Optimización del desempeño energético de un intercambiador de calor para aumentar la eficiencia de conversión de un generador termoeléctrico aplicado a un motor diésel estacionario
La recuperación de calor residual es una de las principales estrategias para minimizar el desperdicio de energía en los motores de combustión interna. Debido a lo anterior, en la presente investigación se evaluaron distintos diseños de intercambiadores de calor (ICs) reportados en la literatura. En...
- Autores:
-
Ramírez Restrepo, Rafael Antonio
- Tipo de recurso:
- Doctoral thesis
- Fecha de publicación:
- 2022
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/9671
- Acceso en línea:
- https://hdl.handle.net/11323/9671
https://repositorio.cuc.edu.co/
- Palabra clave:
- Intercambiador de calor
Módulo termoeléctrico
Generador termoeléctrico
Simulación CFD
Heat exchanger
Thermoelectric module
Thermoelectric generator
CFD simulation
- Rights
- openAccess
- License
- Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)
id |
RCUC2_80b7f6895fee8eaaf6fe0a58abd220c0 |
---|---|
oai_identifier_str |
oai:repositorio.cuc.edu.co:11323/9671 |
network_acronym_str |
RCUC2 |
network_name_str |
REDICUC - Repositorio CUC |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Optimización del desempeño energético de un intercambiador de calor para aumentar la eficiencia de conversión de un generador termoeléctrico aplicado a un motor diésel estacionario |
title |
Optimización del desempeño energético de un intercambiador de calor para aumentar la eficiencia de conversión de un generador termoeléctrico aplicado a un motor diésel estacionario |
spellingShingle |
Optimización del desempeño energético de un intercambiador de calor para aumentar la eficiencia de conversión de un generador termoeléctrico aplicado a un motor diésel estacionario Intercambiador de calor Módulo termoeléctrico Generador termoeléctrico Simulación CFD Heat exchanger Thermoelectric module Thermoelectric generator CFD simulation |
title_short |
Optimización del desempeño energético de un intercambiador de calor para aumentar la eficiencia de conversión de un generador termoeléctrico aplicado a un motor diésel estacionario |
title_full |
Optimización del desempeño energético de un intercambiador de calor para aumentar la eficiencia de conversión de un generador termoeléctrico aplicado a un motor diésel estacionario |
title_fullStr |
Optimización del desempeño energético de un intercambiador de calor para aumentar la eficiencia de conversión de un generador termoeléctrico aplicado a un motor diésel estacionario |
title_full_unstemmed |
Optimización del desempeño energético de un intercambiador de calor para aumentar la eficiencia de conversión de un generador termoeléctrico aplicado a un motor diésel estacionario |
title_sort |
Optimización del desempeño energético de un intercambiador de calor para aumentar la eficiencia de conversión de un generador termoeléctrico aplicado a un motor diésel estacionario |
dc.creator.fl_str_mv |
Ramírez Restrepo, Rafael Antonio |
dc.contributor.advisor.none.fl_str_mv |
Sagastume Gutierrez, Alexis Duarte Forero, Jorge Eliecer |
dc.contributor.author.none.fl_str_mv |
Ramírez Restrepo, Rafael Antonio |
dc.contributor.jury.none.fl_str_mv |
Amaris Castilla, Carlos Tovar Ospino, Iván |
dc.subject.proposal.spa.fl_str_mv |
Intercambiador de calor Módulo termoeléctrico Generador termoeléctrico Simulación CFD |
topic |
Intercambiador de calor Módulo termoeléctrico Generador termoeléctrico Simulación CFD Heat exchanger Thermoelectric module Thermoelectric generator CFD simulation |
dc.subject.proposal.eng.fl_str_mv |
Heat exchanger Thermoelectric module Thermoelectric generator CFD simulation |
description |
La recuperación de calor residual es una de las principales estrategias para minimizar el desperdicio de energía en los motores de combustión interna. Debido a lo anterior, en la presente investigación se evaluaron distintos diseños de intercambiadores de calor (ICs) reportados en la literatura. En este caso, los ICs se clasifican en: IC de aleta rectangular, IC de dientes e IC hexagonales. El incremento en los niveles de velocidad de rotación, torque y porcentaje de biodiésel permite un aumento en la potencia recuperada en el TEG. El uso del TEG en los motores de combustión interna implica una disminución en el consumo de combustible, lo cual provoca una reducción de emisiones contaminantes. El proceso de optimización del IC de aleta rectangular alternativa II (ver Figura 4.4), permitió alcanzar una eficiencia máxima del 5% en el TEG, lo que representa una mejora relativa del 56% comparado con la eficiencia máxima del 3.2% reportada en la literatura. El enfoque de investigación utilizado en este estudio permitió identificar la geometría de IC más adecuada para el TEG analizado. La investigación realizada contribuye a acelerar el desarrollo de esta tecnología para su futura expansión en el sector automotriz y otros sectores de la industria y el comercio. Adicionalmente, al mejorar la capacidad de recuperación de la energía térmica de los gases de escape en los motores de combustión interna (MCI) mediante el uso de los ICs optimizados permite la reducción de emisiones como el CO2, CO, HC y NOx. Lo anterior, es una consecuencia directa de la menor necesidad de usar parte de la energía del combustible en la alimentación de sistemas auxiliares del motor, los cuales podrían funcionar a partir de la energía recuperada de los gases de escape. El desarrollo del TEG más eficiente permitirá considerar nuevos enfoques para integrar sistemas con el propósito mejorar la eficiencia de los MCI, como los generadores de hidrógeno. |
publishDate |
2022 |
dc.date.accessioned.none.fl_str_mv |
2022-12-12T20:45:24Z |
dc.date.available.none.fl_str_mv |
2022-12-12T20:45:24Z |
dc.date.issued.none.fl_str_mv |
2022 |
dc.type.spa.fl_str_mv |
Trabajo de grado - Doctorado |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_db06 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TD |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
format |
http://purl.org/coar/resource_type/c_db06 |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/11323/9671 |
dc.identifier.instname.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.identifier.reponame.spa.fl_str_mv |
REDICUC - Repositorio CUC |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.cuc.edu.co/ |
url |
https://hdl.handle.net/11323/9671 https://repositorio.cuc.edu.co/ |
identifier_str_mv |
Corporación Universidad de la Costa REDICUC - Repositorio CUC |
dc.language.iso.spa.fl_str_mv |
other |
language_invalid_str_mv |
other |
dc.relation.references.spa.fl_str_mv |
[1] A. S. M. Hasan and A. Trianni, “A review of energy management assessment models for industrial energy efficiency,” Energies, vol. 13, no. 21, p. 5713, 2020. [2] Z.-G. Shen, L.-L. Tian, and X. Liu, “Automotive exhaust thermoelectric generators: Current status, challenges and future prospects,” Energy Convers. Manag., vol. 195, pp. 1138–1173, Sep. 2019, doi: 10.1016/j.enconman.2019.05.087. [3] Q. E. Hussain, D. R. Brigham, and C. W. Maranville, “Thermoelectric Exhaust Heat Recovery for Hybrid Vehicles,” SAE Int. J. Engines, vol. 2, no. 1, pp. 2009-01–1327, Apr. 2009, doi: 10.4271/2009-01-1327. [4] R. Saidur, M. Rezaei, W. K. Muzammil, M. H. Hassan, S. Paria, and M. Hasanuzzaman, “Technologies to recover exhaust heat from internal combustion engines,” Renew. Sustain. Energy Rev., vol. 16, no. 8, pp. 5649–5659, Oct. 2012, doi: 10.1016/j.rser.2012.05.018. [5] N. Muralidhar, M. Himabindu, and R. V. Ravikrishna, “Modeling of a hybrid electric heavy duty vehicle to assess energy recovery using a thermoelectric generator,” Energy, vol. 148, pp. 1046–1059, Apr. 2018, doi: 10.1016/j.energy.2018.02.023. [6] M. He, E. Wang, Y. Zhang, W. Zhang, F. Zhang, and C. Zhao, “Performance analysis of a multilayer thermoelectric generator for exhaust heat recovery of a heavy-duty diesel engine,” Appl. Energy, vol. 274, pp. 115298–115315, Sep. 2020, doi: 10.1016/j.apenergy.2020.115298. [7] O. H. Ando Junior, A. L. O. Maran, and N. C. Henao, “A review of the development and applications of thermoelectric microgenerators for energy harvesting,” Renew. Sustain. Energy Rev., vol. 91, pp. 376 –393, Aug. 2018, doi: 10.1016/j.rser.2018.03.052. [8] K. Cheng, J. Qin, Y. Jiang, S. Zhang, and W. Bao, “Performance comparison of single-and multi-stage onboard thermoelectric generators and stage number optimization at a large temperature difference,” Appl. Therm. Eng., vol. 141, pp. 456–466, 2018. [9] A. A. Negash, Y. Choi, and T. Y. Kim, “Experimental investigation of optimal location of flow straightener from the aspects of power output and pressure drop characteristics of a thermoelectric generator,” Energy, vol. 219, pp. 119565 –119576, Mar. 2021, doi: 10.1016/j.energy.2020.119565. [10] C. Liu, Y. D. Deng, X. Y. Wang, X. Liu, Y. P. Wang, and C. Q. Su, “Multi-objective optimization of heat exchanger in an automotive exhaust thermoelectric generator,” Appl. Therm. Eng., vol. 108, pp. 916–926, Sep. 2016, doi: 10.1016/j.applthermaleng.2016.07.175. [11] S. Vale, L. Heber, P. J. Coelho, and C. M. Silva, “Parametric study of a thermoelectric generator system for exhaust gas energy recovery in diesel road freight transportation,” Energy Convers. Manag., vol. 133, pp. 167– 177, Feb. 2017, doi: 10.1016/j.enconman.2016.11.064. [12] R. Ramírez, A. S. Gutiérrez, J. J. Cabello Eras, K. Valencia, B. Hernández, and J. Duarte Forero, “Evaluation of the energy recovery potential of thermoelectric generators in diesel engines,” J. Clean. Prod., vol. 241, p. 118412, Dec. 2019, doi: 10.1016/j.jclepro.2019.118412. [13] M. Borcuch, M. Musiał, S. Gumuła, K. Sztekler, and K. Wojciechowski, “Analysis of the fins geometry of a hotside heat exchanger on the performance parameters of a thermoelectric generation system,” Appl. Therm. Eng., vol. 127, pp. 1355 –1363, Dec. 2017, doi: 10.1016/j.applthermaleng.2017.08.147. [14] J. Szybist, S. Davis, J. Thomas, and B. C. Kaul, “Performance of a Half-Heusler Thermoelectric Generator for [15] T. Y. Kim, J. Kwak, and B. Kim, “Energy harvesting performance of hexagonal shaped thermoelectric generator for passenger vehicle applications: An experimental approach,” Energy Convers. Manag., vol. 160, pp. 14 –21, Mar. 2018, doi: 10.1016/j.enconman.2018.01.032. [16] A. Marvão, P. J. Coelho, and H. C. Rodrigues, “Optimization of a thermoelectric generator for heavy-duty