Development of a tool for control loop performance assessment

This article describes the primary characteristics of a tool developed to perform a control loop performance assessment, named SELC due to its name in Spanish. With this tool, we expect to increase the reliability and efficiency of productive processes in Colombia’s industry. A brief description of...

Full description

Autores:
Jiménez-Cabas, Javier
Manrique-Morelos, Fabián
Meléndez-Pertuz, Farid
Torres-Carvajal, Andrés
Cárdenas-Cabrera, Jorge
Collazos-Morales, Carlos
R. González, Ramón E.
Tipo de recurso:
http://purl.org/coar/resource_type/c_816b
Fecha de publicación:
2020
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/7239
Acceso en línea:
https://hdl.handle.net/11323/7239
https://repositorio.cuc.edu.co/
Palabra clave:
Control performance monitoring
Software
Control loop assessment
Control performance indices
Rights
openAccess
License
CC0 1.0 Universal
id RCUC2_810f9385a2f7569c2c5160d94f1d4834
oai_identifier_str oai:repositorio.cuc.edu.co:11323/7239
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.spa.fl_str_mv Development of a tool for control loop performance assessment
title Development of a tool for control loop performance assessment
spellingShingle Development of a tool for control loop performance assessment
Control performance monitoring
Software
Control loop assessment
Control performance indices
title_short Development of a tool for control loop performance assessment
title_full Development of a tool for control loop performance assessment
title_fullStr Development of a tool for control loop performance assessment
title_full_unstemmed Development of a tool for control loop performance assessment
title_sort Development of a tool for control loop performance assessment
dc.creator.fl_str_mv Jiménez-Cabas, Javier
Manrique-Morelos, Fabián
Meléndez-Pertuz, Farid
Torres-Carvajal, Andrés
Cárdenas-Cabrera, Jorge
Collazos-Morales, Carlos
R. González, Ramón E.
dc.contributor.author.spa.fl_str_mv Jiménez-Cabas, Javier
Manrique-Morelos, Fabián
Meléndez-Pertuz, Farid
Torres-Carvajal, Andrés
Cárdenas-Cabrera, Jorge
Collazos-Morales, Carlos
R. González, Ramón E.
dc.subject.spa.fl_str_mv Control performance monitoring
Software
Control loop assessment
Control performance indices
topic Control performance monitoring
Software
Control loop assessment
Control performance indices
description This article describes the primary characteristics of a tool developed to perform a control loop performance assessment, named SELC due to its name in Spanish. With this tool, we expect to increase the reliability and efficiency of productive processes in Colombia’s industry. A brief description of SELC’s functionality and a literature review about the different techniques integrated is presented. Finally, the results and conclusions of the testing phase were presented, performed with both simulated and real data. The actual data comes from an online industrial repository provided by the South African Council for Automation and Control (SACAC).
publishDate 2020
dc.date.accessioned.none.fl_str_mv 2020-11-10T21:04:17Z
dc.date.available.none.fl_str_mv 2020-11-10T21:04:17Z
dc.date.issued.none.fl_str_mv 2020-10-20
dc.type.spa.fl_str_mv Pre-Publicación
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_816b
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/preprint
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ARTOTR
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_816b
status_str acceptedVersion
dc.identifier.uri.spa.fl_str_mv https://hdl.handle.net/11323/7239
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
url https://hdl.handle.net/11323/7239
https://repositorio.cuc.edu.co/
identifier_str_mv Corporación Universidad de la Costa
REDICUC - Repositorio CUC
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.references.spa.fl_str_mv 1. Bauer, M., Horch, A., Xie, L., Jelali, M., Thornhill, N.: The current state of control loop performance monitoring–a survey of application in industry. J. Process Control 38, 1–10 (2016) CrossRefGoogle Scholar
