DOE-ANOVA to optimize hydrokinetic turbines for low velocity conditions
The need of reducing the dependence of fossil fuels and CO2 emissions have motivated the diversification of energy matrix. Among the Renewables, the hydropower shows better characteristics compared to solar, wind, biomass and geothermal, because its low CO2 emissions, higher density and others techn...
- Autores:
-
Rueda-Bayona, Juan Gabriel
Paez, Natalia
Cabello Eras, Juan José
Sagastume Gutierrez, Alexis
- Tipo de recurso:
- Article of investigation
- Fecha de publicación:
- 2022
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/10764
- Acceso en línea:
- https://hdl.handle.net/11323/10764
https://repositorio.cuc.edu.co/
- Palabra clave:
- CFD
DOE-ANOVA
Hydrokinetic microturbine
Multiple regression
Optimization
- Rights
- openAccess
- License
- Atribución 4.0 Internacional (CC BY 4.0)
id |
RCUC2_8124f1589488165f140f84a83a96f873 |
---|---|
oai_identifier_str |
oai:repositorio.cuc.edu.co:11323/10764 |
network_acronym_str |
RCUC2 |
network_name_str |
REDICUC - Repositorio CUC |
repository_id_str |
|
dc.title.eng.fl_str_mv |
DOE-ANOVA to optimize hydrokinetic turbines for low velocity conditions |
title |
DOE-ANOVA to optimize hydrokinetic turbines for low velocity conditions |
spellingShingle |
DOE-ANOVA to optimize hydrokinetic turbines for low velocity conditions CFD DOE-ANOVA Hydrokinetic microturbine Multiple regression Optimization |
title_short |
DOE-ANOVA to optimize hydrokinetic turbines for low velocity conditions |
title_full |
DOE-ANOVA to optimize hydrokinetic turbines for low velocity conditions |
title_fullStr |
DOE-ANOVA to optimize hydrokinetic turbines for low velocity conditions |
title_full_unstemmed |
DOE-ANOVA to optimize hydrokinetic turbines for low velocity conditions |
title_sort |
DOE-ANOVA to optimize hydrokinetic turbines for low velocity conditions |
dc.creator.fl_str_mv |
Rueda-Bayona, Juan Gabriel Paez, Natalia Cabello Eras, Juan José Sagastume Gutierrez, Alexis |
dc.contributor.author.none.fl_str_mv |
Rueda-Bayona, Juan Gabriel Paez, Natalia Cabello Eras, Juan José Sagastume Gutierrez, Alexis |
dc.subject.proposal.eng.fl_str_mv |
CFD DOE-ANOVA Hydrokinetic microturbine Multiple regression Optimization |
topic |
CFD DOE-ANOVA Hydrokinetic microturbine Multiple regression Optimization |
description |
The need of reducing the dependence of fossil fuels and CO2 emissions have motivated the diversification of energy matrix. Among the Renewables, the hydropower shows better characteristics compared to solar, wind, biomass and geothermal, because its low CO2 emissions, higher density and others technical factors. Within the Hydropower, the Hydrokinetic turbines (HT) are considered as a promising technology because can provide electricity during low flow velocity conditions (< 2 m/s) and is able to operate in shallow waters < 8 m and in secluded areas without access to the energy network. In this sense, the present study incentivizes the research in Hydropower and proposes and new application of DOE-ANOVA combined with Computational Fluid Dynamics (CFD) modelling for the HT design and optimization. Accordingly, this work evaluated the performance of a HT with 1.9 m of rotor diameter operating in a water flow of 1.5 m/s through a 23 factorial design with 9 modelling cases (MC). The results showed that the increment of outlet diameters increased the downstream velocity and the hydrodynamic pressure over the HT, and the reduction of the blade tip edge distance generated an increment of the response of the HT hydraulic and mechanical properties. |
publishDate |
2022 |
dc.date.issued.none.fl_str_mv |
2022-08-31 |
dc.date.accessioned.none.fl_str_mv |
2024-02-21T22:29:53Z |
dc.date.available.none.fl_str_mv |
2024-02-21T22:29:53Z |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.coarversion.spa.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
format |
http://purl.org/coar/resource_type/c_2df8fbb1 |
status_str |
publishedVersion |
dc.identifier.issn.spa.fl_str_mv |
2369-0739 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/11323/10764 |
dc.identifier.doi.none.fl_str_mv |
10.18280/mmep.090415 |
dc.identifier.eissn.spa.fl_str_mv |
2369-0747 |
dc.identifier.instname.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.identifier.reponame.spa.fl_str_mv |
REDICUC – Repositorio CUC |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.cuc.edu.co/ |
identifier_str_mv |
2369-0739 10.18280/mmep.090415 2369-0747 Corporación Universidad de la Costa REDICUC – Repositorio CUC |
url |
https://hdl.handle.net/11323/10764 https://repositorio.cuc.edu.co/ |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartofjournal.spa.fl_str_mv |
Mathematical Modelling of Engineering Problems |
dc.relation.references.spa.fl_str_mv |
[1] Eras, J.J.C., Morejón, M.B., Gutiérrez, A.S., GarcÃa, A.P., Ulloa, M.C., MartÃnez, F.J.R., Rueda-Bayona, F.G. (2019). A look to the electricity generation from nonconventional renewable energy sources in Colombia. International Journal of Energy Economics and Policy, 9(1): 15-25. https://doi.org/10.32479/ijeep.7108 [2] Rueda-Bayona, J.G., Guzmán, A., Eras, J.J.C., SilvaCasarín, R., Bastidas-Arteaga, E., Horrillo-Caraballo, J. (2019). Renewables energies in Colombia and the opportunity for the offshore wind technology. Journal of Cleaner Production, 220: 529-543. https://doi.org/10.1016/j.jclepro.2019.02.174 [3] International Energy Agency (IEA). (2019). World Energy Outlook 2019 – Analysis - IEA, World Energy Outlook 2019. https://www.iea.org/reports/worldenergy-outlook-2019. [4] Salleh, M.B., Kamaruddin, N.M., Mohamed-Kassim, Z. (2019). Savonius hydrokinetic turbines for a sustainable river-based energy extraction: A review of the technology and potential applications in Malaysia. Sustainable Energy Technologies and Assessments, 36: 100554. https://doi.org/10.1016/j.seta.2019.100554 [5] Xu, J., Ni, T., Zheng, B. (2015). Hydropower development trends from a technological paradigm perspective. Energy Conversion and Management, 90: 195-206. https://doi.org/10.1016/j.enconman.2014.11.016 [6] Yuce, M.I., Muratoglu, A. (2015). Hydrokinetic energy conversion systems: A technology status review. Renewable and Sustainable Energy Reviews, 43: 72-82. https://doi.org/10.1016/j.rser.2014.10.037 [7] Behrouzi, F., Nakisa, M., Maimun, A., Ahmed, Y.M. (2016). Renewable energy potential in Malaysia: Hydrokinetic river/marine technology. Renewable and Sustainable Energy Reviews, 62: 1270-1281. https://doi.org/10.1016/j.rser.2016.05.020 [8] Maldar, N.R., Ng, C.Y., Oguz, E. (2020). A review of the optimization studies for Savonius turbine considering hydrokinetic applications. Energy Conversion and Management, 226: 113495. https://doi.org/10.1016/j.enconman.2020.113495 [9] Bersalli, G., Menanteau, P., El-Methni, J. (2020). Renewable energy policy effectiveness: A panel data analysis across Europe and Latin America. Renewable and Sustainable Energy Reviews, 133: 110351. https://doi.org/10.1016/j.rser.2020.110351 [10] Tewari, U., Kolmsee, K., Norta, D. (2015). Hydrokinetic