vehicles,” Energy Convers. Manag., vol. 179, pp. 178–191, Jan. 2019, doi: 10.1016/j.enconman.2018.10.045. [17] M. Comamala, A. Massaguer, E. Massaguer, and T. Pujol, “Validation of a fuel economy prediction method based on thermoelectric energy recovery for mid-size vehicles,” Appl. Therm. Eng., vol. 153, pp. 768–778, 2019. [18] E. S. Mohamed, “Development and performance analysis of a TEG system using exhaust recovery for a light diesel vehicle with assessment of fuel economy and emissions,” Appl. Therm. Eng., vol. 147, pp. 661–674, 2019. [19] T. Y. Kim, A. A. Negash, and G. Cho, “Waste heat recovery of a diesel engine using a thermoelectric generator equipped with customized thermoelectric modules,” Energy Convers. Manag., vol. 124, pp. 280–286, Sep. 2016. [20] M. Güler and M. Özkan, “Energy balance analysis of a DI diesel engine with multiple pilot injections strategy and optimization of brake thermal efficiency,” Appl. Therm. Eng., vol. 204, p. 117972, 2022. [21] M. E. Demir and I. Dincer, “Development and heat transfer analysis of a new heat recovery system with thermoelectric generator,” Int. J. Heat Mass Transf., vol. 108, pp. 2002–2010, May 2017, doi: 10.1016/j.ijheatmasstransfer.2016.12.102. [22] S. S. Hoseini, G. Najafi, B. Ghobadian, R. Mamat, N. A. C. Sidik, and W. H. Azmi, “The effect of combustion management on diesel engine emissions fueled with biodiesel-diesel blends,” Renew. Sustain. Energy Rev., vol. 73, pp. 307–331, Jun. 2017, doi: 10.1016/j.rser.2017.01.088. [23] F. Leach, G. Kalghatgi, R. Stone, and P. Miles, “The scope for improving the efficiency and environmental impact of internal combustion engines,” Transp. Eng., vol. 1, p. 100005, 2020. [24] T. Y. Kim, A. A. Negash, and G. Cho, “Experimental study of energy utilization effectiveness of thermoelectric generator on diesel engine,” Energy, vol. 128, pp. 531–539, Jun. 2017, doi: 10.1016/j.energy.2017.04.060. [25] B. Karthikeyan, D. Kesavaram, S. Ashok Kumar, and K. Srithar, “Exhaust energy recovery using thermoelectric power generation from a thermally insulated diesel engine,” Int. J. Green Energy, 2013, doi: 10.1080/15435075.2012.740608. [26] H. G. Zhang, E. H. Wang, and B. Y. Fan, “Heat transfer analysis of a finned-tube evaporator for engine exhaust heat recovery,” Energy Convers. Manag., 2013, doi: 10.1016/j.enconman.2012.09.017. [27] S. N. Hossain and S. Bari, “Waste heat recovery from the exhaust of a diesel generator using Rankine Cycle,” Energy Convers. Manag., 2013, doi: 10.1016/j.enconman.2013.06.009. [28] W. He, S. Wang, X. Zhang, Y. Li, and C. Lu, “Optimization design method of thermoelectric generator based on exhaust gas parameters for recovery of engine waste heat,” Energy, vol. 91, pp. 1–9, Nov. 2015. [29] W. He, G. Zhang, X. Zhang, J. Ji, G. Li, and X. Zhao, “Recent development and application of thermoelectric generator and cooler,” Applied Energy. 2015. doi: 10.1016/j.apenergy.2014.12.075. [30] S. Lan, A. Smith, R. Stobart, and R. Chen, “Feasibility study on a vehicular thermoelectric generator for both waste heat recovery and engine oil warm-up,” Appl. Energy, vol. 242, pp. 273–284, May 2019, doi: 10.1016/j.apenergy.2019.03.056. [31] S. Fan and Y. Gao, “Numerical analysis on the segmented annular thermoelectric generator for waste heat recovery,” Energy, vol. 183, pp. 35–47, Sep. 2019, doi: 10.1016/j.energy.2019.06.103. [32] E. Bellos and C. Tzivanidis, “Energy and financial analysis of a solar driven thermoelectric generator,” J. Clean. Prod., vol. 264, p. 121534, Aug. 2020, doi: 10.1016/j.jclepro.2020.121534. [33] G. Li, Y. Zheng, W. Guo, D. Zhu, and Y. Tang, “Mesoscale combustor-powered thermoelectric generator: Experimental optimization and evaluation metrics,” Appl. Energy, vol. 272, p. 115234, Aug. 2020, doi: 10.1016/j.apenergy.2020.115234. [34] S. Bari and S. N. Hossain, “Waste heat recovery from a diesel engine using shell and tube heat exchanger,” Appl. Therm. Eng., vol. 61, no. 2, pp. 355–363, Nov. 2013, doi: 10.1016/j.applthermaleng.2013.08.020. [35] S. Arumugam, P. Ramakrishna, S. Sangavi, and G. Sriram, “Thermoelectric Analysis of Automobiles Exhaust Waste Heat Recovery Material – A Simulation Study,” Mater. Today Proc., vol. 16, pp. 516–523, 2019, doi: 10.1016/j.matpr.2019.05.123. [36] D. Luo, R. Wang, W. Yu, and W. Zhou, “A numerical study on the performance of a converging thermoelectric generator system used for waste heat recovery,” Appl. Energy, vol. 270, p. 115181, Jul. 2020, doi: 10.1016/j.apenergy.2020.115181. [37] N. D. Love, J. P. Szybist, and C. S. Sluder, “Effect of heat exchanger material and fouling on thermoelectric exhaust heat recovery,” Appl. Energy, vol. 89, no. 1, pp. 322–328, 2012. [38] C. Selvam, S. Manikandan, N. V. Krishna, R. Lamba, S. C. Kaushik, and O. Mahian, “Enhanced thermal performance of a thermoelectric generator with phase change materials,” Int. Commun. Heat Mass Transf., vol. 114, p. 104561, May 2020, doi: 10.1016/j.icheatmasstransfer.2020.104561. [39] Y. Zhou, S. Paul, and S. Bhunia, “Harvesting Wasted Heat in a Microprocessor Using Thermoelectric Generators: Modeling, Analysis and Measurement,” in 2008 Design, Automation and Test in Europe, Mar. 2008, pp. 98–103. doi: 10.1109/DATE.2008.4484669. [40] M. Al Musleh, E. Topriska, L. Jack, and D. Jenkins, “Thermoelectric generator experimental performance testing for wireless sensor network application in smart buildings,” MATEC Web Conf., vol. 120, p. 08003, Aug. 2017, doi: 10.1051/matecconf/201712008003. [41] M. Thielen, L. Sigrist, M. Magno, C. Hierold, and L. Benini, “Human body heat for powering wearable devices: From thermal energy to application,” Energy Convers. Manag., vol. 131, pp. 44–54, Jan. 2017, doi: 10.1016/j.enconman.2016.11.005. [42] M. Guan, K. Wang, D. Xu, and W.-H. Liao, “Design and experimental investigation of a low-voltage thermoelectric energy harvesting system for wireless sensor nodes,” Energy Convers. Manag., vol. 138, pp. 30–37, Apr. 2017, doi: 10.1016/j.enconman.2017.01.049. [43] S. Liu et al., “Micro-thermoelectric generators based on through glass pillars with high output voltage enabled by large temperature difference,” Appl. Energy, vol. 225, pp. 600–610, Sep. 2018, doi: 10.1016/j.apenergy.2018.05.056. [44] B. Orr, A. Akbarzadeh, and P. Lappas, “An exhaust heat recovery system utilising thermoelectric generators and heat pipes,” Appl. Therm. Eng., vol. 126, pp. 1185–1190, Nov. 2017, doi: 10.1016/j.applthermaleng.2016.11.019. [45] Q. Cao, W. Luan, and T. Wang, “Performance enhancement of heat pipes assisted thermoelectric generator for automobile exhaust heat recovery,” Appl. Therm. Eng., vol. 130, pp. 1472–1479, 2018, doi: 10.1016/j.applthermaleng.2017.09.134. [46] S. A. Mostafavi and M. Mahmoudi, “Modeling and fabricating a prototype of a thermoelectric generator system of heat energy recovery from hot exhaust gases and evaluating the effects of important system parameters,” Appl. Therm. Eng., vol. 132, pp. 624–636, Mar. 2018, doi: 10.1016/j.applthermaleng.2018.01.018. [47] S. A. Kanchibhotla and S. Bari, “Optimum Design Point to Recover Maximum Possible Exhaust Heat Over the Operating Range of a Small Diesel Truck Using Bottoming Rankine Cycle,” 2018. [48] M. Mori, T. Yamagami, M. Sorazawa, T. Miyabe, S. Takahashi, and T. Haraguchi, “Simulation of Fuel Economy Effectiveness of Exhaust Heat Recovery System Using Thermoelectric Generator in a Series Hybrid,” SAE Int. J. Mater. Manuf., vol. 4, no. 1, pp. 2011-01–1335, Apr. 2011, doi: 10.4271/2011-01-1335. [49] N. Espinosa, M. Lazard, L. Aixala, and H. Scherrer, “Modeling a Thermoelectric Generator Applied to Diesel Automotive Heat Recovery,” J. Electron. Mater., vol. 39, no. 9, pp. 1446–1455, Sep. 2010, doi: 10.1007/s11664-010-1305-2. [50] M. A. Zoui, S. Bentouba, J. G. Stocholm, and M. Bourouis, “A Review on Thermoelectric Generators: Progress and Applications,” Energies, vol. 13, no. 14, p. 3606, 2020. [51] J. Blin et al., “Characteristics of vegetable oils for use as fuel in stationary diesel engines—Towards specifications for a standard in West Africa,” Renew. Sustain. Energy Rev., vol. 22, pp. 580–597, Jun. 2013, doi: 10.1016/j.rser.2013.02.018. [52] Y. Azoumah, J. Blin, and T. Daho, “Exergy efficiency applied for the performance optimization of a direct injection compression ignition (CI) engine using biofuels,” Renew. Energy, vol. 34, no. 6, pp. 1494–1500, Jun. 2009, doi: 10.1016/j.renene.2008.10.026. [53] K. Eckart and P. Henshaw, “Jatropha curcas L. and multifunctional platforms for the development of rural subSaharan Africa,” Energy Sustain. Dev., vol. 16, no. 3, pp. 303–311, Sep. 2012, doi: 10.1016/j.esd.2012.03.002. [54] S. S. Sidibé, J. Blin, G. Vaitilingom, and Y. Azoumah, “Use of crude filtered vegetable oil as a fuel in diesel engines state of the art: Literature review,” Renew. Sustain. Energy Rev., vol. 14, no. 9, pp. 2748–2759, Dec. 2010, doi: 10.1016/j.rser.2010.06.018. [55] D. Agarwal and A. K. Agarwal, “Performance and emissions characteristics of Jatropha oil (preheated and blends) in a direct injection compression ignition engine,” Appl. Therm. Eng., vol. 27, no. 13, pp. 2314–2323, Sep. 2007, doi: 10.1016/j.applthermaleng.2007.01.009. [56] D. T. Hountalas, D. A. Kouremenos, and M. Sideris, “A diagnostic method for heavy-duty diesel engines used in stationary applications,” J. Eng. Gas Turbines Power, vol. 126, no. 4, pp. 886–898, 2004. [57] E. Hanff, M.-H. Dabat, and J. Blin, “Are biofuels an efficient technology for generating sustainable development in oil-dependent African nations? A macroeconomic assessment of the opportunities and impacts in Burkina Faso,” Renew. Sustain. Energy Rev., vol. 15, no. 5, pp. 2199–2209, Jun. 2011, doi: 10.1016/j.rser.2011.01.014. [58] G. Baquero, B. Esteban, J.-R. Riba, A. Rius, and R. Puig, “An evaluation of the life cycle cost of rapeseed oil as a straight vegetable oil fuel to replace petroleum diesel in agriculture,” Biomass and Bioenergy, vol. 35, no. 8, pp. 3687–3697, Aug. 2011, doi: 10.1016/j.biombioe.2011.05.028. [59] J.-H. Meng, X.-D. Wang, and W.