2. Jelali, M.: Control Performance Management in Industrial Automation: Assessment. Diagnosis and Improvement of Control Loop Performance. Springer, London (2012). https://doi.org/10.1007/978-1-4471-4546-2 CrossRefGoogle Scholar
3. Thornhill, N.F., Horch, A.: Advances and new directions in plant-wide disturbance detection and diagnosis. Control Eng. Pract. 15(10), 1196–1206 (2007) CrossRefGoogle Scholar
4. Cardenas-Cabrera, J., et al.: Model predictive control strategies performance evaluation over a pipeline transportation system. J. Control Sci. Eng. 2019, 1–11 (2019) CrossRefGoogle Scholar
5. Borrero-Salazar, A.A., Cardenas-Cabrera, J.M., Barros-Gutierrez, D.A., Jiménez-Cabas, J.A.: A comparison study of MPC strategies based on minimum variance control index performance. Espacios 40(20) (2019) Google Scholar
6. Longhi, L.G.S., et al.: Control loop performance assessment and improvement of an industrial hydrotreating unit and its economical benefits. Sba Control. Automação Soc. Bras. Autom. 23(1), 60–77 (2012) CrossRefGoogle Scholar
7. Farenzena, M.: Novel methodologies for assessment and diagnostics in control loop management. Universidade Federal do Rio Grande do Sul (2008) Google Scholar
8. Harris, T.J.: Assessment of control loop performance. Can. J. Chem. Eng. 67(5), 856–861 (1989) CrossRefGoogle Scholar
9. Farenzena, M., Trierweiler, J.O.: Quantifying the impact of control loop performance, time delay and white-noise over the final product variability. In: Cancun, Mexico: International Symposium on Dynamics and Control of Process Systems (2007) Google Scholar
10. Swanda, A.P., Seborg, D.E.: Evaluating the performance of PID-type feedback control loops using normalized settling time. IFAC Proc. 30(9), 301–306 (1997) CrossRefGoogle Scholar
11. Swanda, A.P., Seborg, D.E.: Controller performance assessment based on setpoint response data. In: Proceedings of the 1999 American Control Conference, vol. 6, pp. 3863–3867 (1999) Google Scholar
12. Hägglund, T.: Automatic detection of sluggish control loops. Control Eng. Pract. 7(12), 1505–1511 (1999) CrossRefGoogle Scholar
13. Vishnubhotla, A.: Frequency and time-domain techniques for control loop performance assessment (1997) Google Scholar
14. Srinivasan, R., Rengaswamy, R., Miller, R.: Control loop performance assessment. 1. A qualitative approach for stiction diagnosis. Ind. Eng. Chem. Res. 44(17), 6708–6718 (2005) CrossRefGoogle Scholar
15. Choudhury, M.A.A.S., Shah, S.L., Thornhill, N.F., Shook, D.S.: Automatic detection and quantification of stiction in control valves. Control Eng. Pract. 14(12), 1395–1412 (2006) CrossRefGoogle Scholar
16. Maruta, H., Kano, M., Kugemoto, H., Shimizu, K.: Modeling and detection of stiction in pneumatic control valve. Trans. Soc. Instrum. Control Eng. 40(8), 825–833 (2004) CrossRefGoogle Scholar
17. He, Q.P., Wang, J., Pottmann, M., Qin, S.J.: A curve fitting method for detecting valve stiction in oscillating control loops. Ind. Eng. Chem. Res. 46(13), 4549–4560 (2007) CrossRefGoogle Scholar
18. Smith, C.A., Corripio, A.B.: Principles and Practice of Automatic Process Control. Editorial F{é}lix Varela (2012) Google Scholar
19. Bauer, M., Auret, L., le Roux, D., Aharonson, V.: An industrial PID data repository for control loop performance monitoring (CPM). IFAC-PapersOnLine 51(4), 823–828 (2018) CrossRefGoogle Scholar
20. Thornhill, N.F., Cox, J.W., Paulonis, M.A.: Diagnosis of plant-wide oscillation through data-driven analysis and process understanding. Control Eng. Pract. 11(12), 1481–1490 (2003) CrossRefGoogle Scholar
21. Horch, A.: A simple method for detection of stiction in control valves. Control Eng. Pract. 7(10), 1221–1231 (1999) CrossRefGoogle Scholar
dc.rights.spa.fl_str_mv CC0 1.0 Universal
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/publicdomain/zero/1.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv CC0 1.0 Universal
