Evaluación del potencial de ahorro de energía, emisiones de carbono y confort térmico en un edificio universitario antiguo en Londres

Introducción: En este estudio se presenta la evaluación energética, emisiones de carbono y confort térmico de las modificaciones propuestas para el edificio E-Wing de la London Business School. Con la creciente demanda de prácticas sostenibles en la construcción, comprender el impacto de diversas mo...

Full description

Autores:
Tino, Daniele
Amaris Castilla, Carlos
Tipo de recurso:
Article of journal
Fecha de publicación:
2024
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/13886
Acceso en línea:
https://doi.org/10.17981/ingecuc.20.2.2024.07
Palabra clave:
Building Energy Modelling
Thermal Comfort
Carbon Emissions
Sustainable Buildings
Energy Savings
Modelización Energética de Edificios
Confort Térmico
Emisiones de carbono
Edificios sostenibles
Ahorro energético
Rights
openAccess
License
Inge CuC - 2024
id RCUC2_8219e7d874dc27bd8712078a01f6bc3d
oai_identifier_str oai:repositorio.cuc.edu.co:11323/13886
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.spa.fl_str_mv Evaluación del potencial de ahorro de energía, emisiones de carbono y confort térmico en un edificio universitario antiguo en Londres
dc.title.translated.eng.fl_str_mv Evaluation of energy-saving potential, carbon emission, and thermal comfort in an historic university building in London
title Evaluación del potencial de ahorro de energía, emisiones de carbono y confort térmico en un edificio universitario antiguo en Londres
spellingShingle Evaluación del potencial de ahorro de energía, emisiones de carbono y confort térmico en un edificio universitario antiguo en Londres
Building Energy Modelling
Thermal Comfort
Carbon Emissions
Sustainable Buildings
Energy Savings
Modelización Energética de Edificios
Confort Térmico
Emisiones de carbono
Edificios sostenibles
Ahorro energético
title_short Evaluación del potencial de ahorro de energía, emisiones de carbono y confort térmico en un edificio universitario antiguo en Londres
title_full Evaluación del potencial de ahorro de energía, emisiones de carbono y confort térmico en un edificio universitario antiguo en Londres
title_fullStr Evaluación del potencial de ahorro de energía, emisiones de carbono y confort térmico en un edificio universitario antiguo en Londres
title_full_unstemmed Evaluación del potencial de ahorro de energía, emisiones de carbono y confort térmico en un edificio universitario antiguo en Londres
title_sort Evaluación del potencial de ahorro de energía, emisiones de carbono y confort térmico en un edificio universitario antiguo en Londres
dc.creator.fl_str_mv Tino, Daniele
Amaris Castilla, Carlos
dc.contributor.author.spa.fl_str_mv Tino, Daniele
Amaris Castilla, Carlos
dc.subject.eng.fl_str_mv Building Energy Modelling
Thermal Comfort
Carbon Emissions
Sustainable Buildings
Energy Savings
topic Building Energy Modelling
Thermal Comfort
Carbon Emissions
Sustainable Buildings
Energy Savings
Modelización Energética de Edificios
Confort Térmico
Emisiones de carbono
Edificios sostenibles
Ahorro energético
dc.subject.spa.fl_str_mv Modelización Energética de Edificios
Confort Térmico
Emisiones de carbono
Edificios sostenibles
Ahorro energético
description Introducción: En este estudio se presenta la evaluación energética, emisiones de carbono y confort térmico de las modificaciones propuestas para el edificio E-Wing de la London Business School. Con la creciente demanda de prácticas sostenibles en la construcción, comprender el impacto de diversas modificaciones es crucial. Objetivo: El objetivo principal es evaluar el potencial para reducir el consumo de energía, mitigar las emisiones de carbono y mejorar la calidad ambiental interior en instituciones educativas mediante mejoras estratégicas en los edificios. Metodología: Se desarrolló un modelo detallado utilizando el software IES-VE para modelar el escenario existente como para el propuestos del edificio. El modelo considera factores como la eficiencia de los sistemas de calefacción y refrigeración, la iluminación y las características de las ventanas. Resultados: Las modificaciones propuestas podrían reducir el consumo de energía en un 17.4% y las emisiones de carbono en un 8.2%. Actualizaciones adicionales, como las ventanas, podrían disminuir el uso de energía en un 25.8%. Además, se aumentaría el confort térmico en un 13% y se reducirían las horas de incomodidad en un 5%. Conclusiones: El estudio concluye que aun cuando se tienen edificios antiguos con ciertas restricciones, si se realizan modificaciones estratégicas estos pueden mejorar significativamente la eficiencia energética, reducir las emisiones de carbono y mejorar el confort térmico en edificios educativos aun cuando se aumente la carga de enfriamiento.