-H. Chen, “Performance investigation and design optimization of a thermoelectric generator applied in automobile exhaust waste heat recovery,” Energy Convers. Manag., vol. 120, pp. 71–80, Jul. 2016, doi: 10.1016/j.enconman.2016.04.080. [60] F. Kyriakidis, K. Sørensen, S. Singh, and T. Condra, “Modeling and optimization of integrated exhaust gas recirculation and multi-stage waste heat recovery in marine engines,” Energy Convers. Manag., vol. 151, pp. 286–295, Nov. 2017, doi: 10.1016/j.enconman.2017.09.004. [61] E. Feru, B. de Jager, F. Willems, and M. Steinbuch, “Two-phase plate-fin heat exchanger modeling for waste heat recovery systems in diesel engines,” Appl. Energy, vol. 133, pp. 183–196, Nov. 2014, doi: 10.1016/j.apenergy.2014.07.073. [62] H. G. Zavaragh, A. Kaleli, F. Afshari, and A. Amini, “Optimization of heat transfer and efficiency of engine via air bubble injection inside engine cooling system,” Appl. Therm. Eng., vol. 123, pp. 390–402, 2017. [63] J. D. Osorio and A. Rivera-Alvarez, “Efficiency enhancement of spark-ignition engines using a Continuous Variable Valve Timing system for load control,” Energy, vol. 161, pp. 649–662, Oct. 2018. [64] K. Fridrichová, L. Drápal, J. Vopa\vril, and J. Dlugoš, “Overview of the potential and limitations of cylinder deactivation,” Renew. Sustain. Energy Rev., vol. 146, p. 111196, 2021. [65] A. C. T. Malaquias, N. A. D. Netto, R. B. R. da Costa, and J. G. C. Baêta, “Combined effects of internal exhaust gas recirculation and tumble motion generation in a flex-fuel direct injection engine,” Energy Convers. Manag., vol. 217, p. 113007, 2020. [66] Q. Luo et al., “Effect of equivalence ratios on the power, combustion stability and NOx controlling strategy for the turbocharged hydrogen engine at low engine speeds,” Int. J. Hydrogen Energy, vol. 44, no. 31, pp. 17095– 17102, 2019. [67] S. Lion, C. N. Michos, I. Vlaskos, C. Rouaud, and R. Taccani, “A review of waste heat recovery and Organic Rankine Cycles (ORC) in on-off highway vehicle Heavy Duty Diesel Engine applications,” Renew. Sustain. Energy Rev., vol. 79, pp. 691–708, 2017. [68] T. Y. Kim, S. Lee, and J. Lee, “Fabrication of thermoelectric modules and heat transfer analysis on internal plate fin structures of a thermoelectric generator,” Energy Convers. Manag., vol. 124, pp. 470–479, Sep. 2016, doi: 10.1016/j.enconman.2016.07.040. [69] A. F. Falla Montealegre and V. A. Rey Arismendy, “Revisión de los incentivos tributarios a la inversión en proyectos de energía renovable no convencionales en Colombia, a partir de la ley 1715 de 2014,” 2017. [70] M. Hatami, D. D. Ganji, and M. Gorji-Bandpy, “A review of different heat exchangers designs for increasing the diesel exhaust waste heat recovery,” Renew. Sustain. Energy Rev., vol. 37, pp. 168–181, Sep. 2014, doi: 10.1016/j.rser.2014.05.004. [71] J. Wurm, J. A. Kinast, and T. Bulicz, “Assessment of Positive Displacement Supercharging and Compounding of Adiabatic Diesel,” 1984. [72] Y. Ismail, D. Durrieu, P. Menegazzi, P. Chesse, and D. Chalet, “Potential of Exhaust Heat Recovery by Turbocompounding,” Sep. 2012. doi: 10.4271/2012-01-1603. [73] A. Schuster, S. Karellas, E. Kakaras, and H. Spliethoff, “Energetic and economic investigation of Organic Rankine Cycle applications,” Appl. Therm. Eng., vol. 29, no. 8–9, pp. 1809–1817, Jun. 2009, doi: 10.1016/j.applthermaleng.2008.08.016. [74] P. Mavrou, A. I. Papadopoulos, P. Seferlis, P. Linke, and S. Voutetakis, “Selection of working fluid mixtures for flexible Organic Rankine Cycles under operating variability through a systematic nonlinear sensitivity analysis approach,” Appl. Therm. Eng., vol. 89, pp. 1054–1067, Oct. 2015, doi: 10.1016/j.applthermaleng.2015.06.017. [75] P. Mavrou, A. I. Papadopoulos, M. Z. Stijepovic, P. Seferlis, P. Linke, and S. Voutetakis, “Novel and conventional working fluid mixtures for solar Rankine cycles: Performance assessment and multi-criteria selection,” Appl. Therm. Eng., vol. 75, pp. 384–396, Jan. 2015, doi: 10.1016/j.applthermaleng.2014.10.077. [76] C. Trapp and P. Colonna, “Efficiency Improvement in Precombustion CO2 Removal Units With a Waste–Heat Recovery ORC Power Plant,” J. Eng. Gas Turbines Power, vol. 135, no. 4, p. 042311, Apr. 2013, doi: 10.1115/1.4023121. [77] V. Chintala, S. Kumar, and J. K. Pandey, “A technical review on waste heat recovery from compression ignition engines using organic Rankine cycle,” Renew. Sustain. Energy Rev., vol. 81, pp. 493–509, Jan. 2018, doi: 10.1016/j.rser.2017.08.016. [78] M. K. Khair and W. A. Majewski, “Diesel emissions and their control,” 2006. [79] E. Sher, Handbook of air pollution from internal combustion engines: pollutant formation and control. Academic Press, 1998. [80] W. M. Brehob, “Mechanisms of Pollutant Formation and Control from Automotive Sources,” 1971. [81] J. Thangaraja and C. Kannan, “Effect of exhaust gas recirculation on advanced diesel combustion and alternate fuels - A review,” Applied Energy. 2016. doi: 10.1016/j.apenergy.2016.07.096. [82] D. Hountalas and G. Mavropoulos, “Potential for Improving HD Diesel Truck Engine Fuel Consumption Using Exhaust Heat Recovery Techniques,” in New Trends in Technologies: Devices, Computer, Communication and Industrial Systems, 2010. doi: 10.5772/10428. [83] A. M. I. Bin Mamat, A. Romagnoli, and R. F. Martinez-Botas, “Characterization of a low pressure turbine for turbocompounding applications in a mild-hybrid gasoline engine,” 2012. doi: 10.1533/9780857096135.5.281. [84] H. Aghaali and H. E. Ångström, “A review of turbocompounding as a waste heat recovery system for internal combustion engines,” Renewable and Sustainable Energy Reviews. 2015. doi: 10.1016/j.rser.2015.04.144. [85] Y. Zhiyin, “Large-eddy simulation: Past, present and the future,” Chinese Journal of Aeronautics. 2015. doi: 10.1016/j.cja.2014.12.007. [86] C. Q. Su, W. S. Wang, X. Liu, and Y. D. Deng, “Simulation and experimental study on thermal optimization of the heat exchanger for automotive exhaust-based thermoelectric generators,” Case Stud. Therm. Eng., vol. 4, pp. 85–91, Nov. 2014. [87] X. Liu, Y. D. Deng, K. Zhang, M. Xu, Y. Xu, and C. Q. Su, “Experiments and simulations on heat exchangers in thermoelectric generator for automotive application,” Appl. Therm. Eng., vol. 71, no. 1, pp. 364–370, Oct. 2014, doi: 10.1016/j.applthermaleng.2014.07.022. [88] Y. Wang, S. Li, X. Xie, Y. Deng, X. Liu, and C. Su, “Performance evaluation of an automotive thermoelectric generator with inserted fins or dimpled-surface hot heat exchanger,” Appl. Energy, vol. 218, pp. 391–401, May 2018, doi: 10.1016/j.apenergy.2018.02.176. [89] P. F. Lisboa, J. Fernandes, P. C. Simões, J. P. B. Mota, and E. Saatdjian, “Computational-fluid-dynamics study of a Kenics static mixer as a heat exchanger for supercritical carbon dioxide,” J. Supercrit. Fluids, vol. 55, no. 1, pp. 107–115, 2010. [90] C.-C. Weng and M.-J. Huang, “A simulation study of automotive waste heat recovery using a thermoelectric power generator,” Int. J. Therm. Sci., vol. 71, pp. 302–309, Sep. 2013, doi: 10.1016/j.ijthermalsci.2013.04.008. [91] S. Bai, H. Lu, T. Wu, X. Yin, X. Shi, and L. Chen, “Numerical and experimental analysis for exhaust heat exchangers in automobile thermoelectric generators,” Case Stud. Therm. Eng., vol. 4, pp. 99–112, Nov. 2014, doi: 10.1016/j.csite.2014.07.003. [92] S.-C. Tzeng, T.-M. Jeng, and Y.-L. Lin, “Parametric study of heat-transfer design on the thermoelectric generator system,” Int. Commun. Heat Mass Transf., vol. 52, pp. 97–105, Mar. 2014, doi: 10.1016/j.icheatmasstransfer.2014.01.021. [93] C. Amaral, C. Brandão, É. V. Sempels, and F. J. Lesage, “Net thermoelectric generator power output using inner channel geometries with alternating flow impeding panels,” Appl. Therm. Eng., vol. 65, no. 1–2, pp. 94–101, Apr. 2014, doi: 10.1016/j.applthermaleng.2013.12.044. [94] M. E. Demir and I. Dincer, “Performance assessment of a thermoelectric generator applied to exhaust waste heat recovery,” Appl. Therm. Eng., vol. 120, pp. 694–707, Jun. 2017, doi: 10.1016/j.applthermaleng.2017.03.052. [95] H. Lu et al., “Experiment on thermal uniformity and pressure drop of exhaust heat exchanger for automotive thermoelectric generator,” Energy, vol. 54, pp. 372–377, Jun. 2013, doi: 10.1016/j.energy.2013.02.067. [96] S.-K. Kim, B.-C. Won, S.-H. Rhi, S.-H. Kim, J.-H. Yoo, and J.-C. Jang, “Thermoelectric Power Generation System for Future Hybrid Vehicles Using Hot Exhaust Gas,” J. Electron. Mater., vol. 40, no. 5, pp. 778–783, May 2011, doi: 10.1007/s11664-011-1569-1. [97] F. P. Brito, J. Martins, E. Hançer, N. Antunes, and L. M. Gonçalves, “Thermoelectric Exhaust Heat Recovery with Heat Pipe-Based Thermal Control,” J. Electron. Mater., vol. 44, no. 6, pp. 1984–1997, Jun. 2015, doi: 10.1007/s11664-015-3638-3. [98] S. Mancin, C. Zilio, A. Diani, and L. Rossetto, “Air forced convection through metal foams: Experimental results and modeling,” Int. J. Heat Mass Transf., vol. 62, pp. 112–123, Jul. 2013, doi: 10.1016/j.ijheatmasstransfer.2013.02.050. [99] C. Lu, S. Wang, C. Chen, and Y. Li, “Effects of heat enhancement for exhaust heat exchanger on the performance of thermoelectric generator,” Appl. Therm. Eng., vol. 89, pp. 270–279, Oct. 2015, doi: 10.1016/j.applthermaleng.2015.05.086. [100] Z. Niu, H. Diao, S. Yu, K. Jiao, Q. Du, and G. Shu, “Investigation and design optimization of exhaust-based thermoelectric generator system for internal combustion engine,” Energy Convers. Manag., vol. 85, pp. 85– 101, 2014. [101] F. P. Brito et al., “Analysis of a Temperature-Controlled Exhaust Thermoelectric Generator During a Driving Cycle,” J. Electron. Mater., vol. 45, no. 3, pp. 1846–1870, Mar. 2016, doi: 10.1007/s11664-015-4258-7. [102] W. Lu, C. Y. Zhao, and S. A. Tassou, “Thermal analysis on metal-foam filled heat exchangers. Part I: Metal-foam filled pipes,” Int. J. Heat Mass Transf., vol. 49, no. 15–16, pp. 2751–2761, Jul. 2006, doi: 10.1016/j.ijheatmasstransfer.2005.12.012. [103] Y. Wang, S. Li, Y. Zhang, X. Yang, Y. Deng, and C. Su, “The influence of inner topology of exhaust heat exchanger and thermoelectric module distribution on the performance of automotive thermoelectric generator,” Energy Convers. Manag., vol. 126, pp. 266–277, Oct. 2016, doi: 10.1016/j.enconman.2016.08.009. [104] W. S. A. and R. L. M. J., “Guía para estimar la incertidumbre de la medición,” 2000. [105] A. Massaguer et al., “Transient behavior under a normalized driving cycle of an automotive thermoelectric generator,” Appl. Energy, vol. 206, pp. 1282–1296, Nov. 2017, doi: 10.1016/j.apenergy.2017.10.015. [106] S. Kumar, S. D. Heister, X. Xu, J. R. Salvador, and G. P. Meisner, “Thermoelectric Generators for Automotive Waste Heat Recovery Systems Part II: Parametric Evaluation and Topological Studies,” J. Electron. Mater., vol. 42, no. 6, pp. 944–955, Jun. 2013, doi: 