Energy for Enlightening the Future of Rural Communities in Uttarakhand. https://www.semanticscholar.org/paper/HydrokineticEnergy-for-Enlightening-the-Future-of-TewariNorta/86aba238c132432eeb8f1bd7ee27994486da6805. [11] Quintero Aguilar, G.E., Rueda Bayona, J.G. (2021). Tidal energy potential in the center zone of the colombian pacific coast. INGE CUC, 17(2). https://doi.org/10.17981/ingecuc.17.2.2021.07 [12] Khan, M.J., Bhuyan, G., Iqbal, M.T., Quaicoe, J.E. (2009). Hydrokinetic energy conversion systems and assessment of horizontal and vertical axis turbines for river and tidal applications: A technology status review. Applied Energy, 86(10): 1823-1835. https://doi.org/10.1016/J.APENERGY.2009.02.017 [13] Nago, V.G., dos Santos, I.F.S., Gbedjinou, M.J., Mensah, J.H.R., Tiago Filho, G.L., Camacho, R.G.R., Barros, R.M. (2022). A literature review on wake dissipation length of hydrokinetic turbines as a guide for turbine array configuration. Ocean Engineering, 259: 111863. https://doi.org/10.1016/J.OCEANENG.2022.111863 [14] Yosry, A.G., Fernández-Jiménez, A., Álvarez-Álvarez, E., Marigorta, E.B. (2021). Design and characterization of a vertical-axis micro tidal turbine for low velocity scenarios. Energy Conversion and Management, 237: 114144. https://doi.org/10.1016/j.enconman.2021.114144 [15] Kirke, B. (2019). Hydrokinetic and ultra-low head turbines in rivers: A reality check. Energy for Sustainable Development, 52: 1-10. https://doi.org/10.1016/j.esd.2019.06.002 [16] dos Santos, I.F.S., Camacho, R.G.R., Tiago Filho, G.L. (2021). Study of the wake characteristics and turbines configuration of a hydrokinetic farm in an Amazonian river using experimental data and CFD tools. Journal of Cleaner Production, 299: 126881. https://doi.org/10.1016/j.jclepro.2021.126881 [17] Alipour, R., Alipour, R., Fardian, F., Koloor, S.S.R., Petrů, M. (2020). Performance improvement of a new proposed Savonius hydrokinetic turbine: A numerical investigation. Energy Reports, 6: 3051-3066. https://doi.org/10.1016/j.egyr.2020.10.072 [18] Shashikumar, C.M., Vijaykumar, H., Vasudeva, M. (2021). Numerical investigation of conventional and tapered Savonius hydrokinetic turbines for low-velocity hydropower application in an irrigation channel. Sustainable Energy Technologies and Assessments, 43: 100871. https://doi.org/10.1016/j.seta.2020.100871 [19] Kirke, B. (2020). Hydrokinetic turbines for moderate sized rivers. Energy for Sustainable Development, 58: 182-195. https://doi.org/10.1016/j.esd.2020.08.003 [20] Chawdhary, S., Angelidis, D., Colby, J., Corren, D., Shen, L., Sotiropoulos, F. (2018). Multiresolution large-Eddy simulation of an array of hydrokinetic turbines in a fieldscale River: The Roosevelt Island Tidal Energy Project in New York City. Water Resources Research, 54(12): 10-188. https://doi.org/10.1029/2018WR023345 [21] Verdant_Power. (2020). Verdant Power’s Roosevelt Island Tidal Energy (RITE) Project. https://www.verdantpower.com/projects. [22] Ocean Renewable Power Company (ORPC). (2012). Tidal Energy Maine Project. https://www.energy.gov/articles/maine-project-takeshistoric-step-forward-us-tidal-energy-deployment. [23] Fernández-Jiménez, A., Cruz, D.F.D.L., Ruiz-Torres, J., Perrino-Blanco, J.L., Jimeno-Almeida, R. (2018). Harnessing the energy of tidal currents: State-of-the-art and proposal of use in EV Charging Points. Multidisciplinary Digital Publishing Institute Proceedings, 2(23): 1504. https://doi.org/10.3390/proceedings2231504 [24] Posa, A., Broglia, R. (2021). Characterization of the turbulent wake of an axial-flow hydrokinetic turbine via large-eddy simulation. Computers & Fluids, 216: 104815. https://doi.org/10.1016/j.compfluid.2020.104815 [25] John, B., Thomas, R.N., Varghese, J. (2020). Integration of hydrokinetic turbine-PV-battery standalone system for tropical climate condition. Renewable Energy, 149: 361- 373. https://doi.org/10.1016/j.renene.2019.12.014 [26] Posa, A., Broglia, R. (2021). Momentum recovery downstream of an axial-flow hydrokinetic turbine. Renewable Energy, 170: 1275-1291. https://doi.org/10.1016/j.renene.2021.02.061 [27] Saini, G., Saini, R.P. (2020). Comparative investigations for performance and self-starting characteristics of hybrid and single Darrieus hydrokinetic turbine. Energy Reports, 6: 96-100. https://doi.org/10.1016/j.egyr.2019.11.047 [28] Chimakurthi, S.K., Reuss, S., Tooley, M., Scampoli, S. (2018). ANSYS workbench system coupling: A state-ofthe-art computational framework for analyzing multiphysics problems. Engineering with Computers, 34(2): 385-411. https://doi.org/10.1007/S00366-017- 0548-4 [29] Ramadan, A., Hemida, M., Abdel-Fadeel, W.A., Aissa W.A., Mohamed, M.H. (2021). Comprehensive experimental and numerical assessment of a drag turbine for river hydrokinetic energy conversion. Ocean Engineering, 227: 108587. https://doi.org/10.1016/j.oceaneng.2021.108587 [30] Khaled, F., Guillou, S., Méar, Y., Hadri, F. (2021). Impact of the blockage ratio on the transport of sediment in the presence of a hydrokinetic turbine: Numerical modeling of the interaction sediment and turbine. International Journal of Sediment Research, 36(6): 696- 710. https://doi.org/10.1016/j.ijsrc.2021.02.003 [31] Lee, J., Kim, Y., Khosronejad, A., Kang, S. (2020). Experimental study of the wake characteristics of an axial flow hydrokinetic turbine at different tip speed ratios. Ocean Engineering, 196: 106777. https://doi.org/10.1016/j.oceaneng.2019.106777 [32] Alizadeh, H., Jahangir, M.H., Ghasempour, R. (2020). CFD-based improvement of Savonius type hydrokinetic turbine using optimized barrier at the low-speed flows. Ocean Engineering, 202: 107178. https://doi.org/10.1016/j.oceaneng.2020.107178 [33] Sarma, N.K., Biswas, A., Misra, R.D. (2014). Experimental and computational evaluation of Savonius hydrokinetic turbine for low velocity condition with comparison to Savonius wind turbine at the same input power. Energy Conversion and Management, 83: 88-98. https://doi.org/10.1016/j.enconman.2014.03.070 [34] Shashikumar, C.M., Madav, V. (2021). Numerical and experimental investigation of modified V-shaped turbine blades for hydrokinetic energy generation. Renewable Energy, 177: 1170-1197. https://doi.org/10.1016/j.renene.2021.05.086 [35] Espina-Valdés, R., Fernández-Jiménez, A., Francos, J.F., Marigorta, E.B., Álvarez-Álvarez, E. (2020). Small cross-flow turbine: Design and testing in high blockage conditions. Energy Conversion and Management, 213: 112863. https://doi.org/10.1016/j.enconman.2020.112863 [36] Tovar, A.M.R., Lopez, Y.U., Laín, S. (2017). Design and prototype of a micro hydrokinetic vertical turbine. Renewable Energy and Power Quality Journal, 1: 903- 910. https://doi.org/10.24084/repqj15.512 [37] Muratoglu, A., Tekin, R., Ertuğrul, Ö.F. (2021). Hydrodynamic optimization of high-performance blade sections for stall regulated hydrokinetic turbines using Differential Evolution Algorithm. Ocean Engineering, 220: 108389. https://doi.org/10.1016/j.oceaneng.2020.108389 [38] Labigalini, L.C., de Vasconcelos Salvo, R., de Lima, R.S., da Silva, R.C., de Marchi Neto, I. (2021). Hydrokinetic turbine design through performance prediction and hybrid metaheuristic multi-objective optimization. Energy Conversion and Management, 238: 114169. https://doi.org/10.1016/j.enconman.2021.114169 [39] Bouvant, M., Betancour, J., Velásquez, L., RubioClemente, A., Chica, E. (2021). Design optimization of an Archimedes screw turbine for hydrokinetic applications using the response surface methodology. Renewable Energy, 172: 941-954. https://doi.org/10.1016/j.renene.2021.03.076 [40] Montgomery, D.C. (2019). Design and Analysis of Experiments. Tenth Edit, John Wiley & Sons, Inc., Hoboken, NJ, USA. https://www.wiley.com/enus/Design+and+Analysis+of+Experiments%2C+10th+E dition-p-9781119492443. [41] Rueda-Bayona, J.G., Gil, L., Calderón, J.M. (2021). CFD-FEM modeling of a floating foundation under extreme hydrodynamic forces generated by low sea states. Mathematical Modelling of Engineering Problems, 8: 888-896. https://doi.org/10.18280/MMEP.080607 [42] Sarpkaya, T. (1993). Offshore hydrodynamics. Journal of Offshore Mechanics and Artic Engineering, 115: 2-5. https://doi.org/10.1115/1.2920085 [43] Journée, J.M.J., Massie, W.W. (2002). Offshore Hydromechanics. https://ocw.tudelft.nl/wpcontent/uploads/OffshoreHydromechanics_Journee_Ma ssie.pdf. [44] Rueda-Bayona, J.G. (2017). Identificación de la influencia de las variaciones convectivas en la generación de cargas transitorias y su efecto hidromecánico en las estructuras offshore. Universidad Del Norte. http://hdl.handle.net/10584/7629. [45] Rueda-Bayona, J.G., Horrillo-Caraballo, J., Chaparro, T.R. (2020). Modelling of surface river plume using setup and input data files of Delft-3D model. Data in Brief, 31: 105899. https://doi.org/10.1016/j.dib.2020.105899 [46] Ragheb, M., Ragheb, A.M. (2011). Wind turbines theory-the betz equation and optimal rotor tip speed ratio. Fundamental and Advanced Topics in Wind Power, 1(1): 19-38. https://doi.org/10.5772/21398 [47] Hossam, S., Aleem, E.A. (2014). Mathematical analysis of the turbine coefficient of performance for tidal stream turbines. https://bura.brunel.ac.uk/bitstream/2438/11044/1/Fullte xt.pdf. [48] Power, H.E., Gharabaghi, B., Bonakdari, H., Robertson, B., Atkinson, A.L., Baldock, T.E. (2019). Prediction of wave runup on beaches using Gene-Expression Programming and empirical relationships. Coastal Engineering, 144: 47-61. https://doi.org/10.1016/j.coastaleng.2018.10.006 [49] Young, D.L., Scully, B.M. (2018). Assessing structure sheltering via statistical analysis of AIS data. Journal of Waterway, Port, Coastal, and Ocean Engineering, 144: 04018002. https://doi.org/10.1061/(ASCE)WW.1943- 5460.0000445 [50] Rueda-Bayona, J.G., Guzmán, A., Cabello, J.J. (2020). Selection of JONSWAP spectra parameters for waterdepth ans sea-state transitions. Journal of Waterway, Port, Coastal, and Ocean Engineering. https://doi.org/10.1061/(ASCE)WW.1943- 5460.0000601 [51] Kotroni, V., Lagouvardos, K., Lykoudis, S. (2014). High-resolution model-based wind atlas for Greece. Renewable and Sustainable Energy Reviews, 30: 479- 489. https://doi.org/10.1016/j.rser.2013.10.016 [52] Qasim, A., Nisar, S., Shah, A., Khalid, M.S., Sheikh, M.A. (2015). Optimization of process parameters for machining of AISI-1045 steel using Taguchi design and ANOVA. Simulation Modelling Practice and Theory, 59: 36-51. https://doi.org/10.1016/j.simpat.2015.08.004 [53] Derschum, C., Nistor, I., Stolle, J., Goseberg, N. (2018). Debris impact under extreme hydrodynamic conditions part 1: Hydrodynamics and impact geometry. Coastal Engineering, 141: 24-35. https://doi.org/10.1016/j.coastaleng.2018.08.016 [54] Fragasso, J., Moro, L., Lye, L.M., Quinton, B.W. (2019). Characterization of resilient mounts for marine diesel engines: Prediction of static response via nonlinear analysis and response surface methodology. Ocean Engineering, 171: 14-24. https://doi.org/10.1016/j.oceaneng.2018.10.051 |
dc.relation.citationendpage.spa.fl_str_mv |
988 |
dc.relation.citationstartpage.spa.fl_str_mv |
979 |
dc.relation.citationissue.spa.fl_str_mv |
4 |
dc.relation.citationvolume.spa.fl_str_mv |
9 |
dc.rights.eng.fl_str_mv |
© 2024 IIETA. All Rights Reserved. |
dc.rights.license.spa.fl_str_mv |
Atribución 4.0 Internacional (CC BY 4.0) |
dc.rights.uri.spa.fl_str_mv |
https://creativecommons.org/licenses/by/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Atribución 4.0 Internacional (CC BY 4.0) © 2024 IIETA. All Rights Reserved. https://creativecommons.org/licenses/by/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
10 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
International Information and Engineering Technology Association |
dc.publisher.place.spa.fl_str_mv |
Canada |
dc.source.spa.fl_str_mv |
https://www.iieta.org/journals/mmep/paper/10.18280/mmep.090415 |
institution |
Corporación Universidad de la Costa |
bitstream.url.fl_str_mv |
https://repositorio.cuc.edu.co/bitstreams/48dcb68e-802d-40d4-a3b1-bbd0f189fc14/download https://repositorio.cuc.edu.co/bitstreams/868cac0a-5e8c-4a58-92e1-0e7442b273cc/download https://repositorio.cuc.edu.co/bitstreams/c6d65366-085c-4366-8cf4-1302a9c8c90c/download https://repositorio.cuc.edu.co/bitstreams/4fa4a529-4912-457f-9f0b-f2a4170e189a/download |
bitstream.checksum.fl_str_mv |
4b9b7d915840c54b810767814aea8a84 2f9959eaf5b71fae44bbf9ec84150c7a f5ccb2b7a9b28672c851ae51f1743fdf 702a0e7306ac1a690c65edf7e3a774d4 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad de la Costa CUC |
repository.mail.fl_str_mv |
repdigital@cuc.edu.co |
_version_ |
1811760765236936704 |
spelling |
Atribución 4.0 Internacional (CC BY 4.0)© 2024 IIETA. All Rights Reserved.https://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Rueda-Bayona, Juan GabrielPaez, NataliaCabello Eras, Juan JoséSagastume Gutierrez, Alexis2024-02-21T22:29:53Z2024-02-21T22:29:53Z2022-08-312369-0739https://hdl.handle.net/11323/1076410.18280/mmep.0904152369-0747Corporación Universidad de la CostaREDICUC – Repositorio CUChttps://repositorio.cuc.edu.co/The need of reducing the dependence of fossil fuels and CO2 emissions have motivated the diversification of energy matrix. Among the Renewables, the hydropower shows better characteristics compared to solar, wind, biomass and geothermal, because its low CO2 emissions, higher density and others technical factors. Within the Hydropower, the Hydrokinetic turbines (HT) are considered as a promising technology because can provide electricity during low flow velocity conditions (< 2 m/s) and is able to operate in shallow waters < 8 m and in secluded areas without access to the energy network. In this sense, the present study incentivizes the research in Hydropower and proposes and new application of DOE-ANOVA combined with Computational Fluid Dynamics (CFD) modelling for the HT design and optimization. Accordingly, this work evaluated the performance of a HT with 1.9 m of rotor diameter operating in a water flow of 1.5 m/s through a 23 factorial design with 9 modelling cases (MC). The results showed that the increment of outlet diameters increased the downstream velocity and the hydrodynamic pressure over the HT, and the reduction of the blade tip edge distance generated an increment of the response of the HT hydraulic and mechanical properties.10 páginasapplication/pdfengInternational Information and Engineering Technology AssociationCanadahttps://www.iieta.org/journals/mmep/paper/10.18280/mmep.090415DOE-ANOVA to optimize hydrokinetic turbines for low velocity conditionsArtículo de revistahttp://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85Mathematical Modelling of Engineering Problems[1] Eras, J.J.C., Morejón, M.B., Gutiérrez, A.S., GarcÃa, A.P., Ulloa, M.C., MartÃnez, F.J.R., Rueda-Bayona, F.G. (2019). A look to the electricity generation from nonconventional renewable energy sources in Colombia. International Journal of Energy Economics and Policy, 9(1): 15-25. https://doi.org/10.32479/ijeep.7108[2] Rueda-Bayona, J.G., Guzmán, A., Eras, J.J.C., SilvaCasarín, R., Bastidas-Arteaga, E., Horrillo-Caraballo, J. (2019). Renewables energies in Colombia and the opportunity for the offshore wind technology. Journal of Cleaner Production, 220: 529-543. https://doi.org/10.1016/j.jclepro.2019.02.174[3] International Energy Agency (IEA). (2019). World Energy Outlook 2019 – Analysis - IEA, World Energy Outlook 2019. https://www.iea.org/reports/worldenergy-outlook-2019.[4] Salleh, M.B., Kamaruddin, N.M., Mohamed-Kassim, Z. (2019). Savonius hydrokinetic turbines for a sustainable river-based energy extraction: A review of the technology and potential applications in Malaysia. Sustainable Energy Technologies and Assessments, 36: 100554. https://doi.org/10.1016/j.seta.2019.100554[5] Xu, J., Ni, T., Zheng, B. (2015). Hydropower development trends from a technological paradigm perspective. Energy Conversion and Management, 90: 195-206. https://doi.org/10.1016/j.enconman.2014.11.016[6] Yuce, M.I., Muratoglu, A. (2015). Hydrokinetic energy conversion systems: A technology status review. Renewable and Sustainable Energy Reviews, 43: 72-82. https://doi.org/10.1016/j.rser.2014.10.037[7] Behrouzi, F., Nakisa, M., Maimun, A., Ahmed, Y.M. (2016). Renewable energy potential in Malaysia: Hydrokinetic river/marine technology. Renewable and Sustainable Energy Reviews, 62: 1270-1281. https://doi.org/10.1016/j.rser.2016.05.020[8] Maldar, N.R., Ng, C.Y., Oguz, E. (2020). A review of the optimization studies for Savonius turbine considering hydrokinetic applications. Energy Conversion and Management, 226: 113495. https://doi.org/10.1016/j.enconman.2020.113495[9] Bersalli, G., Menanteau, P., El-Methni, J. (2020). Renewable energy policy effectiveness: A panel data analysis across Europe and Latin America. Renewable and Sustainable Energy Reviews, 133: 110351. https://doi.org/10.1016/j.rser.2020.110351[10] Tewari, U., Kolmsee, K., Norta, D. (2015). Hydrokinetic Energy for Enlightening the Future of Rural Communities in Uttarakhand. https://www.semanticscholar.org/paper/HydrokineticEnergy-for-Enlightening-the-Future-of-TewariNorta/86aba238c132432eeb8f1bd7ee27994486da6805. [11] Quintero Aguilar, G.E., Rueda Bayona, J.G. (2021). Tidal energy potential in the center zone of the colombian pacific coast. INGE CUC, 17(2). https://doi.org/10.17981/ingecuc.17.2.2021.07[12] Khan, M.J., Bhuyan, G., Iqbal, M.T., Quaicoe, J.E. (2009). Hydrokinetic energy conversion systems and assessment of horizontal and vertical axis turbines for river and tidal applications: A technology status review. Applied Energy, 86(10): 1823-1835. https://doi.org/10.1016/J.APENERGY.2009.02.017[13] Nago, V.G., dos Santos, I.F.S., Gbedjinou, M.J., Mensah, J.H.R., Tiago Filho, G.L., Camacho, R.G.R., Barros, R.M. (2022). A literature review on wake dissipation length of hydrokinetic turbines as a guide for turbine array configuration. Ocean Engineering, 259: 111863. https://doi.org/10.1016/J.OCEANENG.2022.111863[14] Yosry, A.G., Fernández-Jiménez, A., Álvarez-Álvarez, E., Marigorta, E.B. (2021). Design and characterization of a vertical-axis micro tidal turbine for low velocity scenarios. Energy Conversion and Management, 237: 114144. https://doi.org/10.1016/j.enconman.2021.114144[15] Kirke, B. (2019). Hydrokinetic and ultra-low head turbines in rivers: A reality check. Energy for Sustainable Development, 52: 1-10. https://doi.org/10.1016/j.esd.2019.06.002[16] dos Santos, I.F.S., Camacho, R.G.R., Tiago Filho, G.L. (2021). Study of the wake characteristics and turbines configuration of a hydrokinetic farm in an Amazonian river using experimental data and CFD tools. Journal of Cleaner Production, 299: 126881. https://doi.org/10.1016/j.jclepro.2021.126881[17] Alipour, R., Alipour, R., Fardian, F., Koloor, S.S.R., Petrů, M. (2020). Performance improvement of a new proposed Savonius hydrokinetic turbine: A numerical investigation. Energy Reports, 6: 3051-3066. https://doi.org/10.1016/j.egyr.2020.10.072[18] Shashikumar, C.M., Vijaykumar, H., Vasudeva, M. (2021). Numerical investigation of conventional and tapered Savonius hydrokinetic turbines for low-velocity hydropower application in an irrigation channel. Sustainable Energy Technologies and Assessments, 43: 100871. https://doi.org/10.1016/j.seta.2020.100871[19] Kirke, B. (2020). Hydrokinetic turbines for moderate sized rivers. Energy for Sustainable Development, 58: 182-195. https://doi.org/10.1016/j.esd.2020.08.003[20] Chawdhary, S., Angelidis, D., Colby, J., Corren, D., Shen, L., Sotiropoulos, F. (2018). Multiresolution large-Eddy simulation of an array of hydrokinetic turbines in a fieldscale River: The Roosevelt Island Tidal Energy Project in New York City. Water Resources Research, 54(12): 10-188. https://doi.org/10.1029/2018WR023345[21] Verdant_Power. (2020). Verdant Power’s Roosevelt Island Tidal Energy (RITE) Project. https://www.verdantpower.com/projects.[22] Ocean Renewable Power Company (ORPC). (2012). Tidal Energy Maine Project. https://www.energy.gov/articles/maine-project-takeshistoric-step-forward-us-tidal-energy-deployment.[23] Fernández-Jiménez, A., Cruz, D.F.D.L., Ruiz-Torres, J., Perrino-Blanco, J.L., Jimeno-Almeida, R. (2018). Harnessing the energy of tidal currents: State-of-the-art and proposal of use in EV Charging Points. Multidisciplinary Digital Publishing Institute Proceedings, 2(23): 1504. https://doi.org/10.3390/proceedings2231504[24] Posa, A., Broglia, R. (2021). Characterization of the turbulent wake of an axial-flow hydrokinetic turbine via large-eddy simulation. Computers & Fluids, 216: 104815. https://doi.org/10.1016/j.compfluid.2020.104815[25] John, B., Thomas, R.N., Varghese, J. (2020). Integration of hydrokinetic turbine-PV-battery standalone system for tropical climate condition. Renewable Energy, 149: 361- 373. https://doi.org/10.1016/j.renene.2019.12.014[26] Posa, A., Broglia, R. (2021). Momentum recovery downstream of an axial-flow hydrokinetic turbine. Renewable Energy, 170: 1275-1291. https://doi.org/10.1016/j.renene.2021.02.061[27] Saini, G., Saini, R.P. (2020). Comparative investigations for performance and self-starting characteristics of hybrid and single Darrieus hydrokinetic turbine. Energy Reports, 6: 96-100. https://doi.org/10.1016/j.egyr.2019.11.047[28] Chimakurthi, S.K., Reuss, S., Tooley, M., Scampoli, S. (2018). ANSYS workbench system coupling: A state-ofthe-art computational framework for analyzing multiphysics problems. Engineering with Computers, 34(2): 385-411. https://doi.org/10.1007/S00366-017- 0548-4[29] Ramadan, A., Hemida, M., Abdel-Fadeel, W.A., Aissa W.A., Mohamed, M.H. (2021). Comprehensive experimental and numerical assessment of a drag turbine for river hydrokinetic energy conversion. Ocean Engineering, 227: 108587. https://doi.org/10.1016/j.oceaneng.2021.108587[30] Khaled, F., Guillou, S., Méar, Y., Hadri, F. (2021). Impact of the blockage ratio on the transport of sediment in the presence of a hydrokinetic turbine: Numerical modeling of the interaction sediment and turbine. International Journal of Sediment Research, 36(6): 696- 710. https://doi.org/10.1016/j.ijsrc.2021.02.003[31] Lee, J., Kim, Y., Khosronejad, A., Kang, S. (2020). Experimental study of the wake characteristics of an axial flow hydrokinetic turbine at different tip speed ratios. Ocean Engineering, 196: 106777. https://doi.org/10.1016/j.oceaneng.2019.106777[32] Alizadeh, H., Jahangir, M.H., Ghasempour, R. (2020). CFD-based improvement of Savonius type hydrokinetic turbine using optimized barrier at the low-speed flows. Ocean Engineering, 202: 107178. https://doi.org/10.1016/j.oceaneng.2020.107178[33] Sarma, N.K., Biswas, A., Misra, R.D. (2014). Experimental and computational evaluation of Savonius hydrokinetic turbine for low velocity condition with comparison to Savonius wind turbine at the same input power. Energy Conversion and Management, 83: 88-98. https://doi.org/10.1016/j.enconman.2014.03.070[34] Shashikumar, C.M., Madav, V. (2021). Numerical and experimental investigation of modified V-shaped turbine blades for hydrokinetic energy generation. Renewable Energy, 177: 1170-1197. https://doi.org/10.1016/j.renene.2021.05.086[35] Espina-Valdés, R., Fernández-Jiménez, A., Francos, J.F., Marigorta, E.B., Álvarez-Álvarez, E. (2020). Small cross-flow turbine: Design and testing in high blockage conditions. Energy Conversion and Management, 213: 112863. https://doi.org/10.1016/j.enconman.2020.112863[36] Tovar, A.M.R., Lopez, Y.U., Laín, S. (2017). Design and prototype of a micro hydrokinetic vertical turbine. Renewable Energy and Power Quality Journal, 1: 903- 910. https://doi.org/10.24084/repqj15.512[37] Muratoglu, A., Tekin, R., Ertuğrul, Ö.F. (2021). Hydrodynamic optimization of high-performance blade sections for stall regulated hydrokinetic turbines using Differential Evolution Algorithm. Ocean Engineering, 220: 108389. https://doi.org/10.1016/j.oceaneng.2020.108389[38] Labigalini, L.C., de Vasconcelos Salvo, R., de Lima, R.S., da Silva, R.C., de Marchi Neto, I. (2021). Hydrokinetic turbine design through performance prediction and hybrid metaheuristic multi-objective optimization. Energy Conversion and Management, 238: 114169. https://doi.org/10.1016/j.enconman.2021.114169[39] Bouvant, M., Betancour, J., Velásquez, L., RubioClemente, A., Chica, E. (2021). Design optimization of an Archimedes screw turbine for hydrokinetic applications using the response surface methodology. Renewable Energy, 172: 941-954. https://doi.org/10.1016/j.renene.2021.03.076[40] Montgomery, D.C. (2019). Design and Analysis of Experiments. Tenth Edit, John Wiley & Sons, Inc., Hoboken, NJ, USA. https://www.wiley.com/enus/Design+and+Analysis+of+Experiments%2C+10th+E dition-p-9781119492443.[41] Rueda-Bayona, J.G., Gil, L., Calderón, J.M. (2021). CFD-FEM modeling of a floating foundation under extreme hydrodynamic forces generated by low sea states. Mathematical Modelling of Engineering Problems, 8: 888-896. https://doi.org/10.18280/MMEP.080607[42] Sarpkaya, T. (1993). Offshore hydrodynamics. Journal of Offshore Mechanics and Artic Engineering, 115: 2-5. https://doi.org/10.1115/1.2920085[43] Journée, J.M.J., Massie, W.W. (2002). Offshore Hydromechanics. https://ocw.tudelft.nl/wpcontent/uploads/OffshoreHydromechanics_Journee_Ma ssie.pdf.[44] Rueda-Bayona, J.G. (2017). Identificación de la influencia de las variaciones convectivas en la generación de cargas transitorias y su efecto hidromecánico en las estructuras offshore. Universidad Del Norte. http://hdl.handle.net/10584/7629.[45] Rueda-Bayona, J.G., Horrillo-Caraballo, J., Chaparro, T.R. (2020). Modelling of surface river plume using setup and input data files of Delft-3D model. Data in Brief, 31: 105899. https://doi.org/10.1016/j.dib.2020.105899[46] Ragheb, M., Ragheb, A.M. (2011). Wind turbines theory-the betz equation and optimal rotor tip speed ratio. Fundamental and Advanced Topics in Wind Power, 1(1): 19-38. https://doi.org/10.5772/21398[47] Hossam, S., Aleem, E.A. (2014). Mathematical analysis of the turbine coefficient of performance for tidal stream turbines. https://bura.brunel.ac.uk/bitstream/2438/11044/1/Fullte xt.pdf.[48] Power, H.E., Gharabaghi, B., Bonakdari, H., Robertson, B., Atkinson, A.L., Baldock, T.E. (2019). Prediction of wave runup on beaches using Gene-Expression Programming and empirical relationships. Coastal Engineering, 144: 47-61. https://doi.org/10.1016/j.coastaleng.2018.10.006[49] Young, D.L., Scully, B.M. (2018). Assessing structure sheltering via statistical analysis of AIS data. Journal of Waterway, Port, Coastal, and Ocean Engineering, 144: 04018002. https://doi.org/10.1061/(ASCE)WW.1943- 5460.0000445[50] Rueda-Bayona, J.G., Guzmán, A., Cabello, J.J. (2020). Selection of JONSWAP spectra parameters for waterdepth ans sea-state transitions. Journal of Waterway, Port, Coastal, and Ocean Engineering. https://doi.org/10.1061/(ASCE)WW.1943- 5460.0000601[51] Kotroni, V., Lagouvardos, K., Lykoudis, S. (2014). High-resolution model-based wind atlas for Greece. Renewable and Sustainable Energy Reviews, 30: 479- 489. https://doi.org/10.1016/j.rser.2013.10.016[52] Qasim, A., Nisar, S., Shah, A., Khalid, M.S., Sheikh, M.A. (2015). Optimization of process parameters for machining of AISI-1045 steel using Taguchi design and ANOVA. Simulation Modelling Practice and Theory, 59: 36-51. https://doi.org/10.1016/j.simpat.2015.08.004[53] Derschum, C., Nistor, I., Stolle, J., Goseberg, N. (2018). Debris impact under extreme hydrodynamic conditions part 1: Hydrodynamics and impact geometry. Coastal Engineering, 141: 24-35. https://doi.org/10.1016/j.coastaleng.2018.08.016[54] Fragasso, J., Moro, L., Lye, L.M., Quinton, B.W. (2019). Characterization of resilient mounts for marine diesel engines: Prediction of static response via nonlinear analysis and response surface methodology. Ocean Engineering, 171: 14-24. https://doi.org/10.1016/j.oceaneng.2018.10.05198897949CFDDOE-ANOVAHydrokinetic microturbineMultiple regressionOptimizationPublicationORIGINALDOE-ANOVA to Optimize Hydrokinetic Turbines for Low Velocity Conditions.pdfDOE-ANOVA to Optimize Hydrokinetic Turbines for Low Velocity Conditions.pdfArtículoapplication/pdf1430913https://repositorio.cuc.edu.co/bitstreams/48dcb68e-802d-40d4-a3b1-bbd0f189fc14/download4b9b7d915840c54b810767814aea8a84MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-814828https://repositorio.cuc.edu.co/bitstreams/868cac0a-5e8c-4a58-92e1-0e7442b273cc/download2f9959eaf5b71fae44bbf9ec84150c7aMD52TEXTDOE-ANOVA to Optimize Hydrokinetic Turbines for Low Velocity Conditions.pdf.txtDOE-ANOVA to Optimize Hydrokinetic Turbines for Low Velocity Conditions.pdf.txtExtracted texttext/plain48637https://repositorio.cuc.edu.co/bitstreams/c6d65366-085c-4366-8cf4-1302a9c8c90c/downloadf5ccb2b7a9b28672c851ae51f1743fdfMD53THUMBNAILDOE-ANOVA to Optimize Hydrokinetic Turbines for Low Velocity Conditions.pdf.jpgDOE-ANOVA to Optimize Hydrokinetic Turbines for Low Velocity Conditions.pdf.jpgGenerated Thumbnailimage/jpeg17571https://repositorio.cuc.edu.co/bitstreams/4fa4a529-4912-457f-9f0b-f2a4170e189a/download702a0e7306ac1a690c65edf7e3a774d4MD5411323/10764oai:repositorio.cuc.edu.co:11323/107642024-09-17 11:02:56.151https://creativecommons.org/licenses/by/4.0/© 2024 IIETA. All Rights Reserved.open.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coTEEgT0JSQSAoVEFMIFkgQ09NTyBTRSBERUZJTkUgTcOBUyBBREVMQU5URSkgU0UgT1RPUkdBIEJBSk8gTE9TIFRFUk1JTk9TIERFIEVTVEEgTElDRU5DSUEgUMOaQkxJQ0EgREUgQ1JFQVRJVkUgQ09NTU9OUyAo4oCcTFBDQ+KAnSBPIOKAnExJQ0VOQ0lB4oCdKS4gTEEgT0JSQSBFU1TDgSBQUk9URUdJREEgUE9SIERFUkVDSE9TIERFIEFVVE9SIFkvVSBPVFJBUyBMRVlFUyBBUExJQ0FCTEVTLiBRVUVEQSBQUk9ISUJJRE8gQ1VBTFFVSUVSIFVTTyBRVUUgU0UgSEFHQSBERSBMQSBPQlJBIFFVRSBOTyBDVUVOVEUgQ09OIExBIEFVVE9SSVpBQ0nDk04gUEVSVElORU5URSBERSBDT05GT1JNSURBRCBDT04gTE9TIFTDiVJNSU5PUyBERSBFU1RBIExJQ0VOQ0lBIFkgREUgTEEgTEVZIERFIERFUkVDSE8gREUgQVVUT1IuCgpNRURJQU5URSBFTCBFSkVSQ0lDSU8gREUgQ1VBTFFVSUVSQSBERSBMT1MgREVSRUNIT1MgUVVFIFNFIE9UT1JHQU4gRU4gRVNUQSBMSUNFTkNJQSwgVVNURUQgQUNFUFRBIFkgQUNVRVJEQSBRVUVEQVIgT0JMSUdBRE8gRU4gTE9TIFRFUk1JTk9TIFFVRSBTRSBTRcORQUxBTiBFTiBFTExBLiBFTCBMSUNFTkNJQU5URSBDT05DRURFIEEgVVNURUQgTE9TIERFUkVDSE9TIENPTlRFTklET1MgRU4gRVNUQSBMSUNFTkNJQSBDT05ESUNJT05BRE9TIEEgTEEgQUNFUFRBQ0nDk04gREUgU1VTIFRFUk1JTk9TIFkgQ09ORElDSU9ORVMuCjEuIERlZmluaWNpb25lcwoKYS4JT2JyYSBDb2xlY3RpdmEgZXMgdW5hIG9icmEsIHRhbCBjb21vIHVuYSBwdWJsaWNhY2nDs24gcGVyacOzZGljYSwgdW5hIGFudG9sb2fDrWEsIG8gdW5hIGVuY2ljbG9wZWRpYSwgZW4gbGEgcXVlIGxhIG9icmEgZW4gc3UgdG90YWxpZGFkLCBzaW4gbW9kaWZpY2FjacOzbiBhbGd1bmEsIGp1bnRvIGNvbiB1biBncnVwbyBkZSBvdHJhcyBjb250cmlidWNpb25lcyBxdWUgY29uc3RpdHV5ZW4gb2JyYXMgc2VwYXJhZGFzIGUgaW5kZXBlbmRpZW50ZXMgZW4gc8OtIG1pc21hcywgc2UgaW50ZWdyYW4gZW4gdW4gdG9kbyBjb2xlY3Rpdm8uIFVuYSBPYnJhIHF1ZSBjb25zdGl0dXllIHVuYSBvYnJhIGNvbGVjdGl2YSBubyBzZSBjb25zaWRlcmFyw6EgdW5hIE9icmEgRGVyaXZhZGEgKGNvbW8gc2UgZGVmaW5lIGFiYWpvKSBwYXJhIGxvcyBwcm9ww7NzaXRvcyBkZSBlc3RhIGxpY2VuY2lhLiBhcXVlbGxhIHByb2R1Y2lkYSBwb3IgdW4gZ3J1cG8gZGUgYXV0b3JlcywgZW4gcXVlIGxhIE9icmEgc2UgZW5jdWVudHJhIHNpbiBtb2RpZmljYWNpb25lcywganVudG8gY29uIHVuYSBjaWVydGEgY2FudGlkYWQgZGUgb3RyYXMgY29udHJpYnVjaW9uZXMsIHF1ZSBjb25zdGl0dXllbiBlbiBzw60gbWlzbW9zIHRyYWJham9zIHNlcGFyYWRvcyBlIGluZGVwZW5kaWVudGVzLCBxdWUgc29uIGludGVncmFkb3MgYWwgdG9kbyBjb2xlY3Rpdm8sIHRhbGVzIGNvbW8gcHVibGljYWNpb25lcyBwZXJpw7NkaWNhcywgYW50b2xvZ8OtYXMgbyBlbmNpY2xvcGVkaWFzLgoKYi4JT2JyYSBEZXJpdmFkYSBzaWduaWZpY2EgdW5hIG9icmEgYmFzYWRhIGVuIGxhIG9icmEgb2JqZXRvIGRlIGVzdGEgbGljZW5jaWEgbyBlbiDDqXN0YSB5IG90cmFzIG9icmFzIHByZWV4aXN0ZW50ZXMsIHRhbGVzIGNvbW8gdHJhZHVjY2lvbmVzLCBhcnJlZ2xvcyBtdXNpY2FsZXMsIGRyYW1hdGl6YWNpb25lcywg4oCcZmljY2lvbmFsaXphY2lvbmVz4oCdLCB2ZXJzaW9uZXMgcGFyYSBjaW5lLCDigJxncmFiYWNpb25lcyBkZSBzb25pZG/igJ0sIHJlcHJvZHVjY2lvbmVzIGRlIGFydGUsIHJlc8O6bWVuZXMsIGNvbmRlbnNhY2lvbmVzLCBvIGN1YWxxdWllciBvdHJhIGVuIGxhIHF1ZSBsYSBvYnJhIHB1ZWRhIHNlciB0cmFuc2Zvcm1hZGEsIGNhbWJpYWRhIG8gYWRhcHRhZGEsIGV4Y2VwdG8gYXF1ZWxsYXMgcXVlIGNvbnN0aXR1eWFuIHVuYSBvYnJhIGNvbGVjdGl2YSwgbGFzIHF1ZSBubyBzZXLDoW4gY29uc2lkZXJhZGFzIHVuYSBvYnJhIGRlcml2YWRhIHBhcmEgZWZlY3RvcyBkZSBlc3RhIGxpY2VuY2lhLiAoUGFyYSBldml0YXIgZHVkYXMsIGVuIGVsIGNhc28gZGUgcXVlIGxhIE9icmEgc2VhIHVuYSBjb21wb3NpY2nDs24gbXVzaWNhbCBvIHVuYSBncmFiYWNpw7NuIHNvbm9yYSwgcGFyYSBsb3MgZWZlY3RvcyBkZSBlc3RhIExpY2VuY2lhIGxhIHNpbmNyb25pemFjacOzbiB0ZW1wb3JhbCBkZSBsYSBPYnJhIGNvbiB1bmEgaW1hZ2VuIGVuIG1vdmltaWVudG8gc2UgY29uc2lkZXJhcsOhIHVuYSBPYnJhIERlcml2YWRhIHBhcmEgbG9zIGZpbmVzIGRlIGVzdGEgbGljZW5jaWEpLgoKYy4JTGljZW5jaWFudGUsIGVzIGVsIGluZGl2aWR1byBvIGxhIGVudGlkYWQgdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgZGUgYXV0b3IgcXVlIG9mcmVjZSBsYSBPYnJhIGVuIGNvbmZvcm1pZGFkIGNvbiBsYXMgY29uZGljaW9uZXMgZGUgZXN0YSBMaWNlbmNpYS4KCmQuCUF1dG9yIG9yaWdpbmFsLCBlcyBlbCBpbmRpdmlkdW8gcXVlIGNyZcOzIGxhIE9icmEuCgplLglPYnJhLCBlcyBhcXVlbGxhIG9icmEgc3VzY2VwdGlibGUgZGUgcHJvdGVjY2nDs24gcG9yIGVsIHLDqWdpbWVuIGRlIERlcmVjaG8gZGUgQXV0b3IgeSBxdWUgZXMgb2ZyZWNpZGEgZW4gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIGxpY2VuY2lhCgpmLglVc3RlZCwgZXMgZWwgaW5kaXZpZHVvIG8gbGEgZW50aWRhZCBxdWUgZWplcmNpdGEgbG9zIGRlcmVjaG9zIG90b3JnYWRvcyBhbCBhbXBhcm8gZGUgZXN0YSBMaWNlbmNpYSB5IHF1ZSBjb24gYW50ZXJpb3JpZGFkIG5vIGhhIHZpb2xhZG8gbGFzIGNvbmRpY2lvbmVzIGRlIGxhIG1pc21hIHJlc3BlY3RvIGEgbGEgT2JyYSwgbyBxdWUgaGF5YSBvYnRlbmlkbyBhdXRvcml6YWNpw7NuIGV4cHJlc2EgcG9yIHBhcnRlIGRlbCBMaWNlbmNpYW50ZSBwYXJhIGVqZXJjZXIgbG9zIGRlcmVjaG9zIGFsIGFtcGFybyBkZSBlc3RhIExpY2VuY2lhIHBlc2UgYSB1bmEgdmlvbGFjacOzbiBhbnRlcmlvci4KCjIuIERlcmVjaG9zIGRlIFVzb3MgSG9ucmFkb3MgeSBleGNlcGNpb25lcyBMZWdhbGVzLgpOYWRhIGVuIGVzdGEgTGljZW5jaWEgcG9kcsOhIHNlciBpbnRlcnByZXRhZG8gY29tbyB1bmEgZGlzbWludWNpw7NuLCBsaW1pdGFjacOzbiBvIHJlc3RyaWNjacOzbiBkZSBsb3MgZGVyZWNob3MgZGVyaXZhZG9zIGRlbCB1c28gaG9ucmFkbyB5IG90cmFzIGxpbWl0YWNpb25lcyBvIGV4Y2VwY2lvbmVzIGEgbG9zIGRlcmVjaG9zIGRlbCBhdXRvciBiYWpvIGVsIHLDqWdpbWVuIGxlZ2FsIHZpZ2VudGUgbyBkZXJpdmFkbyBkZSBjdWFscXVpZXIgb3RyYSBub3JtYSBxdWUgc2UgbGUgYXBsaXF1ZS4KCjMuIENvbmNlc2nDs24gZGUgbGEgTGljZW5jaWEuCkJham8gbG9zIHTDqXJtaW5vcyB5IGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIGVsIExpY2VuY2lhbnRlIG90b3JnYSBhIFVzdGVkIHVuYSBsaWNlbmNpYSBtdW5kaWFsLCBsaWJyZSBkZSByZWdhbMOtYXMsIG5vIGV4Y2x1c2l2YSB5IHBlcnBldHVhIChkdXJhbnRlIHRvZG8gZWwgcGVyw61vZG8gZGUgdmlnZW5jaWEgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yKSBwYXJhIGVqZXJjZXIgZXN0b3MgZGVyZWNob3Mgc29icmUgbGEgT2JyYSB0YWwgeSBjb21vIHNlIGluZGljYSBhIGNvbnRpbnVhY2nDs246CgphLglSZXByb2R1Y2lyIGxhIE9icmEsIGluY29ycG9yYXIgbGEgT2JyYSBlbiB1bmEgbyBtw6FzIE9icmFzIENvbGVjdGl2YXMsIHkgcmVwcm9kdWNpciBsYSBPYnJhIGluY29ycG9yYWRhIGVuIGxhcyBPYnJhcyBDb2xlY3RpdmFzLgoKYi4JRGlzdHJpYnVpciBjb3BpYXMgbyBmb25vZ3JhbWFzIGRlIGxhcyBPYnJhcywgZXhoaWJpcmxhcyBww7pibGljYW1lbnRlLCBlamVjdXRhcmxhcyBww7pibGljYW1lbnRlIHkvbyBwb25lcmxhcyBhIGRpc3Bvc2ljacOzbiBww7pibGljYSwgaW5jbHV5w6luZG9sYXMgY29tbyBpbmNvcnBvcmFkYXMgZW4gT2JyYXMgQ29sZWN0aXZhcywgc2Vnw7puIGNvcnJlc3BvbmRhLgoKYy4JRGlzdHJpYnVpciBjb3BpYXMgZGUgbGFzIE9icmFzIERlcml2YWRhcyBxdWUgc2UgZ2VuZXJlbiwgZXhoaWJpcmxhcyBww7pibGljYW1lbnRlLCBlamVjdXRhcmxhcyBww7pibGljYW1lbnRlIHkvbyBwb25lcmxhcyBhIGRpc3Bvc2ljacOzbiBww7pibGljYS4KTG9zIGRlcmVjaG9zIG1lbmNpb25hZG9zIGFudGVyaW9ybWVudGUgcHVlZGVuIHNlciBlamVyY2lkb3MgZW4gdG9kb3MgbG9zIG1lZGlvcyB5IGZvcm1hdG9zLCBhY3R1YWxtZW50ZSBjb25vY2lkb3MgbyBxdWUgc2UgaW52ZW50ZW4gZW4gZWwgZnV0dXJvLiBMb3MgZGVyZWNob3MgYW50ZXMgbWVuY2lvbmFkb3MgaW5jbHV5ZW4gZWwgZGVyZWNobyBhIHJlYWxpemFyIGRpY2hhcyBtb2RpZmljYWNpb25lcyBlbiBsYSBtZWRpZGEgcXVlIHNlYW4gdMOpY25pY2FtZW50ZSBuZWNlc2FyaWFzIHBhcmEgZWplcmNlciBsb3MgZGVyZWNob3MgZW4gb3RybyBtZWRpbyBvIGZvcm1hdG9zLCBwZXJvIGRlIG90cmEgbWFuZXJhIHVzdGVkIG5vIGVzdMOhIGF1dG9yaXphZG8gcGFyYSByZWFsaXphciBvYnJhcyBkZXJpdmFkYXMuIFRvZG9zIGxvcyBkZXJlY2hvcyBubyBvdG9yZ2Fkb3MgZXhwcmVzYW1lbnRlIHBvciBlbCBMaWNlbmNpYW50ZSBxdWVkYW4gcG9yIGVzdGUgbWVkaW8gcmVzZXJ2YWRvcywgaW5jbHV5ZW5kbyBwZXJvIHNpbiBsaW1pdGFyc2UgYSBhcXVlbGxvcyBxdWUgc2UgbWVuY2lvbmFuIGVuIGxhcyBzZWNjaW9uZXMgNChkKSB5IDQoZSkuCgo0LiBSZXN0cmljY2lvbmVzLgpMYSBsaWNlbmNpYSBvdG9yZ2FkYSBlbiBsYSBhbnRlcmlvciBTZWNjacOzbiAzIGVzdMOhIGV4cHJlc2FtZW50ZSBzdWpldGEgeSBsaW1pdGFkYSBwb3IgbGFzIHNpZ3VpZW50ZXMgcmVzdHJpY2Npb25lczoKCmEuCVVzdGVkIHB1ZWRlIGRpc3RyaWJ1aXIsIGV4aGliaXIgcMO6YmxpY2FtZW50ZSwgZWplY3V0YXIgcMO6YmxpY2FtZW50ZSwgbyBwb25lciBhIGRpc3Bvc2ljacOzbiBww7pibGljYSBsYSBPYnJhIHPDs2xvIGJham8gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIHkgVXN0ZWQgZGViZSBpbmNsdWlyIHVuYSBjb3BpYSBkZSBlc3RhIGxpY2VuY2lhIG8gZGVsIElkZW50aWZpY2Fkb3IgVW5pdmVyc2FsIGRlIFJlY3Vyc29zIGRlIGxhIG1pc21hIGNvbiBjYWRhIGNvcGlhIGRlIGxhIE9icmEgcXVlIGRpc3RyaWJ1eWEsIGV4aGliYSBww7pibGljYW1lbnRlLCBlamVjdXRlIHDDumJsaWNhbWVudGUgbyBwb25nYSBhIGRpc3Bvc2ljacOzbiBww7pibGljYS4gTm8gZXMgcG9zaWJsZSBvZnJlY2VyIG8gaW1wb25lciBuaW5ndW5hIGNvbmRpY2nDs24gc29icmUgbGEgT2JyYSBxdWUgYWx0ZXJlIG8gbGltaXRlIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhIG8gZWwgZWplcmNpY2lvIGRlIGxvcyBkZXJlY2hvcyBkZSBsb3MgZGVzdGluYXRhcmlvcyBvdG9yZ2Fkb3MgZW4gZXN0ZSBkb2N1bWVudG8uIE5vIGVzIHBvc2libGUgc3VibGljZW5jaWFyIGxhIE9icmEuIFVzdGVkIGRlYmUgbWFudGVuZXIgaW50YWN0b3MgdG9kb3MgbG9zIGF2aXNvcyBxdWUgaGFnYW4gcmVmZXJlbmNpYSBhIGVzdGEgTGljZW5jaWEgeSBhIGxhIGNsw6F1c3VsYSBkZSBsaW1pdGFjacOzbiBkZSBnYXJhbnTDrWFzLiBVc3RlZCBubyBwdWVkZSBkaXN0cmlidWlyLCBleGhpYmlyIHDDumJsaWNhbWVudGUsIGVqZWN1dGFyIHDDumJsaWNhbWVudGUsIG8gcG9uZXIgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBjb24gYWxndW5hIG1lZGlkYSB0ZWNub2zDs2dpY2EgcXVlIGNvbnRyb2xlIGVsIGFjY2VzbyBvIGxhIHV0aWxpemFjacOzbiBkZSBlbGxhIGRlIHVuYSBmb3JtYSBxdWUgc2VhIGluY29uc2lzdGVudGUgY29uIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLiBMbyBhbnRlcmlvciBzZSBhcGxpY2EgYSBsYSBPYnJhIGluY29ycG9yYWRhIGEgdW5hIE9icmEgQ29sZWN0aXZhLCBwZXJvIGVzdG8gbm8gZXhpZ2UgcXVlIGxhIE9icmEgQ29sZWN0aXZhIGFwYXJ0ZSBkZSBsYSBvYnJhIG1pc21hIHF1ZWRlIHN1amV0YSBhIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLiBTaSBVc3RlZCBjcmVhIHVuYSBPYnJhIENvbGVjdGl2YSwgcHJldmlvIGF2aXNvIGRlIGN1YWxxdWllciBMaWNlbmNpYW50ZSBkZWJlLCBlbiBsYSBtZWRpZGEgZGUgbG8gcG9zaWJsZSwgZWxpbWluYXIgZGUgbGEgT2JyYSBDb2xlY3RpdmEgY3VhbHF1aWVyIHJlZmVyZW5jaWEgYSBkaWNobyBMaWNlbmNpYW50ZSBvIGFsIEF1dG9yIE9yaWdpbmFsLCBzZWfDum4gbG8gc29saWNpdGFkbyBwb3IgZWwgTGljZW5jaWFudGUgeSBjb25mb3JtZSBsbyBleGlnZSBsYSBjbMOhdXN1bGEgNChjKS4KCmIuCVVzdGVkIG5vIHB1ZWRlIGVqZXJjZXIgbmluZ3VubyBkZSBsb3MgZGVyZWNob3MgcXVlIGxlIGhhbiBzaWRvIG90b3JnYWRvcyBlbiBsYSBTZWNjacOzbiAzIHByZWNlZGVudGUgZGUgbW9kbyBxdWUgZXN0w6luIHByaW5jaXBhbG1lbnRlIGRlc3RpbmFkb3MgbyBkaXJlY3RhbWVudGUgZGlyaWdpZG9zIGEgY29uc2VndWlyIHVuIHByb3ZlY2hvIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLiBFbCBpbnRlcmNhbWJpbyBkZSBsYSBPYnJhIHBvciBvdHJhcyBvYnJhcyBwcm90ZWdpZGFzIHBvciBkZXJlY2hvcyBkZSBhdXRvciwgeWEgc2VhIGEgdHJhdsOpcyBkZSB1biBzaXN0ZW1hIHBhcmEgY29tcGFydGlyIGFyY2hpdm9zIGRpZ2l0YWxlcyAoZGlnaXRhbCBmaWxlLXNoYXJpbmcpIG8gZGUgY3VhbHF1aWVyIG90cmEgbWFuZXJhIG5vIHNlcsOhIGNvbnNpZGVyYWRvIGNvbW8gZXN0YXIgZGVzdGluYWRvIHByaW5jaXBhbG1lbnRlIG8gZGlyaWdpZG8gZGlyZWN0YW1lbnRlIGEgY29uc2VndWlyIHVuIHByb3ZlY2hvIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLCBzaWVtcHJlIHF1ZSBubyBzZSByZWFsaWNlIHVuIHBhZ28gbWVkaWFudGUgdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIGVuIHJlbGFjacOzbiBjb24gZWwgaW50ZXJjYW1iaW8gZGUgb2JyYXMgcHJvdGVnaWRhcyBwb3IgZWwgZGVyZWNobyBkZSBhdXRvci4KCmMuCVNpIHVzdGVkIGRpc3RyaWJ1eWUsIGV4aGliZSBww7pibGljYW1lbnRlLCBlamVjdXRhIHDDumJsaWNhbWVudGUgbyBlamVjdXRhIHDDumJsaWNhbWVudGUgZW4gZm9ybWEgZGlnaXRhbCBsYSBPYnJhIG8gY3VhbHF1aWVyIE9icmEgRGVyaXZhZGEgdSBPYnJhIENvbGVjdGl2YSwgVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RhIHRvZGEgbGEgaW5mb3JtYWNpw7NuIGRlIGRlcmVjaG8gZGUgYXV0b3IgZGUgbGEgT2JyYSB5IHByb3BvcmNpb25hciwgZGUgZm9ybWEgcmF6b25hYmxlIHNlZ8O6biBlbCBtZWRpbyBvIG1hbmVyYSBxdWUgVXN0ZWQgZXN0w6kgdXRpbGl6YW5kbzogKGkpIGVsIG5vbWJyZSBkZWwgQXV0b3IgT3JpZ2luYWwgc2kgZXN0w6EgcHJvdmlzdG8gKG8gc2V1ZMOzbmltbywgc2kgZnVlcmUgYXBsaWNhYmxlKSwgeS9vIChpaSkgZWwgbm9tYnJlIGRlIGxhIHBhcnRlIG8gbGFzIHBhcnRlcyBxdWUgZWwgQXV0b3IgT3JpZ2luYWwgeS9vIGVsIExpY2VuY2lhbnRlIGh1YmllcmVuIGRlc2lnbmFkbyBwYXJhIGxhIGF0cmlidWNpw7NuICh2LmcuLCB1biBpbnN0aXR1dG8gcGF0cm9jaW5hZG9yLCBlZGl0b3JpYWwsIHB1YmxpY2FjacOzbikgZW4gbGEgaW5mb3JtYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZWwgTGljZW5jaWFudGUsIHTDqXJtaW5vcyBkZSBzZXJ2aWNpb3MgbyBkZSBvdHJhcyBmb3JtYXMgcmF6b25hYmxlczsgZWwgdMOtdHVsbyBkZSBsYSBPYnJhIHNpIGVzdMOhIHByb3Zpc3RvOyBlbiBsYSBtZWRpZGEgZGUgbG8gcmF6b25hYmxlbWVudGUgZmFjdGlibGUgeSwgc2kgZXN0w6EgcHJvdmlzdG8sIGVsIElkZW50aWZpY2Fkb3IgVW5pZm9ybWUgZGUgUmVjdXJzb3MgKFVuaWZvcm0gUmVzb3VyY2UgSWRlbnRpZmllcikgcXVlIGVsIExpY2VuY2lhbnRlIGVzcGVjaWZpY2EgcGFyYSBzZXIgYXNvY2lhZG8gY29uIGxhIE9icmEsIHNhbHZvIHF1ZSB0YWwgVVJJIG5vIHNlIHJlZmllcmEgYSBsYSBub3RhIHNvYnJlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBvIGEgbGEgaW5mb3JtYWNpw7NuIHNvYnJlIGVsIGxpY2VuY2lhbWllbnRvIGRlIGxhIE9icmE7IHkgZW4gZWwgY2FzbyBkZSB1bmEgT2JyYSBEZXJpdmFkYSwgYXRyaWJ1aXIgZWwgY3LDqWRpdG8gaWRlbnRpZmljYW5kbyBlbCB1c28gZGUgbGEgT2JyYSBlbiBsYSBPYnJhIERlcml2YWRhICh2LmcuLCAiVHJhZHVjY2nDs24gRnJhbmNlc2EgZGUgbGEgT2JyYSBkZWwgQXV0b3IgT3JpZ2luYWwsIiBvICJHdWnDs24gQ2luZW1hdG9ncsOhZmljbyBiYXNhZG8gZW4gbGEgT2JyYSBvcmlnaW5hbCBkZWwgQXV0b3IgT3JpZ2luYWwiKS4gVGFsIGNyw6lkaXRvIHB1ZWRlIHNlciBpbXBsZW1lbnRhZG8gZGUgY3VhbHF1aWVyIGZvcm1hIHJhem9uYWJsZTsgZW4gZWwgY2Fzbywgc2luIGVtYmFyZ28sIGRlIE9icmFzIERlcml2YWRhcyB1IE9icmFzIENvbGVjdGl2YXMsIHRhbCBjcsOpZGl0byBhcGFyZWNlcsOhLCBjb21vIG3DrW5pbW8sIGRvbmRlIGFwYXJlY2UgZWwgY3LDqWRpdG8gZGUgY3VhbHF1aWVyIG90cm8gYXV0b3IgY29tcGFyYWJsZSB5IGRlIHVuYSBtYW5lcmEsIGFsIG1lbm9zLCB0YW4gZGVzdGFjYWRhIGNvbW8gZWwgY3LDqWRpdG8gZGUgb3RybyBhdXRvciBjb21wYXJhYmxlLgoKZC4JUGFyYSBldml0YXIgdG9kYSBjb25mdXNpw7NuLCBlbCBMaWNlbmNpYW50ZSBhY2xhcmEgcXVlLCBjdWFuZG8gbGEgb2JyYSBlcyB1bmEgY29tcG9zaWNpw7NuIG11c2ljYWw6CgppLglSZWdhbMOtYXMgcG9yIGludGVycHJldGFjacOzbiB5IGVqZWN1Y2nDs24gYmFqbyBsaWNlbmNpYXMgZ2VuZXJhbGVzLiBFbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gZXhjbHVzaXZvIGRlIGF1dG9yaXphciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIG8gbGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGRlIGxhIG9icmEgeSBkZSByZWNvbGVjdGFyLCBzZWEgaW5kaXZpZHVhbG1lbnRlIG8gYSB0cmF2w6lzIGRlIHVuYSBzb2NpZWRhZCBkZSBnZXN0acOzbiBjb2xlY3RpdmEgZGUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIChwb3IgZWplbXBsbywgU0FZQ08pLCBsYXMgcmVnYWzDrWFzIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIG8gcG9yIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIChwb3IgZWplbXBsbyBXZWJjYXN0KSBsaWNlbmNpYWRhIGJham8gbGljZW5jaWFzIGdlbmVyYWxlcywgc2kgbGEgaW50ZXJwcmV0YWNpw7NuIG8gZWplY3VjacOzbiBkZSBsYSBvYnJhIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBvcmllbnRhZGEgcG9yIG8gZGlyaWdpZGEgYSBsYSBvYnRlbmNpw7NuIGRlIHVuYSB2ZW50YWphIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLgoKaWkuCVJlZ2Fsw61hcyBwb3IgRm9ub2dyYW1hcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSByZWNvbGVjdGFyLCBpbmRpdmlkdWFsbWVudGUgbyBhIHRyYXbDqXMgZGUgdW5hIHNvY2llZGFkIGRlIGdlc3Rpw7NuIGNvbGVjdGl2YSBkZSBkZXJlY2hvcyBkZSBhdXRvciB5IGRlcmVjaG9zIGNvbmV4b3MgKHBvciBlamVtcGxvLCBsb3MgY29uc2FncmFkb3MgcG9yIGxhIFNBWUNPKSwgdW5hIGFnZW5jaWEgZGUgZGVyZWNob3MgbXVzaWNhbGVzIG8gYWxnw7puIGFnZW50ZSBkZXNpZ25hZG8sIGxhcyByZWdhbMOtYXMgcG9yIGN1YWxxdWllciBmb25vZ3JhbWEgcXVlIFVzdGVkIGNyZWUgYSBwYXJ0aXIgZGUgbGEgb2JyYSAo4oCcdmVyc2nDs24gY292ZXLigJ0pIHkgZGlzdHJpYnV5YSwgZW4gbG9zIHTDqXJtaW5vcyBkZWwgcsOpZ2ltZW4gZGUgZGVyZWNob3MgZGUgYXV0b3IsIHNpIGxhIGNyZWFjacOzbiBvIGRpc3RyaWJ1Y2nDs24gZGUgZXNhIHZlcnNpw7NuIGNvdmVyIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkZXN0aW5hZGEgbyBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuCgplLglHZXN0acOzbiBkZSBEZXJlY2hvcyBkZSBBdXRvciBzb2JyZSBJbnRlcnByZXRhY2lvbmVzIHkgRWplY3VjaW9uZXMgRGlnaXRhbGVzIChXZWJDYXN0aW5nKS4gUGFyYSBldml0YXIgdG9kYSBjb25mdXNpw7NuLCBlbCBMaWNlbmNpYW50ZSBhY2xhcmEgcXVlLCBjdWFuZG8gbGEgb2JyYSBzZWEgdW4gZm9ub2dyYW1hLCBlbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gZXhjbHVzaXZvIGRlIGF1dG9yaXphciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8sIHdlYmNhc3QpIHkgZGUgcmVjb2xlY3RhciwgaW5kaXZpZHVhbG1lbnRlIG8gYSB0cmF2w6lzIGRlIHVuYSBzb2NpZWRhZCBkZSBnZXN0acOzbiBjb2xlY3RpdmEgZGUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIChwb3IgZWplbXBsbywgQUNJTlBSTyksIGxhcyByZWdhbMOtYXMgcG9yIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIChwb3IgZWplbXBsbywgd2ViY2FzdCksIHN1amV0YSBhIGxhcyBkaXNwb3NpY2lvbmVzIGFwbGljYWJsZXMgZGVsIHLDqWdpbWVuIGRlIERlcmVjaG8gZGUgQXV0b3IsIHNpIGVzdGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuCgo1LiBSZXByZXNlbnRhY2lvbmVzLCBHYXJhbnTDrWFzIHkgTGltaXRhY2lvbmVzIGRlIFJlc3BvbnNhYmlsaWRhZC4KQSBNRU5PUyBRVUUgTEFTIFBBUlRFUyBMTyBBQ09SREFSQU4gREUgT1RSQSBGT1JNQSBQT1IgRVNDUklUTywgRUwgTElDRU5DSUFOVEUgT0ZSRUNFIExBIE9CUkEgKEVOIEVMIEVTVEFETyBFTiBFTCBRVUUgU0UgRU5DVUVOVFJBKSDigJxUQUwgQ1VBTOKAnSwgU0lOIEJSSU5EQVIgR0FSQU5Uw41BUyBERSBDTEFTRSBBTEdVTkEgUkVTUEVDVE8gREUgTEEgT0JSQSwgWUEgU0VBIEVYUFJFU0EsIElNUEzDjUNJVEEsIExFR0FMIE8gQ1VBTFFVSUVSQSBPVFJBLCBJTkNMVVlFTkRPLCBTSU4gTElNSVRBUlNFIEEgRUxMQVMsIEdBUkFOVMONQVMgREUgVElUVUxBUklEQUQsIENPTUVSQ0lBQklMSURBRCwgQURBUFRBQklMSURBRCBPIEFERUNVQUNJw5NOIEEgUFJPUMOTU0lUTyBERVRFUk1JTkFETywgQVVTRU5DSUEgREUgSU5GUkFDQ0nDk04sIERFIEFVU0VOQ0lBIERFIERFRkVDVE9TIExBVEVOVEVTIE8gREUgT1RSTyBUSVBPLCBPIExBIFBSRVNFTkNJQSBPIEFVU0VOQ0lBIERFIEVSUk9SRVMsIFNFQU4gTyBOTyBERVNDVUJSSUJMRVMgKFBVRURBTiBPIE5PIFNFUiBFU1RPUyBERVNDVUJJRVJUT1MpLiBBTEdVTkFTIEpVUklTRElDQ0lPTkVTIE5PIFBFUk1JVEVOIExBIEVYQ0xVU0nDk04gREUgR0FSQU5Uw41BUyBJTVBMw41DSVRBUywgRU4gQ1VZTyBDQVNPIEVTVEEgRVhDTFVTScOTTiBQVUVERSBOTyBBUExJQ0FSU0UgQSBVU1RFRC4KCjYuIExpbWl0YWNpw7NuIGRlIHJlc3BvbnNhYmlsaWRhZC4KQSBNRU5PUyBRVUUgTE8gRVhJSkEgRVhQUkVTQU1FTlRFIExBIExFWSBBUExJQ0FCTEUsIEVMIExJQ0VOQ0lBTlRFIE5PIFNFUsOBIFJFU1BPTlNBQkxFIEFOVEUgVVNURUQgUE9SIERBw5FPIEFMR1VOTywgU0VBIFBPUiBSRVNQT05TQUJJTElEQUQgRVhUUkFDT05UUkFDVFVBTCwgUFJFQ09OVFJBQ1RVQUwgTyBDT05UUkFDVFVBTCwgT0JKRVRJVkEgTyBTVUJKRVRJVkEsIFNFIFRSQVRFIERFIERBw5FPUyBNT1JBTEVTIE8gUEFUUklNT05JQUxFUywgRElSRUNUT1MgTyBJTkRJUkVDVE9TLCBQUkVWSVNUT1MgTyBJTVBSRVZJU1RPUyBQUk9EVUNJRE9TIFBPUiBFTCBVU08gREUgRVNUQSBMSUNFTkNJQSBPIERFIExBIE9CUkEsIEFVTiBDVUFORE8gRUwgTElDRU5DSUFOVEUgSEFZQSBTSURPIEFEVkVSVElETyBERSBMQSBQT1NJQklMSURBRCBERSBESUNIT1MgREHDkU9TLiBBTEdVTkFTIExFWUVTIE5PIFBFUk1JVEVOIExBIEVYQ0xVU0nDk04gREUgQ0lFUlRBIFJFU1BPTlNBQklMSURBRCwgRU4gQ1VZTyBDQVNPIEVTVEEgRVhDTFVTScOTTiBQVUVERSBOTyBBUExJQ0FSU0UgQSBVU1RFRC4KCjcuIFTDqXJtaW5vLgoKYS4JRXN0YSBMaWNlbmNpYSB5IGxvcyBkZXJlY2hvcyBvdG9yZ2Fkb3MgZW4gdmlydHVkIGRlIGVsbGEgdGVybWluYXLDoW4gYXV0b23DoXRpY2FtZW50ZSBzaSBVc3RlZCBpbmZyaW5nZSBhbGd1bmEgY29uZGljacOzbiBlc3RhYmxlY2lkYSBlbiBlbGxhLiBTaW4gZW1iYXJnbywgbG9zIGluZGl2aWR1b3MgbyBlbnRpZGFkZXMgcXVlIGhhbiByZWNpYmlkbyBPYnJhcyBEZXJpdmFkYXMgbyBDb2xlY3RpdmFzIGRlIFVzdGVkIGRlIGNvbmZvcm1pZGFkIGNvbiBlc3RhIExpY2VuY2lhLCBubyB2ZXLDoW4gdGVybWluYWRhcyBzdXMgbGljZW5jaWFzLCBzaWVtcHJlIHF1ZSBlc3RvcyBpbmRpdmlkdW9zIG8gZW50aWRhZGVzIHNpZ2FuIGN1bXBsaWVuZG8gw61udGVncmFtZW50ZSBsYXMgY29uZGljaW9uZXMgZGUgZXN0YXMgbGljZW5jaWFzLiBMYXMgU2VjY2lvbmVzIDEsIDIsIDUsIDYsIDcsIHkgOCBzdWJzaXN0aXLDoW4gYSBjdWFscXVpZXIgdGVybWluYWNpw7NuIGRlIGVzdGEgTGljZW5jaWEuCgpiLglTdWpldGEgYSBsYXMgY29uZGljaW9uZXMgeSB0w6lybWlub3MgYW50ZXJpb3JlcywgbGEgbGljZW5jaWEgb3RvcmdhZGEgYXF1w60gZXMgcGVycGV0dWEgKGR1cmFudGUgZWwgcGVyw61vZG8gZGUgdmlnZW5jaWEgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGRlIGxhIG9icmEpLiBObyBvYnN0YW50ZSBsbyBhbnRlcmlvciwgZWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGEgcHVibGljYXIgeS9vIGVzdHJlbmFyIGxhIE9icmEgYmFqbyBjb25kaWNpb25lcyBkZSBsaWNlbmNpYSBkaWZlcmVudGVzIG8gYSBkZWphciBkZSBkaXN0cmlidWlybGEgZW4gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIExpY2VuY2lhIGVuIGN1YWxxdWllciBtb21lbnRvOyBlbiBlbCBlbnRlbmRpZG8sIHNpbiBlbWJhcmdvLCBxdWUgZXNhIGVsZWNjacOzbiBubyBzZXJ2aXLDoSBwYXJhIHJldm9jYXIgZXN0YSBsaWNlbmNpYSBvIHF1ZSBkZWJhIHNlciBvdG9yZ2FkYSAsIGJham8gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIGxpY2VuY2lhKSwgeSBlc3RhIGxpY2VuY2lhIGNvbnRpbnVhcsOhIGVuIHBsZW5vIHZpZ29yIHkgZWZlY3RvIGEgbWVub3MgcXVlIHNlYSB0ZXJtaW5hZGEgY29tbyBzZSBleHByZXNhIGF0csOhcy4gTGEgTGljZW5jaWEgcmV2b2NhZGEgY29udGludWFyw6Egc2llbmRvIHBsZW5hbWVudGUgdmlnZW50ZSB5IGVmZWN0aXZhIHNpIG5vIHNlIGxlIGRhIHTDqXJtaW5vIGVuIGxhcyBjb25kaWNpb25lcyBpbmRpY2FkYXMgYW50ZXJpb3JtZW50ZS4KCjguIFZhcmlvcy4KCmEuCUNhZGEgdmV6IHF1ZSBVc3RlZCBkaXN0cmlidXlhIG8gcG9uZ2EgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBvIHVuYSBPYnJhIENvbGVjdGl2YSwgZWwgTGljZW5jaWFudGUgb2ZyZWNlcsOhIGFsIGRlc3RpbmF0YXJpbyB1bmEgbGljZW5jaWEgZW4gbG9zIG1pc21vcyB0w6lybWlub3MgeSBjb25kaWNpb25lcyBxdWUgbGEgbGljZW5jaWEgb3RvcmdhZGEgYSBVc3RlZCBiYWpvIGVzdGEgTGljZW5jaWEuCgpiLglTaSBhbGd1bmEgZGlzcG9zaWNpw7NuIGRlIGVzdGEgTGljZW5jaWEgcmVzdWx0YSBpbnZhbGlkYWRhIG8gbm8gZXhpZ2libGUsIHNlZ8O6biBsYSBsZWdpc2xhY2nDs24gdmlnZW50ZSwgZXN0byBubyBhZmVjdGFyw6EgbmkgbGEgdmFsaWRleiBuaSBsYSBhcGxpY2FiaWxpZGFkIGRlbCByZXN0byBkZSBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhIHksIHNpbiBhY2Npw7NuIGFkaWNpb25hbCBwb3IgcGFydGUgZGUgbG9zIHN1amV0b3MgZGUgZXN0ZSBhY3VlcmRvLCBhcXXDqWxsYSBzZSBlbnRlbmRlcsOhIHJlZm9ybWFkYSBsbyBtw61uaW1vIG5lY2VzYXJpbyBwYXJhIGhhY2VyIHF1ZSBkaWNoYSBkaXNwb3NpY2nDs24gc2VhIHbDoWxpZGEgeSBleGlnaWJsZS4KCmMuCU5pbmfDum4gdMOpcm1pbm8gbyBkaXNwb3NpY2nDs24gZGUgZXN0YSBMaWNlbmNpYSBzZSBlc3RpbWFyw6EgcmVudW5jaWFkYSB5IG5pbmd1bmEgdmlvbGFjacOzbiBkZSBlbGxhIHNlcsOhIGNvbnNlbnRpZGEgYSBtZW5vcyBxdWUgZXNhIHJlbnVuY2lhIG8gY29uc2VudGltaWVudG8gc2VhIG90b3JnYWRvIHBvciBlc2NyaXRvIHkgZmlybWFkbyBwb3IgbGEgcGFydGUgcXVlIHJlbnVuY2llIG8gY29uc2llbnRhLgoKZC4JRXN0YSBMaWNlbmNpYSByZWZsZWphIGVsIGFjdWVyZG8gcGxlbm8gZW50cmUgbGFzIHBhcnRlcyByZXNwZWN0byBhIGxhIE9icmEgYXF1w60gbGljZW5jaWFkYS4gTm8gaGF5IGFycmVnbG9zLCBhY3VlcmRvcyBvIGRlY2xhcmFjaW9uZXMgcmVzcGVjdG8gYSBsYSBPYnJhIHF1ZSBubyBlc3TDqW4gZXNwZWNpZmljYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gRWwgTGljZW5jaWFudGUgbm8gc2UgdmVyw6EgbGltaXRhZG8gcG9yIG5pbmd1bmEgZGlzcG9zaWNpw7NuIGFkaWNpb25hbCBxdWUgcHVlZGEgc3VyZ2lyIGVuIGFsZ3VuYSBjb211bmljYWNpw7NuIGVtYW5hZGEgZGUgVXN0ZWQuIEVzdGEgTGljZW5jaWEgbm8gcHVlZGUgc2VyIG1vZGlmaWNhZGEgc2luIGVsIGNvbnNlbnRpbWllbnRvIG11dHVvIHBvciBlc2NyaXRvIGRlbCBMaWNlbmNpYW50ZSB5IFVzdGVkLgo= |