publishDate 2024
dc.date.accessioned.none.fl_str_mv 2024-10-21 19:36:40
dc.date.available.none.fl_str_mv 2024-10-21 19:36:40
dc.date.issued.none.fl_str_mv 2024-10-21
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.eng.fl_str_mv http://purl.org/coar/resource_type/c_6501
http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.content.eng.fl_str_mv Text
dc.type.driver.eng.fl_str_mv info:eu-repo/semantics/article
dc.type.local.eng.fl_str_mv Journal article
dc.type.redcol.eng.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.eng.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coarversion.eng.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.issn.none.fl_str_mv 0122-6517
dc.identifier.url.none.fl_str_mv https://doi.org/10.17981/ingecuc.20.2.2024.07
dc.identifier.doi.none.fl_str_mv 10.17981/ingecuc.20.2.2024.07
dc.identifier.eissn.none.fl_str_mv 2382-4700
identifier_str_mv 0122-6517
10.17981/ingecuc.20.2.2024.07
2382-4700
url https://doi.org/10.17981/ingecuc.20.2.2024.07
dc.language.iso.eng.fl_str_mv eng
language eng
dc.relation.ispartofjournal.spa.fl_str_mv Inge CuC
dc.relation.references.eng.fl_str_mv M. Economidou, V. Todeschi, P. Bertoldi, D. D’Agostino, P. Zangheri, and L. Castellazzi, “Review of 50 years of EU energy efficiency policies for buildings,” Energy Build., vol. 225, p. 110322, Oct. 2020, doi: 10.1016/J.ENBUILD.2020.110322. [2] S. Saint Akadiri, A. Adewale Alola, G. Olasehinde-Williams, and M. Udom Etokakpan, “The role of electricity consumption, globalization and economic growth in carbon dioxide emissions and its implications for environmental sustainability targets,” Sci. Total Environ., vol. 708, p. 134653, 2020, doi: 10.1016/j.scitotenv.2019.134653. [3] IEA, “Energy technology perspectives 2020 - Analysis - IEA,” 2020. https://www.iea.org/reports/energy-technology-perspectives-2020 [4] J. Taherahmadi, Y. Noorollahi, and M. Panahi, “Toward comprehensive zero energy building definitions: a literature review and recommendations,” Int. J. Sustain. Energy, vol. 40, no. 2, pp. 120–148, Feb. 2021, doi: 10.1080/14786451.2020.1796664. [5] C. Marincu, D. Dan, and L. Moga, “Investigating the influence of building shape and insulation thickness on energy efficiency of buildings,” Energy Sustain. Dev., vol. 79, p. 101384, Apr. 2024, doi: 10.1016/J.ESD.2024.101384. [6] Um-e-Habiba, I. Ahmed, M. Asif, H. H. Alhelou, and M. Khalid, “A review on enhancing energy efficiency and adaptability through system integration for smart buildings,” J. Build. Eng., vol. 89, p. 109354, Jul. 2024, doi: 10.1016/J.JOBE.2024.109354. [7] R. A. Mangkuto et al., “Experiment and simulation to determine the optimum orientation of building-integrated photovoltaic on tropical building façades considering annual daylight performance and energy yield,” Energy Built Environ., vol. 5, no. 3, pp. 414–425, Jun. 2024, doi: 10.1016/J.ENBENV.2023.01.002. [8] C. A. Riascos-González, P. Thomson, and S. Dyke, “Evaluación del desempeño de un amortiguador de masa sintonizado no lineal mediante simulaciones híbridas en tiempo real,” Inge CuC, vol. 15, no. 2 SE-, pp. 11–22, Sep. 2019, doi: 10.17981/ingecuc.15.2.2019.02. [9] M. Á. Ospina García, S. B. Chaves Pabon, L. Á. Moreno Anselmí, L. Patarroyo Arias, and M. R. Pérez Castro, “Análisis de las propiedades físicas y mecánicas del adobe con asfalto reciclado,” Inge CuC, vol. 16, no. 2, pp. 86–103, May 2020, doi: 10.17981/10.17981/ingecuc.16.2.2020.06. [10] M. Balbis-Morejón, J. M. Rey-Hernández, C. Amaris-Castilla, E. Velasco-Gómez, J. F. San José-Alonso, and F. J. Rey-Martínez, “Experimental Study and Analysis of Thermal Comfort in a University Campus Building in Tropical Climate,” Sustainability, vol. 12, no. 21, p. 8886, Oct. 2020, doi: 10.3390/su12218886. [11] E. Benedicta Kyere, T.-C. Jen, L. Tartibu, and B. Tien-Chien Jen, “Analysis of the Influence of Chilled Water Temperature Setpoint on Thermal Comfort and Energy Consumption,” Arab. J. Sci. Eng., p. 21, 2023, doi: 10.1007/s13369-023-08350-2. [12] A. Labihi, Y. Benakcha, A. Meslem, P. Byrne, and F. Collet, “Improving the ventilation of a classroom to achieve heating energy savings and better indoor air quality,” Build. Serv. Eng. Res. Technol., vol. 45, no. 3, pp. 275–291, 2024, doi: 10.1177/01436244241233756. [13] J. Cardenas, G. Osma, and G. Ordoñez, “Herramienta metodológica para la evaluación energética mediante simulación de edificaciones en el trópico,” UIS Ing., vol. 18, no. 2, pp. 1–10, 2019, doi: 10.18273/revuin.v18n2-2019024. [14] D. Bortolassi, F. · Felipe, L. Coelho Da Silva, and F. L. Coelho Da Silva, “A study on the prediction of electricity consumption considering the energy efficiency measures-applied in case of the Brazilian public sector,” Energy Effic., vol. 16, p. 94, 2023, doi: 10.1007/s12053-023-10160-2. [15] J. Zhan, W. He, and J. Huang, “Comfort, carbon emissions, and cost of building envelope and photovoltaic arrangement optimization through a two-stage model,” Appl. Energy, vol. 356, p. 122423, Feb. 2024, doi: 10.1016/J.APENERGY.2023.122423. [16] Y. Kang et al., “Integrated passive design method optimized for carbon emissions, economics, and thermal comfort of zero-carbon buildings,” Energy, vol. 295, p. 131048, May 2024, doi: 10.1016/J.ENERGY.2024.131048. [17] R. Chen and Y. S. Tsay, “Carbon emission and thermal comfort prediction model for an office building considering the contribution rate of design parameters,” Energy Reports, vol. 8, pp. 8093–8107, Nov. 2022, doi: 10.1016/J.EGYR.2022.06.012. [18] H. Jun and H. Fei, “Research on multi-objective optimization of building energy efficiency based on energy consumption and thermal comfort,” Build. Serv. Eng. Res. Technol., 2024, doi: 10.1177/01436244241240066. [19] H. Wei, Y. Jiao, Z. Wang, W. Wang, and T. Zhang, “Optimal retrofitting scenarios of multi-objective energy-efficient historic building under different national goals integrating energy simulation, reduced order modelling and NSGA-II algorithm,” Build. Simul., pp. 1–22, 2024, doi: 10.1007/s12273-024-1122-9. [20] H. Alhaidary, A. K. Al-Tamimi, and H. Al-Wakil, “The combined use of BIM, IR thermography and HFS for energy modelling of existing buildings and minimising heat gain through the building envelope: a case-study from a UAE building,” Adv. Build. Energy Res., vol. 15, no. 6, pp. 709–732, Nov. 2021, doi: 10.1080/17512549.2019.1703812. [21] F.-Z. El-Bichri, I. Sobhy, I. Bouchefra, B. Benhamou, H. Chehouani, and M. O. Mghazli, “Assessment of the impact of construction materials on the building’s thermal behaviour and indoor thermal comfort in a hot and semi-arid climate,” Adv. Build. Energy Res., vol. 16, no. 6, pp. 711–735, Nov. 2022, doi: 10.1080/17512549.2022.2096692. [22] F. W. Yu and W. T. Ho, “Optimizing hybrid ventilation and daylight-linked dimming control for carbon reduction and thermal comfort in a subtropical high-rise office building,” Clean. Energy Syst., vol. 7, p. 100096, Apr. 2024, doi: 10.1016/J.CLES.2023.100096. [23] Y. Tan, J. Peng, M. Wang, Y. Luo, A. Song, and N. Li, “Comfort assessment and energy performance analysis of a novel adjustable semi-transparent photovoltaic window under different rule-based controls,” Build. Simul., vol. 16, no. 12, pp. 2343–2361, 2023, doi: 10.1007/s12273-023-1011-7. [24] H. Hosamo, M. H. Hosamo, H. K. Nielsen, P. R. Svennevig, and K. Svidt, “Digital Twin of HVAC system (HVACDT) for multiobjective optimization of energy consumption and thermal comfort based on BIM framework with ANN-MOGA,” Adv. Build. Energy Res., vol. 17, no. 2, pp. 125–171, Mar. 2023, doi: 10.1080/17512549.2022.2136240. [25] F. Faridah, S. S. Utami, D. D. A. Wijaya, R. J. Yanti, W. S. Putra, and B. Adrian, “An indoor airflow distribution predictor using machine learning for a real-time healthy building monitoring system in the tropics,” Build. Serv. Eng. Res. Technol., vol. 45, no. 3, pp. 293–315, 2024, doi: 10.1177/01436244241231354. [26] A. Romero-Acero, A. Marín-Cano, and J. A. Jiménez Builes, “Modelo de interconectividad ZigBee & Wi-Fi para el control de un sistema inteligente de iluminación tipo LED usando IoT,” Inge CuC, vol. 17, no. 1 SE-, pp. 146–155, Jan. 2021, doi: 10.17981/ingecuc.17.1.2021.11. [27] P. Wang, J. Hu, and W. Chen, “A hybrid machine learning model to optimize thermal comfort and carbon emissions of large-space public buildings,” J. Clean. Prod., vol. 400, p. 136538, May 2023, doi: 10.1016/J.JCLEPRO.2023.136538. [28] S. Salimi, E. Estrella Guillén, and H. Samuelson, “Decoupling awake and asleep thermal comfort: Impact on building design optimization,” J. Build. Eng., vol. 82, p. 108183, Apr. 2024, doi: 10.1016/J.JOBE.2023.108183. [29] L. Vandenbogaerde, S. Verbeke, and A. Audenaert, “Optimizing building energy consumption in office buildings: A review of building automation and control systems and factors influencing energy savings,” J. Build. Eng., vol. 76, p. 107233, Oct. 2023, doi: 10.1016/J.JOBE.2023.107233. [30] J. M. Han et al., “Data-informed building energy management (DiBEM) towards ultra-low energy buildings,” Energy Build., vol. 281, p. 112761, Feb. 2023, doi: 10.1016/J.ENBUILD.2022.112761. [31] S. Salimi and A. Hammad, “Optimizing energy consumption and occupants comfort in open-plan offices using local control based on occupancy dynamic data,” Build. Environ., vol. 176, p. 106818, Jun. 2020, doi: 10.1016/J.BUILDENV.2020.106818. [32] Y. Pan et al., “Building energy simulation and its application for building performance optimization: A review of methods, tools, and case studies,” Adv. Appl. Energy, vol. 10, p. 100135, Jun. 2023, doi: 10.1016/J.ADAPEN.2023.100135. [33] J. Park, J. Woo, and T. Jin, “Assessing electricity reduction program under the presence of the other energy saving programs using quasi-experimental design: a case study of South Korea,” Energy Effic., vol. 16, p. 9, 2023, doi: 10.1007/s12053-023-10094-9. [34] M. Mišík, V. Oravcová, and R. Vicenová, “Energy efficiency of buildings in Central and Eastern Europe: room for improvement,” Energy Effic., vol. 17, p. 32, 2024, doi: 10.1007/s12053-024-10215-y. [35] N. Jurišević, D. Gordić, N. Lukić, and M. Josijević, “Benchmarking heat consumption in educational buildings in the city of Kragujevac (Serbia),” Energy Effic., vol. 11, pp. 1023–1039, 2018, doi: 10.1007/s12053-018-9631-y. [36] Google, “London Business School,” Google Map, 2024. https://www.google.com/maps/place/London+Business+School/@51.5261617,-0.1633234,17z/data=!3m1!4b1!4m6!3m5!1s0x48761ac6309dd51b:0xbf9c52f1c02b7723!8m2!3d51.5261617!4d-0.1607485!16zL20vMDJremZ3?hl=es&entry=ttu [37] MetOffice, “UK Meteorological Office,” 2023. https://www.metoffice.gov.uk/ [38] IES, “Integrated Environmental Solutions (IES),” 2023. https://www.iesve.com/ [39] ASHRAE, “Standard 100-2024 -- Energy and Emissions Building Performance Standard for Existing Buildings,” 2024. [Online]. Available: https://www.techstreet.com/ashrae/standards/ashrae-100-2024?product_id=2579183 [40] CIBSE, “Guide B: Heating, Ventilating, Air Conditioning and Refrigeration,” 2016. [Online]. Available: https://www.cibse.org/knowledge-research/knowledge-resources/engineering-guidance/cibse-guides [41] G. of UK, “Conservation of fuel and power: Approved Document L.,” 2023. [Online]. Available: https://www.gov.uk/government/publications/conservation-of-fuel-and-power-approved-document-l [42] H. and C. Department for Levelling Up, “National Calculation Methodology (NCM) modelling guide (for buildings other than dwellings in England). 2021 edition,” 2022. [Online]. Available: https://cis.ihs.com/CIS/document/339220 [43] R. Hesse et al., “Low global-warming-potential refrigerant CH2F2 (R-32): Integration of a radiation heat loss correction method to accurately determine experimental flame speed metrics,” Proc. Combust. Inst., vol. 38, no. 3, pp. 4665–4672, Jan. 2021, doi: 10.1016/J.PROCI.2020.05.026. [44] CIBSE, “Guide A: Environmental Design,” 2015. [Online]. Available: https://www.cibse.org/knowledge-research/knowledge-portal/guide-a-environmental-design-2015 [45] G. of UK, “Conservation of fuel and power: Approved Document L. Volume 2: Buildings other than dwellings,” 2021. [Online]. Available: https://assets.publishing.service.gov.uk/media/63d8edbde90e0773d8af2c98/Approved_Document_L__Conservation_of_fuel_and_power__Volume_2_Buildings_other_than_dwellings__2021_edition_incorporating_2023_amendments.pdf [46] I. S. Organization, “ISO 7730: Ergonomics of the thermal environment,” 2005. [Online]. Available: https://www.iso.org/standard/39155.html [47] CIBSE, “Guide F: Energy efficiency in buildings,” 2012. [Online]. Available: https://www.cibse.org/knowledge-research/knowledge-portal/guide-f-energy-efficiency-in-buildings-2012 [48] C. and L. G. Ministry of Housing, “Display Energy Certificates (DECs),” Government of UK, 2022. https://find-energy-certificate.service.gov.uk/find-a-non-domestic-certificate/search-by-postcode?postcode=NW1+4SA [49] ASHRAE, “Standard 62.1-2019: Ventilation for Acceptable Indoor Air Quality,” 2019. [Online]. Available: https://www.ashrae.org/technical-resources/bookstore/standards-62-1-62-2 [50] ASHRAE, “Standard 34-2019, Designation and Safety Classification of Refrigerants,” 2019. [Online]. Available: https://www.ashrae.org/technical-resources/standards-and-guidelines/standards-addenda/addenda-to-standard-34-2019 [51] I. S. Organization, “ISO 9869-1: Thermal insulation — Building elements — In-situ measurement of thermal resistance and thermal transmittance,” 2014. [Online]. Available: https://www.iso.org/standard/59697.html [52] I. E. Agency, “IEA PVPS Task 15, Integrating Photovoltaic Systems in Buildings, Photovoltaic Power Systems Programme,” 2021. [Online]. Available: https://iea-pvps.org/research-tasks/enabling-framework-for-the-development-of-bipv/ [53] I. S. Organization, “ISO 50001: Energy management systems — Requirements with guidance for use,” 2018. [Online]. Available: https://www.iso.org/iso-50001-energy-management.html [54] UNESCO, “Education for Sustainable Development Goals: Learning Objectives,” 2017. [Online]. Available: https://unesdoc.unesco.org/ark:/48223/pf0000247444 [55] CIBSE, “TM54, Evaluating operational energy performance of buildings at the design stage,” 2013. [Online]. Available: https://www.cibse.org/knowledge-research/knowledge-portal/tm54-evaluating-operational-energy-use-at-the-design-stage-2022
dc.relation.citationissue.spa.fl_str_mv 2
dc.relation.citationvolume.spa.fl_str_mv 20
dc.relation.bitstream.none.fl_str_mv https://revistascientificas.cuc.edu.co/ingecuc/article/download/5928/5477
dc.relation.citationedition.spa.fl_str_mv Núm. 2 , Año 2024 : (Julio-Diciembre)
dc.rights.eng.fl_str_mv Inge CuC - 2024
dc.rights.uri.eng.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0
dc.rights.accessrights.eng.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.eng.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Inge CuC - 2024
http://creativecommons.org/licenses/by-nc-nd/4.0
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.eng.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad de la Costa
dc.source.eng.fl_str_mv https://revistascientificas.cuc.edu.co/ingecuc/article/view/5928
institution Corporación Universidad de la Costa
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/f9489c1e-f5f6-496b-91e1-2919b31bb9af/download
bitstream.checksum.fl_str_mv f170163ebd2eba5106fda0d98ef04c99
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1828166579583451136
spelling Tino, DanieleAmaris Castilla, Carlos2024-10-21 19:36:402024-10-21 19:36:402024-10-210122-6517https://doi.org/10.17981/ingecuc.20.2.2024.0710.17981/ingecuc.20.2.2024.072382-4700Introducción: En este estudio se presenta la evaluación energética, emisiones de carbono y confort térmico de las modificaciones propuestas para el edificio E-Wing de la London Business School. Con la creciente demanda de prácticas sostenibles en la construcción, comprender el impacto de diversas modificaciones es crucial. Objetivo: El objetivo principal es evaluar el potencial para reducir el consumo de energía, mitigar las emisiones de carbono y mejorar la calidad ambiental interior en instituciones educativas mediante mejoras estratégicas en los edificios. Metodología: Se desarrolló un modelo detallado utilizando el software IES-VE para modelar el escenario existente como para el propuestos del edificio. El modelo considera factores como la eficiencia de los sistemas de calefacción y refrigeración, la iluminación y las características de las ventanas. Resultados: Las modificaciones propuestas podrían reducir el consumo de energía en un 17.4% y las emisiones de carbono en un 8.2%. Actualizaciones adicionales, como las ventanas, podrían disminuir el uso de energía en un 25.8%. Además, se aumentaría el confort térmico en un 13% y se reducirían las horas de incomodidad en un 5%. Conclusiones: El estudio concluye que aun cuando se tienen edificios antiguos con ciertas restricciones, si se realizan modificaciones estratégicas estos pueden mejorar significativamente la eficiencia energética, reducir las emisiones de carbono y mejorar el confort térmico en edificios educativos aun cuando se aumente la carga de enfriamiento.Introduction: This study investigates the energy performance, carbon emissions, and thermal comfort implications of proposed building modifications for the London Business School E-Wing building. With the increasing demand for sustainable building practices, understanding the impact of various modifications is crucial. Objective: The primary aim is to evaluate the potential for reducing energy consumption, mitigating carbon emissions, and enhancing indoor environmental quality in educational institutions through strategic building upgrades. Methodology: A detailed building energy model was developed using the IES-VE software to model both existing and proposed E-Wing building scenarios. The model considers factors such as heating and cooling systems efficiency, lighting, and window characteristics. Results: The analysis revealed significant opportunities for energy savings, with proposed modifications demonstrating a potential reduction of 17.4% in energy consumption compared to the existing building. Further enhancements, such as window upgrades, could lead to a 25.8% decrease in energy usage from the baseline. Carbon emissions analysis indicated an estimated 8.2% potential reduction in emissions for the proposed building, underscoring the environmental benefits of sustainable building practices. Thermal comfort assessments showed a 13% potential increase in acceptable comfort levels and a 5% decrease in unacceptable thermal comfort hours during occupied times, particularly in lecture and seminar rooms. Conclusions: The study concludes that even when dealing with old buildings with certain restrictions, strategic modifications can significantly improve energy efficiency, reduce carbon emissions, and enhance thermal comfort in educational buildings, even when increasing the cooling load.application/pdfengUniversidad de la CostaInge CuC - 2024http://creativecommons.org/licenses/by-nc-nd/4.0info:eu-repo/semantics/openAccessEsta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.http://purl.org/coar/access_right/c_abf2https://revistascientificas.cuc.edu.co/ingecuc/article/view/5928Building Energy ModellingThermal ComfortCarbon EmissionsSustainable BuildingsEnergy SavingsModelización Energética de EdificiosConfort TérmicoEmisiones de carbonoEdificios sosteniblesAhorro energéticoEvaluación del potencial de ahorro de energía, emisiones de carbono y confort térmico en un edificio universitario antiguo en LondresEvaluation of energy-saving potential, carbon emission, and thermal comfort in an historic university building in LondonArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articleJournal articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85Inge CuCM. Economidou, V. Todeschi, P. Bertoldi, D. D’Agostino, P. Zangheri, and L. Castellazzi, “Review of 50 years of EU energy efficiency policies for buildings,” Energy Build., vol. 225, p. 110322, Oct. 2020, doi: 10.1016/J.ENBUILD.2020.110322. [2] S. Saint Akadiri, A. Adewale Alola, G. Olasehinde-Williams, and M. Udom Etokakpan, “The role of electricity consumption, globalization and economic growth in carbon dioxide emissions and its implications for environmental sustainability targets,” Sci. Total Environ., vol. 708, p. 134653, 2020, doi: 10.1016/j.scitotenv.2019.134653. [3] IEA, “Energy technology perspectives 2020 - Analysis - IEA,” 2020. https://www.iea.org/reports/energy-technology-perspectives-2020 [4] J. Taherahmadi, Y. Noorollahi, and M. Panahi, “Toward comprehensive zero energy building definitions: a literature review and recommendations,” Int. J. Sustain. Energy, vol. 40, no. 2, pp. 120–148, Feb. 2021, doi: 10.1080/14786451.2020.1796664. [5] C. Marincu, D. Dan, and L. Moga, “Investigating the influence of building shape and insulation thickness on energy efficiency of buildings,” Energy Sustain. Dev., vol. 79, p. 101384, Apr. 2024, doi: 10.1016/J.ESD.2024.101384. [6] Um-e-Habiba, I. Ahmed, M. Asif, H. H. Alhelou, and M. Khalid, “A review on enhancing energy efficiency and adaptability through system integration for smart buildings,” J. Build. Eng., vol. 89, p. 109354, Jul. 2024, doi: 10.1016/J.JOBE.2024.109354. [7] R. A. Mangkuto et al., “Experiment and simulation to determine the optimum orientation of building-integrated photovoltaic on tropical building façades considering annual daylight performance and energy yield,” Energy Built Environ., vol. 5, no. 3, pp. 414–425, Jun. 2024, doi: 10.1016/J.ENBENV.2023.01.002. [8] C. A. Riascos-González, P. Thomson, and S. Dyke, “Evaluación del desempeño de un amortiguador de masa sintonizado no lineal mediante simulaciones híbridas en tiempo real,” Inge CuC, vol. 15, no. 2 SE-, pp. 11–22, Sep. 2019, doi: 10.17981/ingecuc.15.2.2019.02. [9] M. Á. Ospina García, S. B. Chaves Pabon, L. Á. Moreno Anselmí, L. Patarroyo Arias, and M. R. Pérez Castro, “Análisis de las propiedades físicas y mecánicas del adobe con asfalto reciclado,” Inge CuC, vol. 16, no. 2, pp. 86–103, May 2020, doi: 10.17981/10.17981/ingecuc.16.2.2020.06. [10] M. Balbis-Morejón, J. M. Rey-Hernández, C. Amaris-Castilla, E. Velasco-Gómez, J. F. San José-Alonso, and F. J. Rey-Martínez, “Experimental Study and Analysis of Thermal Comfort in a University Campus Building in Tropical Climate,” Sustainability, vol. 12, no. 21, p. 8886, Oct. 2020, doi: 10.3390/su12218886. [11] E. Benedicta Kyere, T.-C. Jen, L. Tartibu, and B. Tien-Chien Jen, “Analysis of the Influence of Chilled Water Temperature Setpoint on Thermal Comfort and Energy Consumption,” Arab. J. Sci. Eng., p. 21, 2023, doi: 10.1007/s13369-023-08350-2. [12] A. Labihi, Y. Benakcha, A. Meslem, P. Byrne, and F. Collet, “Improving the ventilation of a classroom to achieve heating energy savings and better indoor air quality,” Build. Serv. Eng. Res. Technol., vol. 45, no. 3, pp. 275–291, 2024, doi: 10.1177/01436244241233756. [13] J. Cardenas, G. Osma, and G. Ordoñez, “Herramienta metodológica para la evaluación energética mediante simulación de edificaciones en el trópico,” UIS Ing., vol. 18, no. 2, pp. 1–10, 2019, doi: 10.18273/revuin.v18n2-2019024. [14] D. Bortolassi, F. · Felipe, L. Coelho Da Silva, and F. L. Coelho Da Silva, “A study on the prediction of electricity consumption considering the energy efficiency measures-applied in case of the Brazilian public sector,” Energy Effic., vol. 16, p. 94, 2023, doi: 10.1007/s12053-023-10160-2. [15] J. Zhan, W. He, and J. Huang, “Comfort, carbon emissions, and cost of building envelope and photovoltaic arrangement optimization through a two-stage model,” Appl. Energy, vol. 356, p. 122423, Feb. 2024, doi: 10.1016/J.APENERGY.2023.122423. [16] Y. Kang et al., “Integrated passive design method optimized for carbon emissions, economics, and thermal comfort of zero-carbon buildings,” Energy, vol. 295, p. 131048, May 2024, doi: 10.1016/J.ENERGY.2024.131048. [17] R. Chen and Y. S. Tsay, “Carbon emission and thermal comfort prediction model for an office building considering the contribution rate of design parameters,” Energy Reports, vol. 8, pp. 8093–8107, Nov. 2022, doi: 10.1016/J.EGYR.2022.06.012. [18] H. Jun and H. Fei, “Research on multi-objective optimization of building energy efficiency based on energy consumption and thermal comfort,” Build. Serv. Eng. Res. Technol., 2024, doi: 10.1177/01436244241240066. [19] H. Wei, Y. Jiao, Z. Wang, W. Wang, and T. Zhang, “Optimal retrofitting scenarios of multi-objective energy-efficient historic building under different national goals integrating energy simulation, reduced order modelling and NSGA-II algorithm,” Build. Simul., pp. 1–22, 2024, doi: 10.1007/s12273-024-1122-9. [20] H. Alhaidary, A. K. Al-Tamimi, and H. Al-Wakil, “The combined use of BIM, IR thermography and HFS for energy modelling of existing buildings and minimising heat gain through the building envelope: a case-study from a UAE building,” Adv. Build. Energy Res., vol. 15, no. 6, pp. 709–732, Nov. 2021, doi: 10.1080/17512549.2019.1703812. [21] F.-Z. El-Bichri, I. Sobhy, I. Bouchefra, B. Benhamou, H. Chehouani, and M. O. Mghazli, “Assessment of the impact of construction materials on the building’s thermal behaviour and indoor thermal comfort in a hot and semi-arid climate,” Adv. Build. Energy Res., vol. 16, no. 6, pp. 711–735, Nov. 2022, doi: 10.1080/17512549.2022.2096692. [22] F. W. Yu and W. T. Ho, “Optimizing hybrid ventilation and daylight-linked dimming control for carbon reduction and thermal comfort in a subtropical high-rise office building,” Clean. Energy Syst., vol. 7, p. 100096, Apr. 2024, doi: 10.1016/J.CLES.2023.100096. [23] Y. Tan, J. Peng, M. Wang, Y. Luo, A. Song, and N. Li, “Comfort assessment and energy performance analysis of a novel adjustable semi-transparent photovoltaic window under different rule-based controls,” Build. Simul., vol. 16, no. 12, pp. 2343–2361, 2023, doi: 10.1007/s12273-023-1011-7. [24] H. Hosamo, M. H. Hosamo, H. K. Nielsen, P. R. Svennevig, and K. Svidt, “Digital Twin of HVAC system (HVACDT) for multiobjective optimization of energy consumption and thermal comfort based on BIM framework with ANN-MOGA,” Adv. Build. Energy Res., vol. 17, no. 2, pp. 125–171, Mar. 2023, doi: 10.1080/17512549.2022.2136240. [25] F. Faridah, S. S. Utami, D. D. A. Wijaya, R. J. Yanti, W. S. Putra, and B. Adrian, “An indoor airflow distribution predictor using machine learning for a real-time healthy building monitoring system in the tropics,” Build. Serv. Eng. Res. Technol., vol. 45, no. 3, pp. 293–315, 2024, doi: 10.1177/01436244241231354. [26] A. Romero-Acero, A. Marín-Cano, and J. A. Jiménez Builes, “Modelo de interconectividad ZigBee & Wi-Fi para el control de un sistema inteligente de iluminación tipo LED usando IoT,” Inge CuC, vol. 17, no. 1 SE-, pp. 146–155, Jan. 2021, doi: 10.17981/ingecuc.17.1.2021.11. [27] P. Wang, J. Hu, and W. Chen, “A hybrid machine learning model to optimize thermal comfort and carbon emissions of large-space public buildings,” J. Clean. Prod., vol. 400, p. 136538, May 2023, doi: 10.1016/J.JCLEPRO.2023.136538. [28] S. Salimi, E. Estrella Guillén, and H. Samuelson, “Decoupling awake and asleep thermal comfort: Impact on building design optimization,” J. Build. Eng., vol. 82, p. 108183, Apr. 2024, doi: 10.1016/J.JOBE.2023.108183. [29] L. Vandenbogaerde, S. Verbeke, and A. Audenaert, “Optimizing building energy consumption in office buildings: A review of building automation and control systems and factors influencing energy savings,” J. Build. Eng., vol. 76, p. 107233, Oct. 2023, doi: 10.1016/J.JOBE.2023.107233. [30] J. M. Han et al., “Data-informed building energy management (DiBEM) towards ultra-low energy buildings,” Energy Build., vol. 281, p. 112761, Feb. 2023, doi: 10.1016/J.ENBUILD.2022.112761. [31] S. Salimi and A. Hammad, “Optimizing energy consumption and occupants comfort in open-plan offices using local control based on occupancy dynamic data,” Build. Environ., vol. 176, p. 106818, Jun. 2020, doi: 10.1016/J.BUILDENV.2020.106818. [32] Y. Pan et al., “Building energy simulation and its application for building performance optimization: A review of methods, tools, and case studies,” Adv. Appl. Energy, vol. 10, p. 100135, Jun. 2023, doi: 10.1016/J.ADAPEN.2023.100135. [33] J. Park, J. Woo, and T. Jin, “Assessing electricity reduction program under the presence of the other energy saving programs using quasi-experimental design: a case study of South Korea,” Energy Effic., vol. 16, p. 9, 2023, doi: 10.1007/s12053-023-10094-9. [34] M. Mišík, V. Oravcová, and R. Vicenová, “Energy efficiency of buildings in Central and Eastern Europe: room for improvement,” Energy Effic., vol. 17, p. 32, 2024, doi: 10.1007/s12053-024-10215-y. [35] N. Jurišević, D. Gordić, N. Lukić, and M. Josijević, “Benchmarking heat consumption in educational buildings in the city of Kragujevac (Serbia),” Energy Effic., vol. 11, pp. 1023–1039, 2018, doi: 10.1007/s12053-018-9631-y. [36] Google, “London Business School,” Google Map, 2024. https://www.google.com/maps/place/London+Business+School/@51.5261617,-0.1633234,17z/data=!3m1!4b1!4m6!3m5!1s0x48761ac6309dd51b:0xbf9c52f1c02b7723!8m2!3d51.5261617!4d-0.1607485!16zL20vMDJremZ3?hl=es&entry=ttu [37] MetOffice, “UK Meteorological Office,” 2023. https://www.metoffice.gov.uk/ [38] IES, “Integrated Environmental Solutions (IES),” 2023. https://www.iesve.com/ [39] ASHRAE, “Standard 100-2024 -- Energy and Emissions Building Performance Standard for Existing Buildings,” 2024. [Online]. Available: https://www.techstreet.com/ashrae/standards/ashrae-100-2024?product_id=2579183 [40] CIBSE, “Guide B: Heating, Ventilating, Air Conditioning and Refrigeration,” 2016. [Online]. Available: https://www.cibse.org/knowledge-research/knowledge-resources/engineering-guidance/cibse-guides [41] G. of UK, “Conservation of fuel and power: Approved Document L.,” 2023. [Online]. Available: https://www.gov.uk/government/publications/conservation-of-fuel-and-power-approved-document-l [42] H. and C. Department for Levelling Up, “National Calculation Methodology (NCM) modelling guide (for buildings other than dwellings in England). 2021 edition,” 2022. [Online]. Available: https://cis.ihs.com/CIS/document/339220 [43] R. Hesse et al., “Low global-warming-potential refrigerant CH2F2 (R-32): Integration of a radiation heat loss correction method to accurately determine experimental flame speed metrics,” Proc. Combust. Inst., vol. 38, no. 3, pp. 4665–4672, Jan. 2021, doi: 10.1016/J.PROCI.2020.05.026. [44] CIBSE, “Guide A: Environmental Design,” 2015. [Online]. Available: https://www.cibse.org/knowledge-research/knowledge-portal/guide-a-environmental-design-2015 [45] G. of UK, “Conservation of fuel and power: Approved Document L. Volume 2: Buildings other than dwellings,” 2021. [Online]. Available: https://assets.publishing.service.gov.uk/media/63d8edbde90e0773d8af2c98/Approved_Document_L__Conservation_of_fuel_and_power__Volume_2_Buildings_other_than_dwellings__2021_edition_incorporating_2023_amendments.pdf [46] I. S. Organization, “ISO 7730: Ergonomics of the thermal environment,” 2005. [Online]. Available: https://www.iso.org/standard/39155.html [47] CIBSE, “Guide F: Energy efficiency in buildings,” 2012. [Online]. Available: https://www.cibse.org/knowledge-research/knowledge-portal/guide-f-energy-efficiency-in-buildings-2012 [48] C. and L. G. Ministry of Housing, “Display Energy Certificates (DECs),” Government of UK, 2022. https://find-energy-certificate.service.gov.uk/find-a-non-domestic-certificate/search-by-postcode?postcode=NW1+4SA [49] ASHRAE, “Standard 62.1-2019: Ventilation for Acceptable Indoor Air Quality,” 2019. [Online]. Available: https://www.ashrae.org/technical-resources/bookstore/standards-62-1-62-2 [50] ASHRAE, “Standard 34-2019, Designation and Safety Classification of Refrigerants,” 2019. [Online]. Available: https://www.ashrae.org/technical-resources/standards-and-guidelines/standards-addenda/addenda-to-standard-34-2019 [51] I. S. Organization, “ISO 9869-1: Thermal insulation — Building elements — In-situ measurement of thermal resistance and thermal transmittance,” 2014. [Online]. Available: https://www.iso.org/standard/59697.html [52] I. E. Agency, “IEA PVPS Task 15, Integrating Photovoltaic Systems in Buildings, Photovoltaic Power Systems Programme,” 2021. [Online]. Available: https://iea-pvps.org/research-tasks/enabling-framework-for-the-development-of-bipv/ [53] I. S. Organization, “ISO 50001: Energy management systems — Requirements with guidance for use,” 2018. [Online]. Available: https://www.iso.org/iso-50001-energy-management.html [54] UNESCO, “Education for Sustainable Development Goals: Learning Objectives,” 2017. [Online]. Available: https://unesdoc.unesco.org/ark:/48223/pf0000247444 [55] CIBSE, “TM54, Evaluating operational energy performance of buildings at the design stage,” 2013. [Online]. Available: https://www.cibse.org/knowledge-research/knowledge-portal/tm54-evaluating-operational-energy-use-at-the-design-stage-2022220https://revistascientificas.cuc.edu.co/ingecuc/article/download/5928/5477Núm. 2 , Año 2024 : (Julio-Diciembre)OREORE.xmltext/xml2671https://repositorio.cuc.edu.co/bitstreams/f9489c1e-f5f6-496b-91e1-2919b31bb9af/downloadf170163ebd2eba5106fda0d98ef04c99MD5111323/13886oai:repositorio.cuc.edu.co:11323/138862025-01-17 03:30:28.098http://creativecommons.org/licenses/by-nc-nd/4.0Inge CuC - 2024metadata.onlyhttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.co