10.1007/s11664-013-2472-8. [107] R. A. Poshekhonov, G. A. Arutyunyan, S. A. Pankratov, A. S. Osipkov, D. O. Onishchenko, and A. I. Leontyev, “Development of a mathematical model for optimizing the design of an automotive thermoelectric generator taking into account the influence of its hydraulic resistance on the engine power,” Semiconductors, vol. 51, no. 8, pp. 981–985, Aug. 2017, doi: 10.1134/S1063782617080255. [108] M. Hatami, M. Jafaryar, D. D. Ganji, and M. Gorji-Bandpy, “Optimization of finned-tube heat exchangers for diesel exhaust waste heat recovery using CFD and CCD techniques,” Int. Commun. Heat Mass Transf., vol. 57, pp. 254–263, Oct. 2014, doi: 10.1016/j.icheatmasstransfer.2014.08.015. [109] O. Popoola and Y. Cao, “The influence of turbulence models on the accuracy of CFD analysis of a reciprocating mechanism driven heat loop,” Case Stud. Therm. Eng., vol. 8, pp. 277–290, Sep. 2016, [Online]. Available: https://linkinghub.elsevier.com/retrieve/pii/S2214157X16300946 [110] Y. A. Cengel and J. H. P. Castellanos, Transferencia de calor y masa: un enfoque práctico. McGraw-Hill, 2007. [Online]. Available: https://books.google.com.co/books?id=uxLCMQAACAAJ [111] R. H. Myers, D. C. Montgomery, and C. M. Anderson-Cook, Response surface methodology: process and product optimization using designed experiments. John Wiley \& Sons, 2016. [112] P. Mane and D. Atheaya, “Levelized Cost Computation of Novel Thermoelectric Modules,” Recent Adv. Mech. Eng., pp. 51–62, 2021. [113] C. Liu, X. Pan, X. Zheng, Y. Yan, and W. Li, “An experimental study of a novel prototype for two-stage thermoelectric generator from vehicle exhaust,” J. Energy Inst., vol. 89, no. 2, pp. 271–281, May 2016, doi: 10.1016/j.joei.2015.01.019. [114] GlobalPetrolPrices.com, “Diesel prices,” GlobalPetrolPrices.com, 2021. https://es.globalpetrolprices.com/diesel_prices/ (accessed Jul. 31, 2021). [115] D. R. Karana and R. R. Sahoo, “Thermal, environmental and economic analysis of a new thermoelectric cogeneration system coupled with a diesel electricity generator,” Sustain. Energy Technol. Assessments, vol. 40, p. 100742, Aug. 2020, doi: 10.1016/j.seta.2020.100742. |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0) |
dc.rights.uri.spa.fl_str_mv |
https://creativecommons.org/licenses/by-nc-sa/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0) https://creativecommons.org/licenses/by-nc-sa/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
152 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.publisher.department.spa.fl_str_mv |
Energía |
dc.publisher.place.spa.fl_str_mv |
Barranquilla, Colombia |
dc.publisher.program.spa.fl_str_mv |
Doctorado en Ingenieria Energética |
institution |
Corporación Universidad de la Costa |
bitstream.url.fl_str_mv |
https://repositorio.cuc.edu.co/bitstreams/22a251ae-4e57-45fd-ae59-493b4d7ed2c2/download https://repositorio.cuc.edu.co/bitstreams/b59f54e1-dd16-42b7-9ab0-a832268593b5/download https://repositorio.cuc.edu.co/bitstreams/fba9ed3f-e7ad-4827-a7de-96b26c39c950/download https://repositorio.cuc.edu.co/bitstreams/fbe1a8a9-2009-470f-8176-33c1cf24cbda/download |
bitstream.checksum.fl_str_mv |
464916cfa41ffc9a1caf1f0c7bc4de5a 2f9959eaf5b71fae44bbf9ec84150c7a 5a0bd6500362d1e664082eb36f344bb4 5427d26b4ef4f7123e4409a649da1bb3 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad de la Costa CUC |
repository.mail.fl_str_mv |
repdigital@cuc.edu.co |
_version_ |
1811760812770983936 |
spelling |
Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Sagastume Gutierrez, AlexisDuarte Forero, Jorge EliecerRamírez Restrepo, Rafael AntonioAmaris Castilla, CarlosTovar Ospino, Iván2022-12-12T20:45:24Z2022-12-12T20:45:24Z2022https://hdl.handle.net/11323/9671Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/La recuperación de calor residual es una de las principales estrategias para minimizar el desperdicio de energía en los motores de combustión interna. Debido a lo anterior, en la presente investigación se evaluaron distintos diseños de intercambiadores de calor (ICs) reportados en la literatura. En este caso, los ICs se clasifican en: IC de aleta rectangular, IC de dientes e IC hexagonales. El incremento en los niveles de velocidad de rotación, torque y porcentaje de biodiésel permite un aumento en la potencia recuperada en el TEG. El uso del TEG en los motores de combustión interna implica una disminución en el consumo de combustible, lo cual provoca una reducción de emisiones contaminantes. El proceso de optimización del IC de aleta rectangular alternativa II (ver Figura 4.4), permitió alcanzar una eficiencia máxima del 5% en el TEG, lo que representa una mejora relativa del 56% comparado con la eficiencia máxima del 3.2% reportada en la literatura. El enfoque de investigación utilizado en este estudio permitió identificar la geometría de IC más adecuada para el TEG analizado. La investigación realizada contribuye a acelerar el desarrollo de esta tecnología para su futura expansión en el sector automotriz y otros sectores de la industria y el comercio. Adicionalmente, al mejorar la capacidad de recuperación de la energía térmica de los gases de escape en los motores de combustión interna (MCI) mediante el uso de los ICs optimizados permite la reducción de emisiones como el CO2, CO, HC y NOx. Lo anterior, es una consecuencia directa de la menor necesidad de usar parte de la energía del combustible en la alimentación de sistemas auxiliares del motor, los cuales podrían funcionar a partir de la energía recuperada de los gases de escape. El desarrollo del TEG más eficiente permitirá considerar nuevos enfoques para integrar sistemas con el propósito mejorar la eficiencia de los MCI, como los generadores de hidrógeno.Waste heat recovery is one of the main strategies to minimize energy waste in internal combustion engines. Due to the above, different heat exchanger (HE) designs reported in the literature were evaluated in this research. In this case, the HEs are classified into: rectangular fin HEs, tooth HEs and hexagonal HEs. The increase in the levels of rotational speed, torque and percentage of biodiesel allows an increase in the power recovered in the TEG. The use of TEG in internal combustion engines implies a decrease in fuel consumption, which leads to a reduction in pollutant emissions. The optimization process of the alternative II rectangular fin HE (see Figura4.4), allowed reaching a maximum efficiency of 5% in the TEG, which represents a relative improvement of 56% compared to the maximum efficiency of 3.2% reported in the literature. The research approach used in this study made it possible to identify the most suitable HE geometry for the TEG analyzed. The research conducted contributes to accelerate the development of this technology for future expansion in the automotive and other industrial and commercial sectors. Additionally, by improving the thermal energy recovery capacity of exhaust gases in internal combustion engines (ICEs) through the use of optimized HEs, it allows the reduction of emissions such as CO2, CO, HC and NOx. This is a direct consequence of the reduced need to use part of the fuel energy to power auxiliary engine systems, which could run on the energy recovered from the exhaust gases. The development of the most efficient TEG will allow consideration of new approaches to integrate systems to improve the efficiency of ICEs, such as hydrogen generators.LISTA DE FIGURAS Y TABLAS 12 -- INTRODUCCIÓN 21 -- 1. PROYECTO DE INVESTIGACIÓN 22 -- 1.1. Estado actual de la problemática 22 – 1.2. Planteamiento del problema 27 – 1.3. Justificación 28 – 1.4. Hipótesis 29 -- 1.5. Objetivos 29 -- 1.5.1. Objetivo General 29 -- 1.5.2. Objetivos Específicos 29 -- 1.6. Metodología del proyecto de investigación 30 -- 2. MARCO TEÓRICO 35 -- 2.1. Tecnologías de recuperación del calor residual en motores de combustión interna 35 -- 2.1.1. Turbocompresor 35 -- 2.1.2. Ciclo orgánico Rankine 36 -- 2.1.3. Recirculación de gases de escape 36 -- 2.1.4. Generadores termoeléctricos (TEG) 37 – 2.2. Comparación entre las tecnologías de recuperación del calor residual 38 -- 2.3. Dinámica de fluidos computacional (CFD) 39 -- 2.3.1. Modelos de turbulencia en CFD 40 -- 2.3.1.1. Modelo estándar − 41 -- 2.3.1.2. Modelo RNG − 44 -- 2.3.1.3. Modelo realizable – 45 -- 2.4. Intercambiadores de calor utilizados en dispositivos TEG 47 -- 2.4.1. Intercambiador de calor de Carcasa y tubo 47 -- 2.4.2. Intercambiador de calor tipo silenciador 48 -- 2.4.3. Intercambiador de calor de tubos de calor 49 -- 2.4.4. Intercambiador de calor de estructura interna porosa 49 – 2.4.5. Intercambiador de calor de forma de conducto 50 -- 2.5. Comparación entre los diferentes diseños de IC 50 -- 3. MATERIALES Y MÉTODOS 52 -- 3.1. Desarrollo metodológico de modelos CFD 52 -- 3.2. Banco experimental 54 -- 3.3. Metodología experimental 58 -- 3.4. Análisis de incertidumbre 60 -- 4. ANÁLISIS DE RESULTADOS EXPERIMENTALES Y CFD 62 -- 4.1. Resultados experimentales 62 -- 4.1.1. Temperatura superficial 62 -- 4.1.2. Caída de presión 63 -- 4.1.3. Análisis de la eficiencia del TEG 63 -- 4.1.4. Análisis de varianza de los ensayos experimentales 65 -- 4.2. Geometría de los intercambiadores de calor 70 -- 4.3. Generación del mallado 75 -- 4.4. Condiciones de frontera 76 -- 4.5. Resultados de simulación 79 -- 4.5.1. Análisis de perfil de temperatura superficial y presión. 79 -- 4.5.2. Análisis de las características termodinámicas 82 -- 4.5.3. Análisis del potencial de recuperación energética 89 -- 5. OPTIMIZACIÓN DEL INTERCAMBIADOR DE CALOR 92 -- 5.1. Consideraciones de rediseño 92 -- 5.2. Análisis de la influencia de los parámetros geométricos (S) y (θ) 94 -- 6. CONCLUSIONES 111 -- 7. RECOMENDACIONES 113 -- 8. REFERENCIAS 114 -- 9. ANEXOS 122 -- 9.1. Configuración de corridas experimentales 122 -- 9.2. Cálculos relacionados con la Tabla 4.2 124 -- 9.3. Alternativas geométricas del IC de forma de conducto 126 -- 9.4. Cálculos relacionados con la Tabla 4.11 134 -- 9.5. Modificaciones geométricas del IC aleta rectangular – alternativa II 135 -- 9.6. Consideraciones de los parámetros geométricos (S) y (θ) 144 -- 9.7. Cálculos relacionados con la Figura 5.4 145 -- 9.8. Calculó de los coeficientes del modelo de regresión 145 -- 9.9. Cálculos relacionados con las conclusiones 146 -- 9.10. Artículos científicos resultantes del proyecto de investigación 147Doctor(a) en Ingenieria EnergéticaDoctorado152 páginasapplication/pdfotherCorporación Universidad de la CostaEnergíaBarranquilla, ColombiaDoctorado en Ingenieria EnergéticaOptimización del desempeño energético de un intercambiador de calor para aumentar la eficiencia de conversión de un generador termoeléctrico aplicado a un motor diésel estacionarioTrabajo de grado - Doctoradohttp://purl.org/coar/resource_type/c_db06Textinfo:eu-repo/semantics/doctoralThesishttp://purl.org/redcol/resource_type/TDinfo:eu-repo/semantics/acceptedVersion[1] A. S. M. Hasan and A. Trianni, “A review of energy management assessment models for industrial energy efficiency,” Energies, vol. 13, no. 21, p. 5713, 2020.[2] Z.-G. Shen, L.-L. Tian, and X. Liu, “Automotive exhaust thermoelectric generators: Current status, challenges and future prospects,” Energy Convers. Manag., vol. 195, pp. 1138–1173, Sep. 2019, doi: 10.1016/j.enconman.2019.05.087.[3] Q. E. Hussain, D. R. Brigham, and C. W. Maranville, “Thermoelectric Exhaust Heat Recovery for Hybrid Vehicles,” SAE Int. J. Engines, vol. 2, no. 1, pp. 2009-01–1327, Apr. 2009, doi: 10.4271/2009-01-1327.[4] R. Saidur, M. Rezaei, W. K. Muzammil, M. H. Hassan, S. Paria, and M. Hasanuzzaman, “Technologies to recover exhaust heat from internal combustion engines,” Renew. Sustain. Energy Rev., vol. 16, no. 8, pp. 5649–5659, Oct. 2012, doi: 10.1016/j.rser.2012.05.018.[5] N. Muralidhar, M. Himabindu, and R. V. Ravikrishna, “Modeling of a hybrid electric heavy duty vehicle to assess energy recovery using a thermoelectric generator,” Energy, vol. 148, pp. 1046–1059, Apr. 2018, doi: 10.1016/j.energy.2018.02.023.[6] M. He, E. Wang, Y. Zhang, W. Zhang, F. Zhang, and C. Zhao, “Performance analysis of a multilayer thermoelectric generator for exhaust heat recovery of a heavy-duty diesel engine,” Appl. Energy, vol. 274, pp. 115298–115315, Sep. 2020, doi: 10.1016/j.apenergy.2020.115298.[7] O. H. Ando Junior, A. L. O. Maran, and N. C. Henao, “A review of the development and applications of thermoelectric microgenerators for energy harvesting,” Renew. Sustain. Energy Rev., vol. 91, pp. 376 –393, Aug. 2018, doi: 10.1016/j.rser.2018.03.052.[8] K. Cheng, J. Qin, Y. Jiang, S. Zhang, and W. Bao, “Performance comparison of single-and multi-stage onboard thermoelectric generators and stage number optimization at a large temperature difference,” Appl. Therm. Eng., vol. 141, pp. 456–466, 2018.[9] A. A. Negash, Y. Choi, and T. Y. Kim, “Experimental investigation of optimal location of flow straightener from the aspects of power output and pressure drop characteristics of a thermoelectric generator,” Energy, vol. 219, pp. 119565 –119576, Mar. 2021, doi: 10.1016/j.energy.2020.119565.[10] C. Liu, Y. D. Deng, X. Y. Wang, X. Liu, Y. P. Wang, and C. Q. Su, “Multi-objective optimization of heat exchanger in an automotive exhaust thermoelectric generator,” Appl. Therm. Eng., vol. 108, pp. 916–926, Sep. 2016, doi: 10.1016/j.applthermaleng.2016.07.175.[11] S. Vale, L. Heber, P. J. Coelho, and C. M. Silva, “Parametric study of a thermoelectric generator system for exhaust gas energy recovery in diesel road freight transportation,” Energy Convers. Manag., vol. 133, pp. 167– 177, Feb. 2017, doi: 10.1016/j.enconman.2016.11.064.[12] R. Ramírez, A. S. Gutiérrez, J. J. Cabello Eras, K. Valencia, B. Hernández, and J. Duarte Forero, “Evaluation of the energy recovery potential of thermoelectric generators in diesel engines,” J. Clean. Prod., vol. 241, p. 118412, Dec. 2019, doi: 10.1016/j.jclepro.2019.118412.[13] M. Borcuch, M. Musiał, S. Gumuła, K. Sztekler, and K. Wojciechowski, “Analysis of the fins geometry of a hotside heat exchanger on the performance parameters of a thermoelectric generation system,” Appl. Therm. Eng., vol. 127, pp. 1355 –1363, Dec. 2017, doi: 10.1016/j.applthermaleng.2017.08.147.[14] J. Szybist, S. Davis, J. Thomas, and B. C. Kaul, “Performance of a Half-Heusler Thermoelectric Generator for[15] T. Y. Kim, J. Kwak, and B. Kim, “Energy harvesting performance of hexagonal shaped thermoelectric generator for passenger vehicle applications: An experimental approach,” Energy Convers. Manag., vol. 160, pp. 14 –21, Mar. 2018, doi: 10.1016/j.enconman.2018.01.032.[16] A. Marvão, P. J. Coelho, and H. C. Rodrigues, “Optimization of a thermoelectric generator for heavy-duty vehicles,” Energy Convers. Manag., vol. 179, pp. 178–191, Jan. 2019, doi: 10.1016/j.enconman.2018.10.045.[17] M. Comamala, A. Massaguer, E. Massaguer, and T. Pujol, “Validation of a fuel economy prediction method based on thermoelectric energy recovery for mid-size vehicles,” Appl. Therm. Eng., vol. 153, pp. 768–778, 2019.[18] E. S. Mohamed, “Development and performance analysis of a TEG system using exhaust recovery for a light diesel vehicle with assessment of fuel economy and emissions,” Appl. Therm. Eng., vol. 147, pp. 661–674, 2019.[19] T. Y. Kim, A. A. Negash, and G. Cho, “Waste heat recovery of a diesel engine using a thermoelectric generator equipped with customized thermoelectric modules,” Energy Convers. Manag., vol. 124, pp. 280–286, Sep. 2016.[20] M. Güler and M. Özkan, “Energy balance analysis of a DI diesel engine with multiple pilot injections strategy and optimization of brake thermal efficiency,” Appl. Therm. Eng., vol. 204, p. 117972, 2022.[21] M. E. Demir and I. Dincer, “Development and heat transfer analysis of a new heat recovery system with thermoelectric generator,” Int. J. Heat Mass Transf., vol. 108, pp. 2002–2010, May 2017, doi: 10.1016/j.ijheatmasstransfer.2016.12.102.[22] S. S. Hoseini, G. Najafi, B. Ghobadian, R. Mamat, N. A. C. Sidik, and W. H. Azmi, “The effect of combustion management on diesel engine emissions fueled with biodiesel-diesel blends,” Renew. Sustain. Energy Rev., vol. 73, pp. 307–331, Jun. 2017, doi: 10.1016/j.rser.2017.01.088.[23] F. Leach, G. Kalghatgi, R. Stone, and P. Miles, “The scope for improving the efficiency and environmental impact of internal combustion engines,” Transp. Eng., vol. 1, p. 100005, 2020.[24] T. Y. Kim, A. A. Negash, and G. Cho, “Experimental study of energy utilization effectiveness of thermoelectric generator on diesel engine,” Energy, vol. 128, pp. 531–539, Jun. 2017, doi: 10.1016/j.energy.2017.04.060.[25] B. Karthikeyan, D. Kesavaram, S. Ashok Kumar, and K. Srithar, “Exhaust energy recovery using thermoelectric power generation from a thermally insulated diesel engine,” Int. J. Green Energy, 2013, doi: 10.1080/15435075.2012.740608.[26] H. G. Zhang, E. H. Wang, and B. Y. Fan, “Heat transfer analysis of a finned-tube evaporator for engine exhaust heat recovery,” Energy Convers. Manag., 2013, doi: 10.1016/j.enconman.2012.09.017.[27] S. N. Hossain and S. Bari, “Waste heat recovery from the exhaust of a diesel generator using Rankine Cycle,” Energy Convers. Manag., 2013, doi: 10.1016/j.enconman.2013.06.009.[28] W. He, S. Wang, X. Zhang, Y. Li, and C. Lu, “Optimization design method of thermoelectric generator based on exhaust gas parameters for recovery of engine waste heat,” Energy, vol. 91, pp. 1–9, Nov. 2015.[29] W. He, G. Zhang, X. Zhang, J. Ji, G. Li, and X. Zhao, “Recent development and application of thermoelectric generator and cooler,” Applied Energy. 2015. doi: 10.1016/j.apenergy.2014.12.075.[30] S. Lan, A. Smith, R. Stobart, and R. Chen, “Feasibility study on a vehicular thermoelectric generator for both waste heat recovery and engine oil warm-up,” Appl. Energy, vol. 242, pp. 273–284, May 2019, doi: 10.1016/j.apenergy.2019.03.056.[31] S. Fan and Y. Gao, “Numerical analysis on the segmented annular thermoelectric generator for waste heat recovery,” Energy, vol. 183, pp. 35–47, Sep. 2019, doi: 10.1016/j.energy.2019.06.103.[32] E. Bellos and C. Tzivanidis, “Energy and financial analysis of a solar driven thermoelectric generator,” J. Clean. Prod., vol. 264, p. 121534, Aug. 2020, doi: 10.1016/j.jclepro.2020.121534.[33] G. Li, Y. Zheng, W. Guo, D. Zhu, and Y. Tang, “Mesoscale combustor-powered thermoelectric generator: Experimental optimization and evaluation metrics,” Appl. Energy, vol. 272, p. 115234, Aug. 2020, doi: 10.1016/j.apenergy.2020.115234.[34] S. Bari and S. N. Hossain, “Waste heat recovery from a diesel engine using shell and tube heat exchanger,” Appl. Therm. Eng., vol. 61, no. 2, pp. 355–363, Nov. 2013, doi: 10.1016/j.applthermaleng.2013.08.020.[35] S. Arumugam, P. Ramakrishna, S. Sangavi, and G. Sriram, “Thermoelectric Analysis of Automobiles Exhaust Waste Heat Recovery Material – A Simulation Study,” Mater. Today Proc., vol. 16, pp. 516–523, 2019, doi: 10.1016/j.matpr.2019.05.123.[36] D. Luo, R. Wang, W. Yu, and W. Zhou, “A numerical study on the performance of a converging thermoelectric generator system used for waste heat recovery,” Appl. Energy, vol. 270, p. 115181, Jul. 2020, doi: 10.1016/j.apenergy.2020.115181.[37] N. D. Love, J. P. Szybist, and C. S. Sluder, “Effect of heat exchanger material and fouling on thermoelectric exhaust heat recovery,” Appl. Energy, vol. 89, no. 1, pp. 322–328, 2012.[38] C. Selvam, S. Manikandan, N. V. Krishna, R. Lamba, S. C. Kaushik, and O. Mahian, “Enhanced thermal performance of a thermoelectric generator with phase change materials,” Int. Commun. Heat Mass Transf., vol. 114, p. 104561, May 2020, doi: 10.1016/j.icheatmasstransfer.2020.104561.[39] Y. Zhou, S. Paul, and S. Bhunia, “Harvesting Wasted Heat in a Microprocessor Using Thermoelectric Generators: Modeling, Analysis and Measurement,” in 2008 Design, Automation and Test in Europe, Mar. 2008, pp. 98–103. doi: 10.1109/DATE.2008.4484669.[40] M. Al Musleh, E. Topriska, L. Jack, and D. Jenkins, “Thermoelectric generator experimental performance testing for wireless sensor network application in smart buildings,” MATEC Web Conf., vol. 120, p. 08003, Aug. 2017, doi: 10.1051/matecconf/201712008003.[41] M. Thielen, L. Sigrist, M. Magno, C. Hierold, and L. Benini, “Human body heat for powering wearable devices: From thermal energy to application,” Energy Convers. Manag., vol. 131, pp. 44–54, Jan. 2017, doi: 10.1016/j.enconman.2016.11.005.[42] M. Guan, K. Wang, D. Xu, and W.-H. Liao, “Design and experimental investigation of a low-voltage thermoelectric energy harvesting system for wireless sensor nodes,” Energy Convers. Manag., vol. 138, pp. 30–37, Apr. 2017, doi: 10.1016/j.enconman.2017.01.049.[43] S. Liu et al., “Micro-thermoelectric generators based on through glass pillars with high output voltage enabled by large temperature difference,” Appl. Energy, vol. 225, pp. 600–610, Sep. 2018, doi: 10.1016/j.apenergy.2018.05.056.[44] B. Orr, A. Akbarzadeh, and P. Lappas, “An exhaust heat recovery system utilising thermoelectric generators and heat pipes,” Appl. Therm. Eng., vol. 126, pp. 1185–1190, Nov. 2017, doi: 10.1016/j.applthermaleng.2016.11.019.[45] Q. Cao, W. Luan, and T. Wang, “Performance enhancement of heat pipes assisted thermoelectric generator for automobile exhaust heat recovery,” Appl. Therm. Eng., vol. 130, pp. 1472–1479, 2018, doi: 10.1016/j.applthermaleng.2017.09.134.[46] S. A. Mostafavi and M. Mahmoudi, “Modeling and fabricating a prototype of a thermoelectric generator system of heat energy recovery from hot exhaust gases and evaluating the effects of important system parameters,” Appl. Therm. Eng., vol. 132, pp. 624–636, Mar. 2018, doi: 10.1016/j.applthermaleng.2018.01.018.[47] S. A. Kanchibhotla and S. Bari, “Optimum Design Point to Recover Maximum Possible Exhaust Heat Over the Operating Range of a Small Diesel Truck Using Bottoming Rankine Cycle,” 2018.[48] M. Mori, T. Yamagami, M. Sorazawa, T. Miyabe, S. Takahashi, and T. Haraguchi, “Simulation of Fuel Economy Effectiveness of Exhaust Heat Recovery System Using Thermoelectric Generator in a Series Hybrid,” SAE Int. J. Mater. Manuf., vol. 4, no. 1, pp. 2011-01–1335, Apr. 2011, doi: 10.4271/2011-01-1335.[49] N. Espinosa, M. Lazard, L. Aixala, and H. Scherrer, “Modeling a Thermoelectric Generator Applied to Diesel Automotive Heat Recovery,” J. Electron. Mater., vol. 39, no. 9, pp. 1446–1455, Sep. 2010, doi: 10.1007/s11664-010-1305-2.[50] M. A. Zoui, S. Bentouba, J. G. Stocholm, and M. Bourouis, “A Review on Thermoelectric Generators: Progress and Applications,” Energies, vol. 13, no. 14, p. 3606, 2020.[51] J. Blin et al., “Characteristics of vegetable oils for use as fuel in stationary diesel engines—Towards specifications for a standard in West Africa,” Renew. Sustain. Energy Rev., vol. 22, pp. 580–597, Jun. 2013, doi: 10.1016/j.rser.2013.02.018.[52] Y. Azoumah, J. Blin, and T. Daho, “Exergy efficiency applied for the performance optimization of a direct injection compression ignition (CI) engine using biofuels,” Renew. Energy, vol. 34, no. 6, pp. 1494–1500, Jun. 2009, doi: 10.1016/j.renene.2008.10.026.[53] K. Eckart and P. Henshaw, “Jatropha curcas L. and multifunctional platforms for the development of rural subSaharan Africa,” Energy Sustain. Dev., vol. 16, no. 3, pp. 303–311, Sep. 2012, doi: 10.1016/j.esd.2012.03.002.[54] S. S. Sidibé, J. Blin, G. Vaitilingom, and Y. Azoumah, “Use of crude filtered vegetable oil as a fuel in diesel engines state of the art: Literature review,” Renew. Sustain. Energy Rev., vol. 14, no. 9, pp. 2748–2759, Dec. 2010, doi: 10.1016/j.rser.2010.06.018.[55] D. Agarwal and A. K. Agarwal, “Performance and emissions characteristics of Jatropha oil (preheated and blends) in a direct injection compression ignition engine,” Appl. Therm. Eng., vol. 27, no. 13, pp. 2314–2323, Sep. 2007, doi: 10.1016/j.applthermaleng.2007.01.009.[56] D. T. Hountalas, D. A. Kouremenos, and M. Sideris, “A diagnostic method for heavy-duty diesel engines used in stationary applications,” J. Eng. Gas Turbines Power, vol. 126, no. 4, pp. 886–898, 2004.[57] E. Hanff, M.-H. Dabat, and J. Blin, “Are biofuels an efficient technology for generating sustainable development in oil-dependent African nations? A macroeconomic assessment of the opportunities and impacts in Burkina Faso,” Renew. Sustain. Energy Rev., vol. 15, no. 5, pp. 2199–2209, Jun. 2011, doi: 10.1016/j.rser.2011.01.014.[58] G. Baquero, B. Esteban, J.-R. Riba, A. Rius, and R. Puig, “An evaluation of the life cycle cost of rapeseed oil as a straight vegetable oil fuel to replace petroleum diesel in agriculture,” Biomass and Bioenergy, vol. 35, no. 8, pp. 3687–3697, Aug. 2011, doi: 10.1016/j.biombioe.2011.05.028.[59] J.-H. Meng, X.-D. Wang, and W.-H. Chen, “Performance investigation and design optimization of a thermoelectric generator applied in automobile exhaust waste heat recovery,” Energy Convers. Manag., vol. 120, pp. 71–80, Jul. 2016, doi: 10.1016/j.enconman.2016.04.080.[60] F. Kyriakidis, K. Sørensen, S. Singh, and T. Condra, “Modeling and optimization of integrated exhaust gas recirculation and multi-stage waste heat recovery in marine engines,” Energy Convers. Manag., vol. 151, pp. 286–295, Nov. 2017, doi: 10.1016/j.enconman.2017.09.004.[61] E. Feru, B. de Jager, F. Willems, and M. Steinbuch, “Two-phase plate-fin heat exchanger modeling for waste heat recovery systems in diesel engines,” Appl. Energy, vol. 133, pp. 183–196, Nov. 2014, doi: 10.1016/j.apenergy.2014.07.073.[62] H. G. Zavaragh, A. Kaleli, F. Afshari, and A. Amini, “Optimization of heat transfer and efficiency of engine via air bubble injection inside engine cooling system,” Appl. Therm. Eng., vol. 123, pp. 390–402, 2017.[63] J. D. Osorio and A. Rivera-Alvarez, “Efficiency enhancement of spark-ignition engines using a Continuous Variable Valve Timing system for load control,” Energy, vol. 161, pp. 649–662, Oct. 2018.[64] K. Fridrichová, L. Drápal, J. Vopa\vril, and J. Dlugoš, “Overview of the potential and limitations of cylinder deactivation,” Renew. Sustain. Energy Rev., vol. 146, p. 111196, 2021.[65] A. C. T. Malaquias, N. A. D. Netto, R. B. R. da Costa, and J. G. C. Baêta, “Combined effects of internal exhaust gas recirculation and tumble motion generation in a flex-fuel direct injection engine,” Energy Convers. Manag., vol. 217, p. 113007, 2020.[66] Q. Luo et al., “Effect of equivalence ratios on the power, combustion stability and NOx controlling strategy for the turbocharged hydrogen engine at low engine speeds,” Int. J. Hydrogen Energy, vol. 44, no. 31, pp. 17095– 17102, 2019.[67] S. Lion, C. N. Michos, I. Vlaskos, C. Rouaud, and R. Taccani, “A review of waste heat recovery and Organic Rankine Cycles (ORC) in on-off highway vehicle Heavy Duty Diesel Engine applications,” Renew. Sustain. Energy Rev., vol. 79, pp. 691–708, 2017.[68] T. Y. Kim, S. Lee, and J. Lee, “Fabrication of thermoelectric modules and heat transfer analysis on internal plate fin structures of a thermoelectric generator,” Energy Convers. Manag., vol. 124, pp. 470–479, Sep. 2016, doi: 10.1016/j.enconman.2016.07.040.[69] A. F. Falla Montealegre and V. A. Rey Arismendy, “Revisión de los incentivos tributarios a la inversión en proyectos de energía renovable no convencionales en Colombia, a partir de la ley 1715 de 2014,” 2017.[70] M. Hatami, D. D. Ganji, and M. Gorji-Bandpy, “A review of different heat exchangers designs for increasing the diesel exhaust waste heat recovery,” Renew. Sustain. Energy Rev., vol. 37, pp. 168–181, Sep. 2014, doi: 10.1016/j.rser.2014.05.004.[71] J. Wurm, J. A. Kinast, and T. Bulicz, “Assessment of Positive Displacement Supercharging and Compounding of Adiabatic Diesel,” 1984.[72] Y. Ismail, D. Durrieu, P. Menegazzi, P. Chesse, and D. Chalet, “Potential of Exhaust Heat Recovery by Turbocompounding,” Sep. 2012. doi: 10.4271/2012-01-1603.[73] A. Schuster, S. Karellas, E. Kakaras, and H. Spliethoff, “Energetic and economic investigation of Organic Rankine Cycle applications,” Appl. Therm. Eng., vol. 29, no. 8–9, pp. 1809–1817, Jun. 2009, doi: 10.1016/j.applthermaleng.2008.08.016.[74] P. Mavrou, A. I. Papadopoulos, P. Seferlis, P. Linke, and S. Voutetakis, “Selection of working fluid mixtures for flexible Organic Rankine Cycles under operating variability through a systematic nonlinear sensitivity analysis approach,” Appl. Therm. Eng., vol. 89, pp. 1054–1067, Oct. 2015, doi: 10.1016/j.applthermaleng.2015.06.017.[75] P. Mavrou, A. I. Papadopoulos, M. Z. Stijepovic, P. Seferlis, P. Linke, and S. Voutetakis, “Novel and conventional working fluid mixtures for solar Rankine cycles: Performance assessment and multi-criteria selection,” Appl. Therm. Eng., vol. 75, pp. 384–396, Jan. 2015, doi: 10.1016/j.applthermaleng.2014.10.077.[76] C. Trapp and P. Colonna, “Efficiency Improvement in Precombustion CO2 Removal Units With a Waste–Heat Recovery ORC Power Plant,” J. Eng. Gas Turbines Power, vol. 135, no. 4, p. 042311, Apr. 2013, doi: 10.1115/1.4023121.[77] V. Chintala, S. Kumar, and J. K. Pandey, “A technical review on waste heat recovery from compression ignition engines using organic Rankine cycle,” Renew. Sustain. Energy Rev., vol. 81, pp. 493–509, Jan. 2018, doi: 10.1016/j.rser.2017.08.016.[78] M. K. Khair and W. A. Majewski, “Diesel emissions and their control,” 2006.[79] E. Sher, Handbook of air pollution from internal combustion engines: pollutant formation and control. Academic Press, 1998.[80] W. M. Brehob, “Mechanisms of Pollutant Formation and Control from Automotive Sources,” 1971.[81] J. Thangaraja and C. Kannan, “Effect of exhaust gas recirculation on advanced diesel combustion and alternate fuels - A review,” Applied Energy. 2016. doi: 10.1016/j.apenergy.2016.07.096.[82] D. Hountalas and G. Mavropoulos, “Potential for Improving HD Diesel Truck Engine Fuel Consumption Using Exhaust Heat Recovery Techniques,” in New Trends in Technologies: Devices, Computer, Communication and Industrial Systems, 2010. doi: 10.5772/10428.[83] A. M. I. Bin Mamat, A. Romagnoli, and R. F. Martinez-Botas, “Characterization of a low pressure turbine for turbocompounding applications in a mild-hybrid gasoline engine,” 2012. doi: 10.1533/9780857096135.5.281.[84] H. Aghaali and H. E. Ångström, “A review of turbocompounding as a waste heat recovery system for internal combustion engines,” Renewable and Sustainable Energy Reviews. 2015. doi: 10.1016/j.rser.2015.04.144.[85] Y. Zhiyin, “Large-eddy simulation: Past, present and the future,” Chinese Journal of Aeronautics. 2015. doi: 10.1016/j.cja.2014.12.007.[86] C. Q. Su, W. S. Wang, X. Liu, and Y. D. Deng, “Simulation and experimental study on thermal optimization of the heat exchanger for automotive exhaust-based thermoelectric generators,” Case Stud. Therm. Eng., vol. 4, pp. 85–91, Nov. 2014.[87] X. Liu, Y. D. Deng, K. Zhang, M. Xu, Y. Xu, and C. Q. Su, “Experiments and simulations on heat exchangers in thermoelectric generator for automotive application,” Appl. Therm. Eng., vol. 71, no. 1, pp. 364–370, Oct. 2014, doi: 10.1016/j.applthermaleng.2014.07.022.[88] Y. Wang, S. Li, X. Xie, Y. Deng, X. Liu, and C. Su, “Performance evaluation of an automotive thermoelectric generator with inserted fins or dimpled-surface hot heat exchanger,” Appl. Energy, vol. 218, pp. 391–401, May 2018, doi: 10.1016/j.apenergy.2018.02.176.[89] P. F. Lisboa, J. Fernandes, P. C. Simões, J. P. B. Mota, and E. Saatdjian, “Computational-fluid-dynamics study of a Kenics static mixer as a heat exchanger for supercritical carbon dioxide,” J. Supercrit. Fluids, vol. 55, no. 1, pp. 107–115, 2010.[90] C.-C. Weng and M.-J. Huang, “A simulation study of automotive waste heat recovery using a thermoelectric power generator,” Int. J. Therm. Sci., vol. 71, pp. 302–309, Sep. 2013, doi: 10.1016/j.ijthermalsci.2013.04.008.[91] S. Bai, H. Lu, T. Wu, X. Yin, X. Shi, and L. Chen, “Numerical and experimental analysis for exhaust heat exchangers in automobile thermoelectric generators,” Case Stud. Therm. Eng., vol. 4, pp. 99–112, Nov. 2014, doi: 10.1016/j.csite.2014.07.003.[92] S.-C. Tzeng, T.-M. Jeng, and Y.-L. Lin, “Parametric study of heat-transfer design on the thermoelectric generator system,” Int. Commun. Heat Mass Transf., vol. 52, pp. 97–105, Mar. 2014, doi: 10.1016/j.icheatmasstransfer.2014.01.021.[93] C. Amaral, C. Brandão, É. V. Sempels, and F. J. Lesage, “Net thermoelectric generator power output using inner channel geometries with alternating flow impeding panels,” Appl. Therm. Eng., vol. 65, no. 1–2, pp. 94–101, Apr. 2014, doi: 10.1016/j.applthermaleng.2013.12.044.[94] M. E. Demir and I. Dincer, “Performance assessment of a thermoelectric generator applied to exhaust waste heat recovery,” Appl. Therm. Eng., vol. 120, pp. 694–707, Jun. 2017, doi: 10.1016/j.applthermaleng.2017.03.052.[95] H. Lu et al., “Experiment on thermal uniformity and pressure drop of exhaust heat exchanger for automotive thermoelectric generator,” Energy, vol. 54, pp. 372–377, Jun. 2013, doi: 10.1016/j.energy.2013.02.067.[96] S.-K. Kim, B.-C. Won, S.-H. Rhi, S.-H. Kim, J.-H. Yoo, and J.-C. Jang, “Thermoelectric Power Generation System for Future Hybrid Vehicles Using Hot Exhaust Gas,” J. Electron. Mater., vol. 40, no. 5, pp. 778–783, May 2011, doi: 10.1007/s11664-011-1569-1.[97] F. P. Brito, J. Martins, E. Hançer, N. Antunes, and L. M. Gonçalves, “Thermoelectric Exhaust Heat Recovery with Heat Pipe-Based Thermal Control,” J. Electron. Mater., vol. 44, no. 6, pp. 1984–1997, Jun. 2015, doi: 10.1007/s11664-015-3638-3.[98] S. Mancin, C. Zilio, A. Diani, and L. Rossetto, “Air forced convection through metal foams: Experimental results and modeling,” Int. J. Heat Mass Transf., vol. 62, pp. 112–123, Jul. 2013, doi: 10.1016/j.ijheatmasstransfer.2013.02.050.[99] C. Lu, S. Wang, C. Chen, and Y. Li, “Effects of heat enhancement for exhaust heat exchanger on the performance of thermoelectric generator,” Appl. Therm. Eng., vol. 89, pp. 270–279, Oct. 2015, doi: 10.1016/j.applthermaleng.2015.05.086.[100] Z. Niu, H. Diao, S. Yu, K. Jiao, Q. Du, and G. Shu, “Investigation and design optimization of exhaust-based thermoelectric generator system for internal combustion engine,” Energy Convers. Manag., vol. 85, pp. 85– 101, 2014.[101] F. P. Brito et al., “Analysis of a Temperature-Controlled Exhaust Thermoelectric Generator During a Driving Cycle,” J. Electron. Mater., vol. 45, no. 3, pp. 1846–1870, Mar. 2016, doi: 10.1007/s11664-015-4258-7.[102] W. Lu, C. Y. Zhao, and S. A. Tassou, “Thermal analysis on metal-foam filled heat exchangers. Part I: Metal-foam filled pipes,” Int. J. Heat Mass Transf., vol. 49, no. 15–16, pp. 2751–2761, Jul. 2006, doi: 10.1016/j.ijheatmasstransfer.2005.12.012.[103] Y. Wang, S. Li, Y. Zhang, X. Yang, Y. Deng, and C. Su, “The influence of inner topology of exhaust heat exchanger and thermoelectric module distribution on the performance of automotive thermoelectric generator,” Energy Convers. Manag., vol. 126, pp. 266–277, Oct. 2016, doi: 10.1016/j.enconman.2016.08.009.[104] W. S. A. and R. L. M. J., “Guía para estimar la incertidumbre de la medición,” 2000.[105] A. Massaguer et al., “Transient behavior under a normalized driving cycle of an automotive thermoelectric generator,” Appl. Energy, vol. 206, pp. 1282–1296, Nov. 2017, doi: 10.1016/j.apenergy.2017.10.015.[106] S. Kumar, S. D. Heister, X. Xu, J. R. Salvador, and G. P. Meisner, “Thermoelectric Generators for Automotive Waste Heat Recovery Systems Part II: Parametric Evaluation and Topological Studies,” J. Electron. Mater., vol. 42, no. 6, pp. 944–955, Jun. 2013, doi: 10.1007/s11664-013-2472-8.[107] R. A. Poshekhonov, G. A. Arutyunyan, S. A. Pankratov, A. S. Osipkov, D. O. Onishchenko, and A. I. Leontyev, “Development of a mathematical model for optimizing the design of an automotive thermoelectric generator taking into account the influence of its hydraulic resistance on the engine power,” Semiconductors, vol. 51, no. 8, pp. 981–985, Aug. 2017, doi: 10.1134/S1063782617080255.[108] M. Hatami, M. Jafaryar, D. D. Ganji, and M. Gorji-Bandpy, “Optimization of finned-tube heat exchangers for diesel exhaust waste heat recovery using CFD and CCD techniques,” Int. Commun. Heat Mass Transf., vol. 57, pp. 254–263, Oct. 2014, doi: 10.1016/j.icheatmasstransfer.2014.08.015.[109] O. Popoola and Y. Cao, “The influence of turbulence models on the accuracy of CFD analysis of a reciprocating mechanism driven heat loop,” Case Stud. Therm. Eng., vol. 8, pp. 277–290, Sep. 2016, [Online]. Available: https://linkinghub.elsevier.com/retrieve/pii/S2214157X16300946[110] Y. A. Cengel and J. H. P. Castellanos, Transferencia de calor y masa: un enfoque práctico. McGraw-Hill, 2007. [Online]. Available: https://books.google.com.co/books?id=uxLCMQAACAAJ[111] R. H. Myers, D. C. Montgomery, and C. M. Anderson-Cook, Response surface methodology: process and product optimization using designed experiments. John Wiley \& Sons, 2016.[112] P. Mane and D. Atheaya, “Levelized Cost Computation of Novel Thermoelectric Modules,” Recent Adv. Mech. Eng., pp. 51–62, 2021.[113] C. Liu, X. Pan, X. Zheng, Y. Yan, and W. Li, “An experimental study of a novel prototype for two-stage thermoelectric generator from vehicle exhaust,” J. Energy Inst., vol. 89, no. 2, pp. 271–281, May 2016, doi: 10.1016/j.joei.2015.01.019.[114] GlobalPetrolPrices.com, “Diesel prices,” GlobalPetrolPrices.com, 2021. https://es.globalpetrolprices.com/diesel_prices/ (accessed Jul. 31, 2021).[115] D. R. Karana and R. R. Sahoo, “Thermal, environmental and economic analysis of a new thermoelectric cogeneration system coupled with a diesel electricity generator,” Sustain. Energy Technol. Assessments, vol. 40, p. 100742, Aug. 2020, doi: 10.1016/j.seta.2020.100742.Intercambiador de calorMódulo termoeléctricoGenerador termoeléctricoSimulación CFDHeat exchangerThermoelectric moduleThermoelectric generatorCFD simulationPublicationORIGINALOptimización del Desempeño Energético de un Intercambiador de Calor para Aumentar la Eficiencia de Conversión de un Generador Termoeléctrico Aplicado a un Motor Diésel Estacionario.pdfOptimización del Desempeño Energético de un Intercambiador de Calor para Aumentar la Eficiencia de Conversión de un Generador Termoeléctrico Aplicado a un Motor Diésel Estacionario.pdfTesisapplication/pdf10068660https://repositorio.cuc.edu.co/bitstreams/22a251ae-4e57-45fd-ae59-493b4d7ed2c2/download464916cfa41ffc9a1caf1f0c7bc4de5aMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-814828https://repositorio.cuc.edu.co/bitstreams/b59f54e1-dd16-42b7-9ab0-a832268593b5/download2f9959eaf5b71fae44bbf9ec84150c7aMD52TEXTOptimización del Desempeño Energético de un Intercambiador de Calor para Aumentar la Eficiencia de Conversión de un Generador Termoeléctrico Aplicado a un Motor Diésel Estacionario.pdf.txtOptimización del Desempeño Energético de un Intercambiador de Calor para Aumentar la Eficiencia de Conversión de un Generador Termoeléctrico Aplicado a un Motor Diésel Estacionario.pdf.txtExtracted texttext/plain249647https://repositorio.cuc.edu.co/bitstreams/fba9ed3f-e7ad-4827-a7de-96b26c39c950/download5a0bd6500362d1e664082eb36f344bb4MD53THUMBNAILOptimización del Desempeño Energético de un Intercambiador de Calor para Aumentar la Eficiencia de Conversión de un Generador Termoeléctrico Aplicado a un Motor Diésel Estacionario.pdf.jpgOptimización del Desempeño Energético de un Intercambiador de Calor para Aumentar la Eficiencia de Conversión de un Generador Termoeléctrico Aplicado a un Motor Diésel Estacionario.pdf.jpgGenerated Thumbnailimage/jpeg5857https://repositorio.cuc.edu.co/bitstreams/fbe1a8a9-2009-470f-8176-33c1cf24cbda/download5427d26b4ef4f7123e4409a649da1bb3MD5411323/9671oai:repositorio.cuc.edu.co:11323/96712024-09-17 12:48:32.547https://creativecommons.org/licenses/by-nc-sa/4.0/open.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coTEEgT0JSQSAoVEFMIFkgQ09NTyBTRSBERUZJTkUgTcOBUyBBREVMQU5URSkgU0UgT1RPUkdBIEJBSk8gTE9TIFRFUk1JTk9TIERFIEVTVEEgTElDRU5DSUEgUMOaQkxJQ0EgREUgQ1JFQVRJVkUgQ09NTU9OUyAo4oCcTFBDQ+KAnSBPIOKAnExJQ0VOQ0lB4oCdKS4gTEEgT0JSQSBFU1TDgSBQUk9URUdJREEgUE9SIERFUkVDSE9TIERFIEFVVE9SIFkvVSBPVFJBUyBMRVlFUyBBUExJQ0FCTEVTLiBRVUVEQSBQUk9ISUJJRE8gQ1VBTFFVSUVSIFVTTyBRVUUgU0UgSEFHQSBERSBMQSBPQlJBIFFVRSBOTyBDVUVOVEUgQ09OIExBIEFVVE9SSVpBQ0nDk04gUEVSVElORU5URSBERSBDT05GT1JNSURBRCBDT04gTE9TIFTDiVJNSU5PUyBERSBFU1RBIExJQ0VOQ0lBIFkgREUgTEEgTEVZIERFIERFUkVDSE8gREUgQVVUT1IuCgpNRURJQU5URSBFTCBFSkVSQ0lDSU8gREUgQ1VBTFFVSUVSQSBERSBMT1MgREVSRUNIT1MgUVVFIFNFIE9UT1JHQU4gRU4gRVNUQSBMSUNFTkNJQSwgVVNURUQgQUNFUFRBIFkgQUNVRVJEQSBRVUVEQVIgT0JMSUdBRE8gRU4gTE9TIFRFUk1JTk9TIFFVRSBTRSBTRcORQUxBTiBFTiBFTExBLiBFTCBMSUNFTkNJQU5URSBDT05DRURFIEEgVVNURUQgTE9TIERFUkVDSE9TIENPTlRFTklET1MgRU4gRVNUQSBMSUNFTkNJQSBDT05ESUNJT05BRE9TIEEgTEEgQUNFUFRBQ0nDk04gREUgU1VTIFRFUk1JTk9TIFkgQ09ORElDSU9ORVMuCjEuIERlZmluaWNpb25lcwoKYS4JT2JyYSBDb2xlY3RpdmEgZXMgdW5hIG9icmEsIHRhbCBjb21vIHVuYSBwdWJsaWNhY2nDs24gcGVyacOzZGljYSwgdW5hIGFudG9sb2fDrWEsIG8gdW5hIGVuY2ljbG9wZWRpYSwgZW4gbGEgcXVlIGxhIG9icmEgZW4gc3UgdG90YWxpZGFkLCBzaW4gbW9kaWZpY2FjacOzbiBhbGd1bmEsIGp1bnRvIGNvbiB1biBncnVwbyBkZSBvdHJhcyBjb250cmlidWNpb25lcyBxdWUgY29uc3RpdHV5ZW4gb2JyYXMgc2VwYXJhZGFzIGUgaW5kZXBlbmRpZW50ZXMgZW4gc8OtIG1pc21hcywgc2UgaW50ZWdyYW4gZW4gdW4gdG9kbyBjb2xlY3Rpdm8uIFVuYSBPYnJhIHF1ZSBjb25zdGl0dXllIHVuYSBvYnJhIGNvbGVjdGl2YSBubyBzZSBjb25zaWRlcmFyw6EgdW5hIE9icmEgRGVyaXZhZGEgKGNvbW8gc2UgZGVmaW5lIGFiYWpvKSBwYXJhIGxvcyBwcm9ww7NzaXRvcyBkZSBlc3RhIGxpY2VuY2lhLiBhcXVlbGxhIHByb2R1Y2lkYSBwb3IgdW4gZ3J1cG8gZGUgYXV0b3JlcywgZW4gcXVlIGxhIE9icmEgc2UgZW5jdWVudHJhIHNpbiBtb2RpZmljYWNpb25lcywganVudG8gY29uIHVuYSBjaWVydGEgY2FudGlkYWQgZGUgb3RyYXMgY29udHJpYnVjaW9uZXMsIHF1ZSBjb25zdGl0dXllbiBlbiBzw60gbWlzbW9zIHRyYWJham9zIHNlcGFyYWRvcyBlIGluZGVwZW5kaWVudGVzLCBxdWUgc29uIGludGVncmFkb3MgYWwgdG9kbyBjb2xlY3Rpdm8sIHRhbGVzIGNvbW8gcHVibGljYWNpb25lcyBwZXJpw7NkaWNhcywgYW50b2xvZ8OtYXMgbyBlbmNpY2xvcGVkaWFzLgoKYi4JT2JyYSBEZXJpdmFkYSBzaWduaWZpY2EgdW5hIG9icmEgYmFzYWRhIGVuIGxhIG9icmEgb2JqZXRvIGRlIGVzdGEgbGljZW5jaWEgbyBlbiDDqXN0YSB5IG90