http://creativecommons.org/publicdomain/zero/1.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Corporación Universidad de la Costa
dc.source.spa.fl_str_mv Lecture Notes in Computer Science
institution Corporación Universidad de la Costa
dc.source.url.spa.fl_str_mv https://link.springer.com/chapter/10.1007/978-3-030-58802-1_18
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/807d8f7c-96f7-4db6-affa-cec97f2859b7/download
https://repositorio.cuc.edu.co/bitstreams/9fbbbd82-c815-4bff-8628-f8b1f17599ed/download
https://repositorio.cuc.edu.co/bitstreams/9dade001-570f-45e2-9668-d7d354417483/download
https://repositorio.cuc.edu.co/bitstreams/3681601c-d216-42b9-a565-baa688a17614/download
https://repositorio.cuc.edu.co/bitstreams/42898ef4-253f-4fac-b58c-554bb5e7b302/download
bitstream.checksum.fl_str_mv 59f4ea5c4164649013f12eb198d35c26
42fd4ad1e89814f5e4a476b409eb708c
e30e9215131d99561d40d6b0abbe9bad
2ae8c797cb2cd4fb50f3ceddaa31c332
1c3e0388d5c3c4f6819139f10e3b5f28
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1828166810697990144
spelling Jiménez-Cabas, JavierManrique-Morelos, FabiánMeléndez-Pertuz, FaridTorres-Carvajal, AndrésCárdenas-Cabrera, JorgeCollazos-Morales, CarlosR. González, Ramón E.2020-11-10T21:04:17Z2020-11-10T21:04:17Z2020-10-20https://hdl.handle.net/11323/7239Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/This article describes the primary characteristics of a tool developed to perform a control loop performance assessment, named SELC due to its name in Spanish. With this tool, we expect to increase the reliability and efficiency of productive processes in Colombia’s industry. A brief description of SELC’s functionality and a literature review about the different techniques integrated is presented. Finally, the results and conclusions of the testing phase were presented, performed with both simulated and real data. The actual data comes from an online industrial repository provided by the South African Council for Automation and Control (SACAC).Jiménez-Cabas, Javier-will be generated-orcid-0000-0001-9707-8418-600Manrique-Morelos, FabiánMeléndez-Pertuz, FaridTorres-Carvajal, AndrésCárdenas-Cabrera, JorgeCollazos-Morales, CarlosR. González, Ramón E.application/pdfengCorporación Universidad de la CostaCC0 1.0 Universalhttp://creativecommons.org/publicdomain/zero/1.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Lecture Notes in Computer Sciencehttps://link.springer.com/chapter/10.1007/978-3-030-58802-1_18Control performance monitoringSoftwareControl loop assessmentControl performance indicesDevelopment of a tool for control loop performance assessmentPre-Publicaciónhttp://purl.org/coar/resource_type/c_816bTextinfo:eu-repo/semantics/preprinthttp://purl.org/redcol/resource_type/ARTOTRinfo:eu-repo/semantics/acceptedVersion1. Bauer, M., Horch, A., Xie, L., Jelali, M., Thornhill, N.: The current state of control loop performance monitoring–a survey of application in industry. J. Process Control 38, 1–10 (2016) CrossRefGoogle Scholar2. Jelali, M.: Control Performance Management in Industrial Automation: Assessment. Diagnosis and Improvement of Control Loop Performance. Springer, London (2012). https://doi.org/10.1007/978-1-4471-4546-2 CrossRefGoogle Scholar3. Thornhill, N.F., Horch, A.: Advances and new directions in plant-wide disturbance detection and diagnosis. Control Eng. Pract. 15(10), 1196–1206 (2007) CrossRefGoogle Scholar4. Cardenas-Cabrera, J., et al.: Model predictive control strategies performance evaluation over a pipeline transportation system. J. Control Sci. Eng. 2019, 1–11 (2019) CrossRefGoogle Scholar5. Borrero-Salazar, A.A., Cardenas-Cabrera, J.M., Barros-Gutierrez, D.A., Jiménez-Cabas, J.A.: A comparison study of MPC strategies based on minimum variance control index performance. Espacios 40(20) (2019) Google Scholar6. Longhi, L.G.S., et al.: Control loop performance assessment and improvement of an industrial hydrotreating unit and its economical benefits. Sba Control. Automação Soc. Bras. Autom. 23(1), 60–77 (2012) CrossRefGoogle Scholar7. Farenzena, M.: Novel methodologies for assessment and diagnostics in control loop management. Universidade Federal do Rio Grande do Sul (2008) Google Scholar8. Harris, T.J.: Assessment of control loop performance. Can. J. Chem. Eng. 67(5), 856–861 (1989) CrossRefGoogle Scholar9. Farenzena, M., Trierweiler, J.O.: Quantifying the impact of control loop performance, time delay and white-noise over the final product variability. In: Cancun, Mexico: International Symposium on Dynamics and Control of Process Systems (2007) Google Scholar10. Swanda, A.P., Seborg, D.E.: Evaluating the performance of PID-type feedback control loops using normalized settling time. IFAC Proc. 30(9), 301–306 (1997) CrossRefGoogle Scholar11. Swanda, A.P., Seborg, D.E.: Controller performance assessment based on setpoint response data. In: Proceedings of the 1999 American Control Conference, vol. 6, pp. 3863–3867 (1999) Google Scholar12. Hägglund, T.: Automatic detection of sluggish control loops. Control Eng. Pract. 7(12), 1505–1511 (1999) CrossRefGoogle Scholar13. Vishnubhotla, A.: Frequency and time-domain techniques for control loop performance assessment (1997) Google Scholar14. Srinivasan, R., Rengaswamy, R., Miller, R.: Control loop performance assessment. 1. A qualitative approach for stiction diagnosis. Ind. Eng. Chem. Res. 44(17), 6708–6718 (2005) CrossRefGoogle Scholar15. Choudhury, M.A.A.S., Shah, S.L., Thornhill, N.F., Shook, D.S.: Automatic detection and quantification of stiction in control valves. Control Eng. Pract. 14(12), 1395–1412 (2006) CrossRefGoogle Scholar16. Maruta, H., Kano, M., Kugemoto, H., Shimizu, K.: Modeling and detection of stiction in pneumatic control valve. Trans. Soc. Instrum. Control Eng. 40(8), 825–833 (2004) CrossRefGoogle Scholar17. He, Q.P., Wang, J., Pottmann, M., Qin, S.J.: A curve fitting method for detecting valve stiction in oscillating control loops. Ind. Eng. Chem. Res. 46(13), 4549–4560 (2007) CrossRefGoogle Scholar18. Smith, C.A., Corripio, A.B.: Principles and Practice of Automatic Process Control. Editorial F{é}lix Varela (2012) Google Scholar19. Bauer, M., Auret, L., le Roux, D., Aharonson, V.: An industrial PID data repository for control loop performance monitoring (CPM). IFAC-PapersOnLine 51(4), 823–828 (2018) CrossRefGoogle Scholar20. Thornhill, N.F., Cox, J.W., Paulonis, M.A.: Diagnosis of plant-wide oscillation through data-driven analysis and process understanding. Control Eng. Pract. 11(12), 1481–1490 (2003) CrossRefGoogle Scholar21. Horch, A.: A simple method for detection of stiction in control valves. Control Eng. Pract. 7(10), 1221–1231 (1999) CrossRefGoogle ScholarPublicationORIGINALDevelopment of Non-Invasive Monitoring Approach.pdfDevelopment of Non-Invasive Monitoring Approach.pdfapplication/pdf1242924https://repositorio.cuc.edu.co/bitstreams/807d8f7c-96f7-4db6-affa-cec97f2859b7/download59f4ea5c4164649013f12eb198d35c26MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8701https://repositorio.cuc.edu.co/bitstreams/9fbbbd82-c815-4bff-8628-f8b1f17599ed/download42fd4ad1e89814f5e4a476b409eb708cMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/9dade001-570f-45e2-9668-d7d354417483/downloade30e9215131d99561d40d6b0abbe9badMD53TEXTDevelopment of Non-Invasive Monitoring Approach.pdf.txtDevelopment of Non-Invasive Monitoring Approach.pdf.txtExtracted texttext/plain45560https://repositorio.cuc.edu.co/bitstreams/3681601c-d216-42b9-a565-baa688a17614/download2ae8c797cb2cd4fb50f3ceddaa31c332MD54THUMBNAILDevelopment of Non-Invasive Monitoring Approach.pdf.jpgDevelopment of Non-Invasive Monitoring Approach.pdf.jpgGenerated Thumbnailimage/jpeg6878https://repositorio.cuc.edu.co/bitstreams/42898ef4-253f-4fac-b58c-554bb5e7b302/download1c3e0388d5c3c4f6819139f10e3b5f28MD5511323/7239oai:repositorio.cuc.edu.co:11323/72392024-09-17 14:12:36.406http://creativecommons.org/publicdomain/zero/1.0/CC0 1.0 Universalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA==