Euler matrices and their algebraic properties revisited
This paper addresses the generalized Euler polynomial matrix E (α) (x) and the Euler matrix E . Taking into account some properties of Euler polynomials and numbers, we deduce product formulae for E (α) (x) and define the inverse matrix of E . We establish some explicit expressions for the Euler pol...
- Autores:
-
Quintana, Yamilet
Ramírez, William
Urieles
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2020
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/6443
- Acceso en línea:
- https://hdl.handle.net/11323/6443
http://dx.doi.org/10.18576/amis
https://repositorio.cuc.edu.co/
- Palabra clave:
- Euler polynomials
Euler matrix
Generalized Euler matrix
Generalized Pascal matrix
Fibonacci matrix
Lucas matrix
- Rights
- openAccess
- License
- CC0 1.0 Universal
id |
RCUC2_81dc18ee33ae030d78746afacae322b8 |
---|---|
oai_identifier_str |
oai:repositorio.cuc.edu.co:11323/6443 |
network_acronym_str |
RCUC2 |
network_name_str |
REDICUC - Repositorio CUC |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Euler matrices and their algebraic properties revisited |
title |
Euler matrices and their algebraic properties revisited |
spellingShingle |
Euler matrices and their algebraic properties revisited Euler polynomials Euler matrix Generalized Euler matrix Generalized Pascal matrix Fibonacci matrix Lucas matrix |
title_short |
Euler matrices and their algebraic properties revisited |
title_full |
Euler matrices and their algebraic properties revisited |
title_fullStr |
Euler matrices and their algebraic properties revisited |
title_full_unstemmed |
Euler matrices and their algebraic properties revisited |
title_sort |
Euler matrices and their algebraic properties revisited |
dc.creator.fl_str_mv |
Quintana, Yamilet Ramírez, William Urieles |
dc.contributor.author.spa.fl_str_mv |
Quintana, Yamilet Ramírez, William Urieles |
dc.subject.spa.fl_str_mv |
Euler polynomials Euler matrix Generalized Euler matrix Generalized Pascal matrix Fibonacci matrix Lucas matrix |
topic |
Euler polynomials Euler matrix Generalized Euler matrix Generalized Pascal matrix Fibonacci matrix Lucas matrix |
description |
This paper addresses the generalized Euler polynomial matrix E (α) (x) and the Euler matrix E . Taking into account some properties of Euler polynomials and numbers, we deduce product formulae for E (α) (x) and define the inverse matrix of E . We establish some explicit expressions for the Euler polynomial matrix E (x), which involves the generalized Pascal, Fibonacci and Lucas matrices, respectively. From these formulae, we get some new interesting identities involving Fibonacci and Lucas numbers. Also, we provide some factorizations of the Euler polynomial matrix in terms of Stirling matrices, as well as a connection between the shifted Euler matrices and Vandermonde matrices. |
publishDate |
2020 |
dc.date.accessioned.none.fl_str_mv |
2020-06-30T22:10:57Z |
dc.date.available.none.fl_str_mv |
2020-06-30T22:10:57Z |
dc.date.issued.none.fl_str_mv |
2020 |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
acceptedVersion |
dc.identifier.issn.spa.fl_str_mv |
1935-0090 2325-0399 |
dc.identifier.uri.spa.fl_str_mv |
https://hdl.handle.net/11323/6443 |
dc.identifier.doi.spa.fl_str_mv |
http://dx.doi.org/10.18576/amis |
dc.identifier.instname.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.identifier.reponame.spa.fl_str_mv |
REDICUC - Repositorio CUC |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.cuc.edu.co/ |
identifier_str_mv |
1935-0090 2325-0399 Corporación Universidad de la Costa REDICUC - Repositorio CUC |
url |
https://hdl.handle.net/11323/6443 http://dx.doi.org/10.18576/amis https://repositorio.cuc.edu.co/ |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.references.spa.fl_str_mv |
[1] T. Arakawa, T. Ibukiyama and M. Kaneko, Bernoulli Numbers and Zeta Functions, Springer, London UK, 51-63, (2014). [2] G. S. Call and D. J. Velleman, Pascal’s matrices, Amer. Math. Monthly, 100, 372-376 (1993). [3] G.-S. Cheon and J.-S. Kim, Stirling matrix via Pascal matrix, Linear Algebra Appl., 329, 49-59 (2001). [4] G.-S. Cheon and J.-S. Kim, Factorial Stirling matrix and related combinatorial sequences, Linear Algebra Appl., 357, 247-258 (2002). [5] L. Comtet, Advanced Combinatorics. The Art of Finite and Infinite Expansions, D. Reidel Publishing Co., Boston US, 204-219, (1974). [6] T. Ernst, A Comprehensive Treatment of q-Calculus, Birkh¨auser, London UK, 97-167, (2012). [7] B.-N. Guo and F. Qi, Explicit formulae for computing Euler polynomials in terms of Stirling numbers of the second kind, J. Comput. Appl. Math., 272, 251-257 (2014). [8] Y. He, S. Araci and H. M. Srivastava, Some new formulas for the products of the Apostol type polynomials, Adv. Differ. Equ., 2016, 1-18 (2016). [9] Y. He, S. Araci, H. M. Srivastava and M. Acikg¨oz, Some new identities for the Apostol-Bernoulli polynomials and the Apostol-Genocchi polynomials. Appl. Math. Comput., 262, 31-41 (2015). [10] P. Hern´andez-Llanos, Y. Quintana and A. Urieles, About extensions of generalized Apostol-type polynomials, Results Math., 68, 203-225 (2015). [11] G. I. Infante, J. L. Ram´ırez and A. S¸ahin, Some results on q-analogue of the Bernoulli, Euler and Fibonacci matrices, Math. Rep. (Bucur.), 19(69), 399-417 (2017). [12] D. S. Kim and T. Kim, Some identities of q-Euler polynomials arising from q-umbral calculus, J. Inequal. Appl., 2014:1, 1-12 (2014). [13] G.-Y. Lee, J.-S. Kim and S.-G. Lee, Factorizations and eigenvalues of Fibonacci and symmetric Fibonacci matrices, Fibonacci Quart., 40, 203-211 (2002). [14] G.-Y. Lee, J.-S. Kim and S.-H. Cho, Some combinatorial identities via Fibonacci numbers, Discrete Appl. Math., 130, 527-534 (2003). [15] Q.-M. Luo and H. M. Srivastava, Some generalizations of the Apostol-Bernoulli and Apostol-Euler polynomials, J. Math. Anal. Appl., 308, 290-302 (2005). [16] N. E. Nørlund, Vorlesungen ¨uber Differenzenrechnung, Springer-Verlag, Berlin DE, 120-162, (1924). [17] A. Pint´er and H. M. Srivastava, Addition theorems for the Appell polynomials and the associated classes of polynomial expansions, Aequationes Math., 85, 483-495 (2013). [18] Y. Quintana, W. Ram´ırez and A. Urieles, On an operational matrix method based on generalized Bernoulli polynomials of level m, Calcolo 55, 1-29 (2018). [19] J. Riordan, Combinatorial Identities, John Wiley & Sons, Inc., New York US, 99-127, (1968). [20] H. M. Srivastava, M. A. Boutiche and M. Rahmani, A class of Frobenius-type Eulerian polynomials, Rocky Mountain J. Math., 48, 1003-1013 (2018). [21] H. M. Srivastava and J. Choi, Zeta and q-Zeta Functions and Associated Series and Integrals, Elsevier, London UK, 76-140, (2012). [22] H. M. Srivastava, I. Kucuko˘glu and Y. Simsek, Partial differential equations for a new family of numbers and polynomials unifying the Apostol-type numbers and the Apostol-type polynomials, J. Number Theory, 181, 117-146 (2017). [23] H. M. Srivastava and H. L. Manocha, A Treatise on Generating Functions, Ellis Horwood Ltd., West Sussex UK, 384-402, (1984). [24] H. M. Srivastava, M. Masjed-Jamei and M. Reza Beyki, A parametric type of the Apostol-Bernoulli, Apostol-Euler and Apostol-Genocchi polynomials, Appl. Math. Inform. Sci., 12, 907-916 (2018). [25] H. M. Srivastava, M. A. Ozarslan and C. Kaanuglu, Some ¨ generalized Lagrange-based Apostol-Bernoulli, ApostolEuler and Apostol-Genocchi polynomials, Russian J. Math. Phys., 20, 110-120 (2013). [26] H. M. Srivastava, M. A. Ozarslan and B. Yilmaz, Some ¨families of differential equations associated with the Hermitebased Appell polynomials and other classes of Hermite-based polynomials, Filomat, 28, 695-708 (2014). [27] H. M. Srivastava and A. Pint´er, Remarks on some ´relationships between the Bernoulli and Euler polynomials, Appl. Math. Lett., 17, 375-380 (2004). [28] P. Stanimirovi´c, J. Nikolov and I. Stanimirovi´c, A generalization of Fibonacci and Lucas matrices, Discrete Appl. Math., 156, 2606-2619 (2008). [29] Z. Z. Zhang, The linear algebra of generalized Pascal matrix, Linear Algebra Appl., 250, 51-60 (1997). [30] Y. Yang and C. Micek, Generalized Pascal function matrix and its applications, Linear Algebra Appl., 423, 230-245 (2007). [31] Z. Z. Zhang and M. X. Liu, An extension of generalized Pascal matrix and its algebraic properties, Linear Algebra Appl., 271, 169-177 (1998). [32] Z. Zhang and J. Wang, Bernoulli matrix and its algebraic properties, Discrete Appl. Math., 154, 1622-1632 (2006). [33] Z. Zhang and Y. Zhang, The Lucas matrix and some combinatorial identities, Indian J. Pure Appl. Math., 38, 457- 465 (2007). [34] D. Zheng, q-analogue of the Pascal matrix, Ars Combin., 87, 321-336 (2008). |
dc.rights.spa.fl_str_mv |
CC0 1.0 Universal |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/publicdomain/zero/1.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
CC0 1.0 Universal http://creativecommons.org/publicdomain/zero/1.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.publisher.spa.fl_str_mv |
Applied Mathematics and Information Sciences |
institution |
Corporación Universidad de la Costa |
bitstream.url.fl_str_mv |
https://repositorio.cuc.edu.co/bitstreams/6e2a38e0-8a7b-43a0-9fe2-af420cb25dd3/download https://repositorio.cuc.edu.co/bitstreams/1e97bd50-c76f-4eff-8d89-71a78c5c671b/download https://repositorio.cuc.edu.co/bitstreams/be64fd4f-5eb2-430f-a0e6-0937f8d83f1a/download https://repositorio.cuc.edu.co/bitstreams/63afdb83-d6f9-4cf1-958b-7627d3ec4eb9/download https://repositorio.cuc.edu.co/bitstreams/7e3ce52a-9936-4e10-9666-8bc061e9014a/download |
bitstream.checksum.fl_str_mv |
17cf5c0cc220963a053d440868bb1f19 42fd4ad1e89814f5e4a476b409eb708c 8a4605be74aa9ea9d79846c1fba20a33 2ffc4350a03e53ed341b7e7256dcc56d cd670200ab76c706f7f6e302fa6686c6 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad de la Costa CUC |
repository.mail.fl_str_mv |
repdigital@cuc.edu.co |
_version_ |
1811760716985663488 |
spelling |
Quintana, YamiletRamírez, WilliamUrieles2020-06-30T22:10:57Z2020-06-30T22:10:57Z20201935-00902325-0399https://hdl.handle.net/11323/6443http://dx.doi.org/10.18576/amisCorporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/This paper addresses the generalized Euler polynomial matrix E (α) (x) and the Euler matrix E . Taking into account some properties of Euler polynomials and numbers, we deduce product formulae for E (α) (x) and define the inverse matrix of E . We establish some explicit expressions for the Euler polynomial matrix E (x), which involves the generalized Pascal, Fibonacci and Lucas matrices, respectively. From these formulae, we get some new interesting identities involving Fibonacci and Lucas numbers. Also, we provide some factorizations of the Euler polynomial matrix in terms of Stirling matrices, as well as a connection between the shifted Euler matrices and Vandermonde matrices.Quintana, YamiletRamírez, WilliamUrielesengApplied Mathematics and Information SciencesCC0 1.0 Universalhttp://creativecommons.org/publicdomain/zero/1.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Euler polynomialsEuler matrixGeneralized Euler matrixGeneralized Pascal matrixFibonacci matrixLucas matrixEuler matrices and their algebraic properties revisitedArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersion[1] T. Arakawa, T. Ibukiyama and M. Kaneko, Bernoulli Numbers and Zeta Functions, Springer, London UK, 51-63, (2014).[2] G. S. Call and D. J. Velleman, Pascal’s matrices, Amer. Math. Monthly, 100, 372-376 (1993).[3] G.-S. Cheon and J.-S. Kim, Stirling matrix via Pascal matrix, Linear Algebra Appl., 329, 49-59 (2001).[4] G.-S. Cheon and J.-S. Kim, Factorial Stirling matrix and related combinatorial sequences, Linear Algebra Appl., 357, 247-258 (2002).[5] L. Comtet, Advanced Combinatorics. The Art of Finite and Infinite Expansions, D. Reidel Publishing Co., Boston US, 204-219, (1974).[6] T. Ernst, A Comprehensive Treatment of q-Calculus, Birkh¨auser, London UK, 97-167, (2012).[7] B.-N. Guo and F. Qi, Explicit formulae for computing Euler polynomials in terms of Stirling numbers of the second kind, J. Comput. Appl. Math., 272, 251-257 (2014).[8] Y. He, S. Araci and H. M. Srivastava, Some new formulas for the products of the Apostol type polynomials, Adv. Differ. Equ., 2016, 1-18 (2016).[9] Y. He, S. Araci, H. M. Srivastava and M. Acikg¨oz, Some new identities for the Apostol-Bernoulli polynomials and the Apostol-Genocchi polynomials. Appl. Math. Comput., 262, 31-41 (2015).[10] P. Hern´andez-Llanos, Y. Quintana and A. Urieles, About extensions of generalized Apostol-type polynomials, Results Math., 68, 203-225 (2015).[11] G. I. Infante, J. L. Ram´ırez and A. S¸ahin, Some results on q-analogue of the Bernoulli, Euler and Fibonacci matrices, Math. Rep. (Bucur.), 19(69), 399-417 (2017).[12] D. S. Kim and T. Kim, Some identities of q-Euler polynomials arising from q-umbral calculus, J. Inequal. Appl., 2014:1, 1-12 (2014).[13] G.-Y. Lee, J.-S. Kim and S.-G. Lee, Factorizations and eigenvalues of Fibonacci and symmetric Fibonacci matrices, Fibonacci Quart., 40, 203-211 (2002).[14] G.-Y. Lee, J.-S. Kim and S.-H. Cho, Some combinatorial identities via Fibonacci numbers, Discrete Appl. Math., 130, 527-534 (2003).[15] Q.-M. Luo and H. M. Srivastava, Some generalizations of the Apostol-Bernoulli and Apostol-Euler polynomials, J. Math. Anal. Appl., 308, 290-302 (2005).[16] N. E. Nørlund, Vorlesungen ¨uber Differenzenrechnung, Springer-Verlag, Berlin DE, 120-162, (1924).[17] A. Pint´er and H. M. Srivastava, Addition theorems for the Appell polynomials and the associated classes of polynomial expansions, Aequationes Math., 85, 483-495 (2013).[18] Y. Quintana, W. Ram´ırez and A. Urieles, On an operational matrix method based on generalized Bernoulli polynomials of level m, Calcolo 55, 1-29 (2018).[19] J. Riordan, Combinatorial Identities, John Wiley & Sons, Inc., New York US, 99-127, (1968).[20] H. M. Srivastava, M. A. Boutiche and M. Rahmani, A class of Frobenius-type Eulerian polynomials, Rocky Mountain J. Math., 48, 1003-1013 (2018).[21] H. M. Srivastava and J. Choi, Zeta and q-Zeta Functions and Associated Series and Integrals, Elsevier, London UK, 76-140, (2012).[22] H. M. Srivastava, I. Kucuko˘glu and Y. Simsek, Partial differential equations for a new family of numbers and polynomials unifying the Apostol-type numbers and the Apostol-type polynomials, J. Number Theory, 181, 117-146 (2017).[23] H. M. Srivastava and H. L. Manocha, A Treatise on Generating Functions, Ellis Horwood Ltd., West Sussex UK, 384-402, (1984).[24] H. M. Srivastava, M. Masjed-Jamei and M. Reza Beyki, A parametric type of the Apostol-Bernoulli, Apostol-Euler and Apostol-Genocchi polynomials, Appl. Math. Inform. Sci., 12, 907-916 (2018).[25] H. M. Srivastava, M. A. Ozarslan and C. Kaanuglu, Some ¨ generalized Lagrange-based Apostol-Bernoulli, ApostolEuler and Apostol-Genocchi polynomials, Russian J. Math. Phys., 20, 110-120 (2013).[26] H. M. Srivastava, M. A. Ozarslan and B. Yilmaz, Some ¨families of differential equations associated with the Hermitebased Appell polynomials and other classes of Hermite-based polynomials, Filomat, 28, 695-708 (2014).[27] H. M. Srivastava and A. Pint´er, Remarks on some ´relationships between the Bernoulli and Euler polynomials, Appl. Math. Lett., 17, 375-380 (2004).[28] P. Stanimirovi´c, J. Nikolov and I. Stanimirovi´c, A generalization of Fibonacci and Lucas matrices, Discrete Appl. Math., 156, 2606-2619 (2008).[29] Z. Z. Zhang, The linear algebra of generalized Pascal matrix, Linear Algebra Appl., 250, 51-60 (1997).[30] Y. Yang and C. Micek, Generalized Pascal function matrix and its applications, Linear Algebra Appl., 423, 230-245 (2007).[31] Z. Z. Zhang and M. X. Liu, An extension of generalized Pascal matrix and its algebraic properties, Linear Algebra Appl., 271, 169-177 (1998).[32] Z. Zhang and J. Wang, Bernoulli matrix and its algebraic properties, Discrete Appl. Math., 154, 1622-1632 (2006).[33] Z. Zhang and Y. Zhang, The Lucas matrix and some combinatorial identities, Indian J. Pure Appl. Math., 38, 457- 465 (2007).[34] D. Zheng, q-analogue of the Pascal matrix, Ars Combin., 87, 321-336 (2008).PublicationORIGINALEuler Matrices and their Algebraic Properties Revisited.pdfEuler Matrices and their Algebraic Properties Revisited.pdfapplication/pdf428750https://repositorio.cuc.edu.co/bitstreams/6e2a38e0-8a7b-43a0-9fe2-af420cb25dd3/download17cf5c0cc220963a053d440868bb1f19MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8701https://repositorio.cuc.edu.co/bitstreams/1e97bd50-c76f-4eff-8d89-71a78c5c671b/download42fd4ad1e89814f5e4a476b409eb708cMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.cuc.edu.co/bitstreams/be64fd4f-5eb2-430f-a0e6-0937f8d83f1a/download8a4605be74aa9ea9d79846c1fba20a33MD53THUMBNAILEuler Matrices and their Algebraic Properties Revisited.pdf.jpgEuler Matrices and their Algebraic Properties Revisited.pdf.jpgimage/jpeg57638https://repositorio.cuc.edu.co/bitstreams/63afdb83-d6f9-4cf1-958b-7627d3ec4eb9/download2ffc4350a03e53ed341b7e7256dcc56dMD54TEXTEuler Matrices and their Algebraic Properties Revisited.pdf.txtEuler Matrices and their Algebraic Properties Revisited.pdf.txttext/plain47859https://repositorio.cuc.edu.co/bitstreams/7e3ce52a-9936-4e10-9666-8bc061e9014a/downloadcd670200ab76c706f7f6e302fa6686c6MD5511323/6443oai:repositorio.cuc.edu.co:11323/64432024-09-17 10:47:03.402http://creativecommons.org/publicdomain/zero/1.0/CC0 1.0 Universalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |