm9ybWEgcmF6b25hYmxlIHNlZ8O6biBlbCBtZWRpbyBvIG1hbmVyYSBxdWUgVXN0ZWQgZXN0w6kgdXRpbGl6YW5kbzogKGkpIGVsIG5vbWJyZSBkZWwgQXV0b3IgT3JpZ2luYWwgc2kgZXN0w6EgcHJvdmlzdG8gKG8gc2V1ZMOzbmltbywgc2kgZnVlcmUgYXBsaWNhYmxlKSwgeS9vIChpaSkgZWwgbm9tYnJlIGRlIGxhIHBhcnRlIG8gbGFzIHBhcnRlcyBxdWUgZWwgQXV0b3IgT3JpZ2luYWwgeS9vIGVsIExpY2VuY2lhbnRlIGh1YmllcmVuIGRlc2lnbmFkbyBwYXJhIGxhIGF0cmlidWNpw7NuICh2LmcuLCB1biBpbnN0aXR1dG8gcGF0cm9jaW5hZG9yLCBlZGl0b3JpYWwsIHB1YmxpY2FjacOzbikgZW4gbGEgaW5mb3JtYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZWwgTGljZW5jaWFudGUsIHTDqXJtaW5vcyBkZSBzZXJ2aWNpb3MgbyBkZSBvdHJhcyBmb3JtYXMgcmF6b25hYmxlczsgZWwgdMOtdHVsbyBkZSBsYSBPYnJhIHNpIGVzdMOhIHByb3Zpc3RvOyBlbiBsYSBtZWRpZGEgZGUgbG8gcmF6b25hYmxlbWVudGUgZmFjdGlibGUgeSwgc2kgZXN0w6EgcHJvdmlzdG8sIGVsIElkZW50aWZpY2Fkb3IgVW5pZm9ybWUgZGUgUmVjdXJzb3MgKFVuaWZvcm0gUmVzb3VyY2UgSWRlbnRpZmllcikgcXVlIGVsIExpY2VuY2lhbnRlIGVzcGVjaWZpY2EgcGFyYSBzZXIgYXNvY2lhZG8gY29uIGxhIE9icmEsIHNhbHZvIHF1ZSB0YWwgVVJJIG5vIHNlIHJlZmllcmEgYSBsYSBub3RhIHNvYnJlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBvIGEgbGEgaW5mb3JtYWNpw7NuIHNvYnJlIGVsIGxpY2VuY2lhbWllbnRvIGRlIGxhIE9icmE7IHkgZW4gZWwgY2FzbyBkZSB1bmEgT2JyYSBEZXJpdmFkYSwgYXRyaWJ1aXIgZWwgY3LDqWRpdG8gaWRlbnRpZmljYW5kbyBlbCB1c28gZGUgbGEgT2JyYSBlbiBsYSBPYnJhIERlcml2YWRhICh2LmcuLCAiVHJhZHVjY2nDs24gRnJhbmNlc2EgZGUgbGEgT2JyYSBkZWwgQXV0b3IgT3JpZ2luYWwsIiBvICJHdWnDs24gQ2luZW1hdG9ncsOhZmljbyBiYXNhZG8gZW4gbGEgT2JyYSBvcmlnaW5hbCBkZWwgQXV0b3IgT3JpZ2luYWwiKS4gVGFsIGNyw6lkaXRvIHB1ZWRlIHNlciBpbXBsZW1lbnRhZG8gZGUgY3VhbHF1aWVyIGZvcm1hIHJhem9uYWJsZTsgZW4gZWwgY2Fzbywgc2luIGVtYmFyZ28sIGRlIE9icmFzIERlcml2YWRhcyB1IE9icmFzIENvbGVjdGl2YXMsIHRhbCBjcsOpZGl0byBhcGFyZWNlcsOhLCBjb21vIG3DrW5pbW8sIGRvbmRlIGFwYXJlY2UgZWwgY3LDqWRpdG8gZGUgY3VhbHF1aWVyIG90cm8gYXV0b3IgY29tcGFyYWJsZSB5IGRlIHVuYSBtYW5lcmEsIGFsIG1lbm9zLCB0YW4gZGVzdGFjYWRhIGNvbW8gZWwgY3LDqWRpdG8gZGUgb3RybyBhdXRvciBjb21wYXJhYmxlLjwvbGk+CiAgICAgIDxsaT4KICAgICAgICBQYXJhIGV2aXRhciB0b2RhIGNvbmZ1c2nDs24sIGVsIExpY2VuY2lhbnRlIGFjbGFyYSBxdWUsIGN1YW5kbyBsYSBvYnJhIGVzIHVuYSBjb21wb3NpY2nDs24gbXVzaWNhbDoKICAgICAgICA8b2wgdHlwZT0iaSI+CiAgICAgICAgICA8bGk+UmVnYWzDrWFzIHBvciBpbnRlcnByZXRhY2nDs24geSBlamVjdWNpw7NuIGJham8gbGljZW5jaWFzIGdlbmVyYWxlcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSBhdXRvcml6YXIgbGEgZWplY3VjacOzbiBww7pibGljYSBvIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIHkgZGUgcmVjb2xlY3Rhciwgc2VhIGluZGl2aWR1YWxtZW50ZSBvIGEgdHJhdsOpcyBkZSB1bmEgc29jaWVkYWQgZGUgZ2VzdGnDs24gY29sZWN0aXZhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIHkgZGVyZWNob3MgY29uZXhvcyAocG9yIGVqZW1wbG8sIFNBWUNPKSwgbGFzIHJlZ2Fsw61hcyBwb3IgbGEgZWplY3VjacOzbiBww7pibGljYSBvIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8gV2ViY2FzdCkgbGljZW5jaWFkYSBiYWpvIGxpY2VuY2lhcyBnZW5lcmFsZXMsIHNpIGxhIGludGVycHJldGFjacOzbiBvIGVqZWN1Y2nDs24gZGUgbGEgb2JyYSBlc3TDoSBwcmltb3JkaWFsbWVudGUgb3JpZW50YWRhIHBvciBvIGRpcmlnaWRhIGEgbGEgb2J0ZW5jacOzbiBkZSB1bmEgdmVudGFqYSBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYS48L2xpPgogICAgICAgICAgPGxpPlJlZ2Fsw61hcyBwb3IgRm9ub2dyYW1hcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSByZWNvbGVjdGFyLCBpbmRpdmlkdWFsbWVudGUgbyBhIHRyYXbDqXMgZGUgdW5hIHNvY2llZGFkIGRlIGdlc3Rpw7NuIGNvbGVjdGl2YSBkZSBkZXJlY2hvcyBkZSBhdXRvciB5IGRlcmVjaG9zIGNvbmV4b3MgKHBvciBlamVtcGxvLCBsb3MgY29uc2FncmFkb3MgcG9yIGxhIFNBWUNPKSwgdW5hIGFnZW5jaWEgZGUgZGVyZWNob3MgbXVzaWNhbGVzIG8gYWxnw7puIGFnZW50ZSBkZXNpZ25hZG8sIGxhcyByZWdhbMOtYXMgcG9yIGN1YWxxdWllciBmb25vZ3JhbWEgcXVlIFVzdGVkIGNyZWUgYSBwYXJ0aXIgZGUgbGEgb2JyYSAo4oCcdmVyc2nDs24gY292ZXLigJ0pIHkgZGlzdHJpYnV5YSwgZW4gbG9zIHTDqXJtaW5vcyBkZWwgcsOpZ2ltZW4gZGUgZGVyZWNob3MgZGUgYXV0b3IsIHNpIGxhIGNyZWFjacOzbiBvIGRpc3RyaWJ1Y2nDs24gZGUgZXNhIHZlcnNpw7NuIGNvdmVyIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkZXN0aW5hZGEgbyBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuPC9saT4KICAgICAgICA8L29sPgogICAgICA8L2xpPgogICAgICA8bGk+R2VzdGnDs24gZGUgRGVyZWNob3MgZGUgQXV0b3Igc29icmUgSW50ZXJwcmV0YWNpb25lcyB5IEVqZWN1Y2lvbmVzIERpZ2l0YWxlcyAoV2ViQ2FzdGluZykuIFBhcmEgZXZpdGFyIHRvZGEgY29uZnVzacOzbiwgZWwgTGljZW5jaWFudGUgYWNsYXJhIHF1ZSwgY3VhbmRvIGxhIG9icmEgc2VhIHVuIGZvbm9ncmFtYSwgZWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSBhdXRvcml6YXIgbGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGRlIGxhIG9icmEgKHBvciBlamVtcGxvLCB3ZWJjYXN0KSB5IGRlIHJlY29sZWN0YXIsIGluZGl2aWR1YWxtZW50ZSBvIGEgdHJhdsOpcyBkZSB1bmEgc29jaWVkYWQgZGUgZ2VzdGnDs24gY29sZWN0aXZhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIHkgZGVyZWNob3MgY29uZXhvcyAocG9yIGVqZW1wbG8sIEFDSU5QUk8pLCBsYXMgcmVnYWzDrWFzIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8sIHdlYmNhc3QpLCBzdWpldGEgYSBsYXMgZGlzcG9zaWNpb25lcyBhcGxpY2FibGVzIGRlbCByw6lnaW1lbiBkZSBEZXJlY2hvIGRlIEF1dG9yLCBzaSBlc3RhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBlc3TDoSBwcmltb3JkaWFsbWVudGUgZGlyaWdpZGEgYSBvYnRlbmVyIHVuYSB2ZW50YWphIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLjwvbGk+CiAgICA8L29sPgogIDwvbGk+CiAgPGJyLz4KICA8bGk+CiAgICBSZXByZXNlbnRhY2lvbmVzLCBHYXJhbnTDrWFzIHkgTGltaXRhY2lvbmVzIGRlIFJlc3BvbnNhYmlsaWRhZC4KICAgIDxwPkEgTUVOT1MgUVVFIExBUyBQQVJURVMgTE8gQUNPUkRBUkFOIERFIE9UUkEgRk9STUEgUE9SIEVTQ1JJVE8sIEVMIExJQ0VOQ0lBTlRFIE9GUkVDRSBMQSBPQlJBIChFTiBFTCBFU1RBRE8gRU4gRUwgUVVFIFNFIEVOQ1VFTlRSQSkg4oCcVEFMIENVQUzigJ0sIFNJTiBCUklOREFSIEdBUkFOVMONQVMgREUgQ0xBU0UgQUxHVU5BIFJFU1BFQ1RPIERFIExBIE9CUkEsIFlBIFNFQSBFWFBSRVNBLCBJTVBMw41DSVRBLCBMRUdBTCBPIENVQUxRVUlFUkEgT1RSQSwgSU5DTFVZRU5ETywgU0lOIExJTUlUQVJTRSBBIEVMTEFTLCBHQVJBTlTDjUFTIERFIFRJVFVMQVJJREFELCBDT01FUkNJQUJJTElEQUQsIEFEQVBUQUJJTElEQUQgTyBBREVDVUFDScOTTiBBIFBST1DDk1NJVE8gREVURVJNSU5BRE8sIEFVU0VOQ0lBIERFIElORlJBQ0NJw5NOLCBERSBBVVNFTkNJQSBERSBERUZFQ1RPUyBMQVRFTlRFUyBPIERFIE9UUk8gVElQTywgTyBMQSBQUkVTRU5DSUEgTyBBVVNFTkNJQSBERSBFUlJPUkVTLCBTRUFOIE8gTk8gREVTQ1VCUklCTEVTIChQVUVEQU4gTyBOTyBTRVIgRVNUT1MgREVTQ1VCSUVSVE9TKS4gQUxHVU5BUyBKVVJJU0RJQ0NJT05FUyBOTyBQRVJNSVRFTiBMQSBFWENMVVNJw5NOIERFIEdBUkFOVMONQVMgSU1QTMONQ0lUQVMsIEVOIENVWU8gQ0FTTyBFU1RBIEVYQ0xVU0nDk04gUFVFREUgTk8gQVBMSUNBUlNFIEEgVVNURUQuPC9wPgogIDwvbGk+CiAgPGJyLz4KICA8bGk+CiAgICBMaW1pdGFjacOzbiBkZSByZXNwb25zYWJpbGlkYWQuCiAgICA8cD5BIE1FTk9TIFFVRSBMTyBFWElKQSBFWFBSRVNBTUVOVEUgTEEgTEVZIEFQTElDQUJMRSwgRUwgTElDRU5DSUFOVEUgTk8gU0VSw4EgUkVTUE9OU0FCTEUgQU5URSBVU1RFRCBQT1IgREHDkU8gQUxHVU5PLCBTRUEgUE9SIFJFU1BPTlNBQklMSURBRCBFWFRSQUNPTlRSQUNUVUFMLCBQUkVDT05UUkFDVFVBTCBPIENPTlRSQUNUVUFMLCBPQkpFVElWQSBPIFNVQkpFVElWQSwgU0UgVFJBVEUgREUgREHDkU9TIE1PUkFMRVMgTyBQQVRSSU1PTklBTEVTLCBESVJFQ1RPUyBPIElORElSRUNUT1MsIFBSRVZJU1RPUyBPIElNUFJFVklTVE9TIFBST0RVQ0lET1MgUE9SIEVMIFVTTyBERSBFU1RBIExJQ0VOQ0lBIE8gREUgTEEgT0JSQSwgQVVOIENVQU5ETyBFTCBMSUNFTkNJQU5URSBIQVlBIFNJRE8gQURWRVJUSURPIERFIExBIFBPU0lCSUxJREFEIERFIERJQ0hPUyBEQcORT1MuIEFMR1VOQVMgTEVZRVMgTk8gUEVSTUlURU4gTEEgRVhDTFVTScOTTiBERSBDSUVSVEEgUkVTUE9OU0FCSUxJREFELCBFTiBDVVlPIENBU08gRVNUQSBFWENMVVNJw5NOIFBVRURFIE5PIEFQTElDQVJTRSBBIFVTVEVELjwvcD4KICA8L2xpPgogIDxici8+CiAgPGxpPgogICAgVMOpcm1pbm8uCiAgICA8b2wgdHlwZT0iYSI+CiAgICAgIDxsaT5Fc3RhIExpY2VuY2lhIHkgbG9zIGRlcmVjaG9zIG90b3JnYWRvcyBlbiB2aXJ0dWQgZGUgZWxsYSB0ZXJtaW5hcsOhbiBhdXRvbcOhdGljYW1lbnRlIHNpIFVzdGVkIGluZnJpbmdlIGFsZ3VuYSBjb25kaWNpw7NuIGVzdGFibGVjaWRhIGVuIGVsbGEuIFNpbiBlbWJhcmdvLCBsb3MgaW5kaXZpZHVvcyBvIGVudGlkYWRlcyBxdWUgaGFuIHJlY2liaWRvIE9icmFzIERlcml2YWRhcyBvIENvbGVjdGl2YXMgZGUgVXN0ZWQgZGUgY29uZm9ybWlkYWQgY29uIGVzdGEgTGljZW5jaWEsIG5vIHZlcsOhbiB0ZXJtaW5hZGFzIHN1cyBsaWNlbmNpYXMsIHNpZW1wcmUgcXVlIGVzdG9zIGluZGl2aWR1b3MgbyBlbnRpZGFkZXMgc2lnYW4gY3VtcGxpZW5kbyDDrW50ZWdyYW1lbnRlIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhcyBsaWNlbmNpYXMuIExhcyBTZWNjaW9uZXMgMSwgMiwgNSwgNiwgNywgeSA4IHN1YnNpc3RpcsOhbiBhIGN1YWxxdWllciB0ZXJtaW5hY2nDs24gZGUgZXN0YSBMaWNlbmNpYS48L2xpPgogICAgICA8bGk+U3VqZXRhIGEgbGFzIGNvbmRpY2lvbmVzIHkgdMOpcm1pbm9zIGFudGVyaW9yZXMsIGxhIGxpY2VuY2lhIG90b3JnYWRhIGFxdcOtIGVzIHBlcnBldHVhIChkdXJhbnRlIGVsIHBlcsOtb2RvIGRlIHZpZ2VuY2lhIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSBsYSBvYnJhKS4gTm8gb2JzdGFudGUgbG8gYW50ZXJpb3IsIGVsIExpY2VuY2lhbnRlIHNlIHJlc2VydmEgZWwgZGVyZWNobyBhIHB1YmxpY2FyIHkvbyBlc3RyZW5hciBsYSBPYnJhIGJham8gY29uZGljaW9uZXMgZGUgbGljZW5jaWEgZGlmZXJlbnRlcyBvIGEgZGVqYXIgZGUgZGlzdHJpYnVpcmxhIGVuIGxvcyB0w6lybWlub3MgZGUgZXN0YSBMaWNlbmNpYSBlbiBjdWFscXVpZXIgbW9tZW50bzsgZW4gZWwgZW50ZW5kaWRvLCBzaW4gZW1iYXJnbywgcXVlIGVzYSBlbGVjY2nDs24gbm8gc2Vydmlyw6EgcGFyYSByZXZvY2FyIGVzdGEgbGljZW5jaWEgbyBxdWUgZGViYSBzZXIgb3RvcmdhZGEgLCBiYWpvIGxvcyB0w6lybWlub3MgZGUgZXN0YSBsaWNlbmNpYSksIHkgZXN0YSBsaWNlbmNpYSBjb250aW51YXLDoSBlbiBwbGVubyB2aWdvciB5IGVmZWN0byBhIG1lbm9zIHF1ZSBzZWEgdGVybWluYWRhIGNvbW8gc2UgZXhwcmVzYSBhdHLDoXMuIExhIExpY2VuY2lhIHJldm9jYWRhIGNvbnRpbnVhcsOhIHNpZW5kbyBwbGVuYW1lbnRlIHZpZ2VudGUgeSBlZmVjdGl2YSBzaSBubyBzZSBsZSBkYSB0w6lybWlubyBlbiBsYXMgY29uZGljaW9uZXMgaW5kaWNhZGFzIGFudGVyaW9ybWVudGUuPC9saT4KICAgIDwvb2w+CiAgPC9saT4KICA8YnIvPgogIDxsaT4KICAgIFZhcmlvcy4KICAgIDxvbCB0eXBlPSJhIj4KICAgICAgPGxpPkNhZGEgdmV6IHF1ZSBVc3RlZCBkaXN0cmlidXlhIG8gcG9uZ2EgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBvIHVuYSBPYnJhIENvbGVjdGl2YSwgZWwgTGljZW5jaWFudGUgb2ZyZWNlcsOhIGFsIGRlc3RpbmF0YXJpbyB1bmEgbGljZW5jaWEgZW4gbG9zIG1pc21vcyB0w6lybWlub3MgeSBjb25kaWNpb25lcyBxdWUgbGEgbGljZW5jaWEgb3RvcmdhZGEgYSBVc3RlZCBiYWpvIGVzdGEgTGljZW5jaWEuPC9saT4KICAgICAgPGxpPlNpIGFsZ3VuYSBkaXNwb3NpY2nDs24gZGUgZXN0YSBMaWNlbmNpYSByZXN1bHRhIGludmFsaWRhZGEgbyBubyBleGlnaWJsZSwgc2Vnw7puIGxhIGxlZ2lzbGFjacOzbiB2aWdlbnRlLCBlc3RvIG5vIGFmZWN0YXLDoSBuaSBsYSB2YWxpZGV6IG5pIGxhIGFwbGljYWJpbGlkYWQgZGVsIHJlc3RvIGRlIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEgeSwgc2luIGFjY2nDs24gYWRpY2lvbmFsIHBvciBwYXJ0ZSBkZSBsb3Mgc3VqZXRvcyBkZSBlc3RlIGFjdWVyZG8sIGFxdcOpbGxhIHNlIGVudGVuZGVyw6EgcmVmb3JtYWRhIGxvIG3DrW5pbW8gbmVjZXNhcmlvIHBhcmEgaGFjZXIgcXVlIGRpY2hhIGRpc3Bvc2ljacOzbiBzZWEgdsOhbGlkYSB5IGV4aWdpYmxlLjwvbGk+CiAgICAgIDxsaT5OaW5nw7puIHTDqXJtaW5vIG8gZGlzcG9zaWNpw7NuIGRlIGVzdGEgTGljZW5jaWEgc2UgZXN0aW1hcsOhIHJlbnVuY2lhZGEgeSBuaW5ndW5hIHZpb2xhY2nDs24gZGUgZWxsYSBzZXLDoSBjb25zZW50aWRhIGEgbWVub3MgcXVlIGVzYSByZW51bmNpYSBvIGNvbnNlbnRpbWllbnRvIHNlYSBvdG9yZ2FkbyBwb3IgZXNjcml0byB5IGZpcm1hZG8gcG9yIGxhIHBhcnRlIHF1ZSByZW51bmNpZSBvIGNvbnNpZW50YS48L2xpPgogICAgICA8bGk+RXN0YSBMaWNlbmNpYSByZWZsZWphIGVsIGFjdWVyZG8gcGxlbm8gZW50cmUgbGFzIHBhcnRlcyByZXNwZWN0byBhIGxhIE9icmEgYXF1w60gbGljZW5jaWFkYS4gTm8gaGF5IGFycmVnbG9zLCBhY3VlcmRvcyBvIGRlY2xhcmFjaW9uZXMgcmVzcGVjdG8gYSBsYSBPYnJhIHF1ZSBubyBlc3TDqW4gZXNwZWNpZmljYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gRWwgTGljZW5jaWFudGUgbm8gc2UgdmVyw6EgbGltaXRhZG8gcG9yIG5pbmd1bmEgZGlzcG9zaWNpw7NuIGFkaWNpb25hbCBxdWUgcHVlZGEgc3VyZ2lyIGVuIGFsZ3VuYSBjb211bmljYWNpw7NuIGVtYW5hZGEgZGUgVXN0ZWQuIEVzdGEgTGljZW5jaWEgbm8gcHVlZGUgc2VyIG1vZGlmaWNhZGEgc2luIGVsIGNvbnNlbnRpbWllbnRvIG11dHVvIHBvciBlc2NyaXRvIGRlbCBMaWNlbmNpYW50ZSB5IFVzdGVkLjwvbGk+CiAgICA8L29sPgogIDwvbGk+CiAgPGJyLz4KPC9vbD4K |