cmFzIG9icmFzIHByZWV4aXN0ZW50ZXMsIHRhbGVzIGNvbW8gdHJhZHVjY2lvbmVzLCBhcnJlZ2xvcyBtdXNpY2FsZXMsIGRyYW1hdGl6YWNpb25lcywg4oCcZmljY2lvbmFsaXphY2lvbmVz4oCdLCB2ZXJzaW9uZXMgcGFyYSBjaW5lLCDigJxncmFiYWNpb25lcyBkZSBzb25pZG/igJ0sIHJlcHJvZHVjY2lvbmVzIGRlIGFydGUsIHJlc8O6bWVuZXMsIGNvbmRlbnNhY2lvbmVzLCBvIGN1YWxxdWllciBvdHJhIGVuIGxhIHF1ZSBsYSBvYnJhIHB1ZWRhIHNlciB0cmFuc2Zvcm1hZGEsIGNhbWJpYWRhIG8gYWRhcHRhZGEsIGV4Y2VwdG8gYXF1ZWxsYXMgcXVlIGNvbnN0aXR1eWFuIHVuYSBvYnJhIGNvbGVjdGl2YSwgbGFzIHF1ZSBubyBzZXLDoW4gY29uc2lkZXJhZGFzIHVuYSBvYnJhIGRlcml2YWRhIHBhcmEgZWZlY3RvcyBkZSBlc3RhIGxpY2VuY2lhLiAoUGFyYSBldml0YXIgZHVkYXMsIGVuIGVsIGNhc28gZGUgcXVlIGxhIE9icmEgc2VhIHVuYSBjb21wb3NpY2nDs24gbXVzaWNhbCBvIHVuYSBncmFiYWNpw7NuIHNvbm9yYSwgcGFyYSBsb3MgZWZlY3RvcyBkZSBlc3RhIExpY2VuY2lhIGxhIHNpbmNyb25pemFjacOzbiB0ZW1wb3JhbCBkZSBsYSBPYnJhIGNvbiB1bmEgaW1hZ2VuIGVuIG1vdmltaWVudG8gc2UgY29uc2lkZXJhcsOhIHVuYSBPYnJhIERlcml2YWRhIHBhcmEgbG9zIGZpbmVzIGRlIGVzdGEgbGljZW5jaWEpLgoKYy4JTGljZW5jaWFudGUsIGVzIGVsIGluZGl2aWR1byBvIGxhIGVudGlkYWQgdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgZGUgYXV0b3IgcXVlIG9mcmVjZSBsYSBPYnJhIGVuIGNvbmZvcm1pZGFkIGNvbiBsYXMgY29uZGljaW9uZXMgZGUgZXN0YSBMaWNlbmNpYS4KCmQuCUF1dG9yIG9yaWdpbmFsLCBlcyBlbCBpbmRpdmlkdW8gcXVlIGNyZcOzIGxhIE9icmEuCgplLglPYnJhLCBlcyBhcXVlbGxhIG9icmEgc3VzY2VwdGlibGUgZGUgcHJvdGVjY2nDs24gcG9yIGVsIHLDqWdpbWVuIGRlIERlcmVjaG8gZGUgQXV0b3IgeSBxdWUgZXMgb2ZyZWNpZGEgZW4gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIGxpY2VuY2lhCgpmLglVc3RlZCwgZXMgZWwgaW5kaXZpZHVvIG8gbGEgZW50aWRhZCBxdWUgZWplcmNpdGEgbG9zIGRlcmVjaG9zIG90b3JnYWRvcyBhbCBhbXBhcm8gZGUgZXN0YSBMaWNlbmNpYSB5IHF1ZSBjb24gYW50ZXJpb3JpZGFkIG5vIGhhIHZpb2xhZG8gbGFzIGNvbmRpY2lvbmVzIGRlIGxhIG1pc21hIHJlc3BlY3RvIGEgbGEgT2JyYSwgbyBxdWUgaGF5YSBvYnRlbmlkbyBhdXRvcml6YWNpw7NuIGV4cHJlc2EgcG9yIHBhcnRlIGRlbCBMaWNlbmNpYW50ZSBwYXJhIGVqZXJjZXIgbG9zIGRlcmVjaG9zIGFsIGFtcGFybyBkZSBlc3RhIExpY2VuY2lhIHBlc2UgYSB1bmEgdmlvbGFjacOzbiBhbnRlcmlvci4KCjIuIERlcmVjaG9zIGRlIFVzb3MgSG9ucmFkb3MgeSBleGNlcGNpb25lcyBMZWdhbGVzLgpOYWRhIGVuIGVzdGEgTGljZW5jaWEgcG9kcsOhIHNlciBpbnRlcnByZXRhZG8gY29tbyB1bmEgZGlzbWludWNpw7NuLCBsaW1pdGFjacOzbiBvIHJlc3RyaWNjacOzbiBkZSBsb3MgZGVyZWNob3MgZGVyaXZhZG9zIGRlbCB1c28gaG9ucmFkbyB5IG90cmFzIGxpbWl0YWNpb25lcyBvIGV4Y2VwY2lvbmVzIGEgbG9zIGRlcmVjaG9zIGRlbCBhdXRvciBiYWpvIGVsIHLDqWdpbWVuIGxlZ2FsIHZpZ2VudGUgbyBkZXJpdmFkbyBkZSBjdWFscXVpZXIgb3RyYSBub3JtYSBxdWUgc2UgbGUgYXBsaXF1ZS4KCjMuIENvbmNlc2nDs24gZGUgbGEgTGljZW5jaWEuCkJham8gbG9zIHTDqXJtaW5vcyB5IGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIGVsIExpY2VuY2lhbnRlIG90b3JnYSBhIFVzdGVkIHVuYSBsaWNlbmNpYSBtdW5kaWFsLCBsaWJyZSBkZSByZWdhbMOtYXMsIG5vIGV4Y2x1c2l2YSB5IHBlcnBldHVhIChkdXJhbnRlIHRvZG8gZWwgcGVyw61vZG8gZGUgdmlnZW5jaWEgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yKSBwYXJhIGVqZXJjZXIgZXN0b3MgZGVyZWNob3Mgc29icmUgbGEgT2JyYSB0YWwgeSBjb21vIHNlIGluZGljYSBhIGNvbnRpbnVhY2nDs246CgphLglSZXByb2R1Y2lyIGxhIE9icmEsIGluY29ycG9yYXIgbGEgT2JyYSBlbiB1bmEgbyBtw6FzIE9icmFzIENvbGVjdGl2YXMsIHkgcmVwcm9kdWNpciBsYSBPYnJhIGluY29ycG9yYWRhIGVuIGxhcyBPYnJhcyBDb2xlY3RpdmFzLgoKYi4JRGlzdHJpYnVpciBjb3BpYXMgbyBmb25vZ3JhbWFzIGRlIGxhcyBPYnJhcywgZXhoaWJpcmxhcyBww7pibGljYW1lbnRlLCBlamVjdXRhcmxhcyBww7pibGljYW1lbnRlIHkvbyBwb25lcmxhcyBhIGRpc3Bvc2ljacOzbiBww7pibGljYSwgaW5jbHV5w6luZG9sYXMgY29tbyBpbmNvcnBvcmFkYXMgZW4gT2JyYXMgQ29sZWN0aXZhcywgc2Vnw7puIGNvcnJlc3BvbmRhLgoKYy4JRGlzdHJpYnVpciBjb3BpYXMgZGUgbGFzIE9icmFzIERlcml2YWRhcyBxdWUgc2UgZ2VuZXJlbiwgZXhoaWJpcmxhcyBww7pibGljYW1lbnRlLCBlamVjdXRhcmxhcyBww7pibGljYW1lbnRlIHkvbyBwb25lcmxhcyBhIGRpc3Bvc2ljacOzbiBww7pibGljYS4KTG9zIGRlcmVjaG9zIG1lbmNpb25hZG9zIGFudGVyaW9ybWVudGUgcHVlZGVuIHNlciBlamVyY2lkb3MgZW4gdG9kb3MgbG9zIG1lZGlvcyB5IGZvcm1hdG9zLCBhY3R1YWxtZW50ZSBjb25vY2lkb3MgbyBxdWUgc2UgaW52ZW50ZW4gZW4gZWwgZnV0dXJvLiBMb3MgZGVyZWNob3MgYW50ZXMgbWVuY2lvbmFkb3MgaW5jbHV5ZW4gZWwgZGVyZWNobyBhIHJlYWxpemFyIGRpY2hhcyBtb2RpZmljYWNpb25lcyBlbiBsYSBtZWRpZGEgcXVlIHNlYW4gdMOpY25pY2FtZW50ZSBuZWNlc2FyaWFzIHBhcmEgZWplcmNlciBsb3MgZGVyZWNob3MgZW4gb3RybyBtZWRpbyBvIGZvcm1hdG9zLCBwZXJvIGRlIG90cmEgbWFuZXJhIHVzdGVkIG5vIGVzdMOhIGF1dG9yaXphZG8gcGFyYSByZWFsaXphciBvYnJhcyBkZXJpdmFkYXMuIFRvZG9zIGxvcyBkZXJlY2hvcyBubyBvdG9yZ2Fkb3MgZXhwcmVzYW1lbnRlIHBvciBlbCBMaWNlbmNpYW50ZSBxdWVkYW4gcG9yIGVzdGUgbWVkaW8gcmVzZXJ2YWRvcywgaW5jbHV5ZW5kbyBwZXJvIHNpbiBsaW1pdGFyc2UgYSBhcXVlbGxvcyBxdWUgc2UgbWVuY2lvbmFuIGVuIGxhcyBzZWNjaW9uZXMgNChkKSB5IDQoZSkuCgo0LiBSZXN0cmljY2lvbmVzLgpMYSBsaWNlbmNpYSBvdG9yZ2FkYSBlbiBsYSBhbnRlcmlvciBTZWNjacOzbiAzIGVzdMOhIGV4cHJlc2FtZW50ZSBzdWpldGEgeSBsaW1pdGFkYSBwb3IgbGFzIHNpZ3VpZW50ZXMgcmVzdHJpY2Npb25lczoKCmEuCVVzdGVkIHB1ZWRlIGRpc3RyaWJ1aXIsIGV4aGliaXIgcMO6YmxpY2FtZW50ZSwgZWplY3V0YXIgcMO6YmxpY2FtZW50ZSwgbyBwb25lciBhIGRpc3Bvc2ljacOzbiBww7pibGljYSBsYSBPYnJhIHPDs2xvIGJham8gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIHkgVXN0ZWQgZGViZSBpbmNsdWlyIHVuYSBjb3BpYSBkZSBlc3RhIGxpY2VuY2lhIG8gZGVsIElkZW50aWZpY2Fkb3IgVW5pdmVyc2FsIGRlIFJlY3Vyc29zIGRlIGxhIG1pc21hIGNvbiBjYWRhIGNvcGlhIGRlIGxhIE9icmEgcXVlIGRpc3RyaWJ1eWEsIGV4aGliYSBww7pibGljYW1lbnRlLCBlamVjdXRlIHDDumJsaWNhbWVudGUgbyBwb25nYSBhIGRpc3Bvc2ljacOzbiBww7pibGljYS4gTm8gZXMgcG9zaWJsZSBvZnJlY2VyIG8gaW1wb25lciBuaW5ndW5hIGNvbmRpY2nDs24gc29icmUgbGEgT2JyYSBxdWUgYWx0ZXJlIG8gbGltaXRlIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhIG8gZWwgZWplcmNpY2lvIGRlIGxvcyBkZXJlY2hvcyBkZSBsb3MgZGVzdGluYXRhcmlvcyBvdG9yZ2Fkb3MgZW4gZXN0ZSBkb2N1bWVudG8uIE5vIGVzIHBvc2libGUgc3VibGljZW5jaWFyIGxhIE9icmEuIFVzdGVkIGRlYmUgbWFudGVuZXIgaW50YWN0b3MgdG9kb3MgbG9zIGF2aXNvcyBxdWUgaGFnYW4gcmVmZXJlbmNpYSBhIGVzdGEgTGljZW5jaWEgeSBhIGxhIGNsw6F1c3VsYSBkZSBsaW1pdGFjacOzbiBkZSBnYXJhbnTDrWFzLiBVc3RlZCBubyBwdWVkZSBkaXN0cmlidWlyLCBleGhpYmlyIHDDumJsaWNhbWVudGUsIGVqZWN1dGFyIHDDumJsaWNhbWVudGUsIG8gcG9uZXIgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBjb24gYWxndW5hIG1lZGlkYSB0ZWNub2zDs2dpY2EgcXVlIGNvbnRyb2xlIGVsIGFjY2VzbyBvIGxhIHV0aWxpemFjacOzbiBkZSBlbGxhIGRlIHVuYSBmb3JtYSBxdWUgc2VhIGluY29uc2lzdGVudGUgY29uIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLiBMbyBhbnRlcmlvciBzZSBhcGxpY2EgYSBsYSBPYnJhIGluY29ycG9yYWRhIGEgdW5hIE9icmEgQ29sZWN0aXZhLCBwZXJvIGVzdG8gbm8gZXhpZ2UgcXVlIGxhIE9icmEgQ29sZWN0aXZhIGFwYXJ0ZSBkZSBsYSBvYnJhIG1pc21hIHF1ZWRlIHN1amV0YSBhIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLiBTaSBVc3RlZCBjcmVhIHVuYSBPYnJhIENvbGVjdGl2YSwgcHJldmlvIGF2aXNvIGRlIGN1YWxxdWllciBMaWNlbmNpYW50ZSBkZWJlLCBlbiBsYSBtZWRpZGEgZGUgbG8gcG9zaWJsZSwgZWxpbWluYXIgZGUgbGEgT2JyYSBDb2xlY3RpdmEgY3VhbHF1aWVyIHJlZmVyZW5jaWEgYSBkaWNobyBMaWNlbmNpYW50ZSBvIGFsIEF1dG9yIE9yaWdpbmFsLCBzZWfDum4gbG8gc29saWNpdGFkbyBwb3IgZWwgTGljZW5jaWFudGUgeSBjb25mb3JtZSBsbyBleGlnZSBsYSBjbMOhdXN1bGEgNChjKS4KCmIuCVVzdGVkIG5vIHB1ZWRlIGVqZXJjZXIgbmluZ3VubyBkZSBsb3MgZGVyZWNob3MgcXVlIGxlIGhhbiBzaWRvIG90b3JnYWRvcyBlbiBsYSBTZWNjacOzbiAzIHByZWNlZGVudGUgZGUgbW9kbyBxdWUgZXN0w6luIHByaW5jaXBhbG1lbnRlIGRlc3RpbmFkb3MgbyBkaXJlY3RhbWVudGUgZGlyaWdpZG9zIGEgY29uc2VndWlyIHVuIHByb3ZlY2hvIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLiBFbCBpbnRlcmNhbWJpbyBkZSBsYSBPYnJhIHBvciBvdHJhcyBvYnJhcyBwcm90ZWdpZGFzIHBvciBkZXJlY2hvcyBkZSBhdXRvciwgeWEgc2VhIGEgdHJhdsOpcyBkZSB1biBzaXN0ZW1hIHBhcmEgY29tcGFydGlyIGFyY2hpdm9zIGRpZ2l0YWxlcyAoZGlnaXRhbCBmaWxlLXNoYXJpbmcpIG8gZGUgY3VhbHF1aWVyIG90cmEgbWFuZXJhIG5vIHNlcsOhIGNvbnNpZGVyYWRvIGNvbW8gZXN0YXIgZGVzdGluYWRvIHByaW5jaXBhbG1lbnRlIG8gZGlyaWdpZG8gZGlyZWN0YW1lbnRlIGEgY29uc2VndWlyIHVuIHByb3ZlY2hvIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLCBzaWVtcHJlIHF1ZSBubyBzZSByZWFsaWNlIHVuIHBhZ28gbWVkaWFudGUgdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIGVuIHJlbGFjacOzbiBjb24gZWwgaW50ZXJjYW1iaW8gZGUgb2JyYXMgcHJvdGVnaWRhcyBwb3IgZWwgZGVyZWNobyBkZSBhdXRvci4KCmMuCVNpIHVzdGVkIGRpc3RyaWJ1eWUsIGV4aGliZSBww7pibGljYW1lbnRlLCBlamVjdXRhIHDDumJsaWNhbWVudGUgbyBlamVjdXRhIHDDumJsaWNhbWVudGUgZW4gZm9ybWEgZGlnaXRhbCBsYSBPYnJhIG8gY3VhbHF1aWVyIE9icmEgRGVyaXZhZGEgdSBPYnJhIENvbGVjdGl2YSwgVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RhIHRvZGEgbGEgaW5mb3JtYWNpw7NuIGRlIGRlcmVjaG8gZGUgYXV0b3IgZGUgbGEgT2JyYSB5IHByb3BvcmNpb25hciwgZGUgZm9ybWEgcmF6b25hYmxlIHNlZ8O6biBlbCBtZWRpbyBvIG1hbmVyYSBxdWUgVXN0ZWQgZXN0w6kgdXRpbGl6YW5kbzogKGkpIGVsIG5vbWJyZSBkZWwgQXV0b3IgT3JpZ2luYWwgc2kgZXN0w6EgcHJvdmlzdG8gKG8gc2V1ZMOzbmltbywgc2kgZnVlcmUgYXBsaWNhYmxlKSwgeS9vIChpaSkgZWwgbm9tYnJlIGRlIGxhIHBhcnRlIG8gbGFzIHBhcnRlcyBxdWUgZWwgQXV0b3IgT3JpZ2luYWwgeS9vIGVsIExpY2VuY2lhbnRlIGh1YmllcmVuIGRlc2lnbmFkbyBwYXJhIGxhIGF0cmlidWNpw7NuICh2LmcuLCB1biBpbnN0aXR1dG8gcGF0cm9jaW5hZG9yLCBlZGl0b3JpYWwsIHB1YmxpY2FjacOzbikgZW4gbGEgaW5mb3JtYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZWwgTGljZW5jaWFudGUsIHTDqXJtaW5vcyBkZSBzZXJ2aWNpb3MgbyBkZSBvdHJhcyBmb3JtYXMgcmF6b25hYmxlczsgZWwgdMOtdHVsbyBkZSBsYSBPYnJhIHNpIGVzdMOhIHByb3Zpc3RvOyBlbiBsYSBtZWRpZGEgZGUgbG8gcmF6b25hYmxlbWVudGUgZmFjdGlibGUgeSwgc2kgZXN0w6EgcHJvdmlzdG8sIGVsIElkZW50aWZpY2Fkb3IgVW5pZm9ybWUgZGUgUmVjdXJzb3MgKFVuaWZvcm0gUmVzb3VyY2UgSWRlbnRpZmllcikgcXVlIGVsIExpY2VuY2lhbnRlIGVzcGVjaWZpY2EgcGFyYSBzZXIgYXNvY2lhZG8gY29uIGxhIE9icmEsIHNhbHZvIHF1ZSB0YWwgVVJJIG5vIHNlIHJlZmllcmEgYSBsYSBub3RhIHNvYnJlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBvIGEgbGEgaW5mb3JtYWNpw7NuIHNvYnJlIGVsIGxpY2VuY2lhbWllbnRvIGRlIGxhIE9icmE7IHkgZW4gZWwgY2FzbyBkZSB1bmEgT2JyYSBEZXJpdmFkYSwgYXRyaWJ1aXIgZWwgY3LDqWRpdG8gaWRlbnRpZmljYW5kbyBlbCB1c28gZGUgbGEgT2JyYSBlbiBsYSBPYnJhIERlcml2YWRhICh2LmcuLCAiVHJhZHVjY2nDs24gRnJhbmNlc2EgZGUgbGEgT2JyYSBkZWwgQXV0b3IgT3JpZ2luYWwsIiBvICJHdWnDs24gQ2luZW1hdG9ncsOhZmljbyBiYXNhZG8gZW4gbGEgT2JyYSBvcmlnaW5hbCBkZWwgQXV0b3IgT3JpZ2luYWwiKS4gVGFsIGNyw6lkaXRvIHB1ZWRlIHNlciBpbXBsZW1lbnRhZG8gZGUgY3VhbHF1aWVyIGZvcm1hIHJhem9uYWJsZTsgZW4gZWwgY2Fzbywgc2luIGVtYmFyZ28sIGRlIE9icmFzIERlcml2YWRhcyB1IE9icmFzIENvbGVjdGl2YXMsIHRhbCBjcsOpZGl0byBhcGFyZWNlcsOhLCBjb21vIG3DrW5pbW8sIGRvbmRlIGFwYXJlY2UgZWwgY3LDqWRpdG8gZGUgY3VhbHF1aWVyIG90cm8gYXV0b3IgY29tcGFyYWJsZSB5IGRlIHVuYSBtYW5lcmEsIGFsIG1lbm9zLCB0YW4gZGVzdGFjYWRhIGNvbW8gZWwgY3LDqWRpdG8gZGUgb3RybyBhdXRvciBjb21wYXJhYmxlLgoKZC4JUGFyYSBldml0YXIgdG9kYSBjb25mdXNpw7NuLCBlbCBMaWNlbmNpYW50ZSBhY2xhcmEgcXVlLCBjdWFuZG8gbGEgb2JyYSBlcyB1bmEgY29tcG9zaWNpw7NuIG11c2ljYWw6CgppLglSZWdhbMOtYXMgcG9yIGludGVycHJldGFjacOzbiB5IGVqZWN1Y2nDs24gYmFqbyBsaWNlbmNpYXMgZ2VuZXJhbGVzLiBFbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gZXhjbHVzaXZvIGRlIGF1dG9yaXphciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIG8gbGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGRlIGxhIG9icmEgeSBkZSByZWNvbGVjdGFyLCBzZWEgaW5kaXZpZHVhbG1lbnRlIG8gYSB0cmF2w6lzIGRlIHVuYSBzb2NpZWRhZCBkZSBnZXN0acOzbiBjb2xlY3RpdmEgZGUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIChwb3IgZWplbXBsbywgU0FZQ08pLCBsYXMgcmVnYWzDrWFzIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIG8gcG9yIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIChwb3IgZWplbXBsbyBXZWJjYXN0KSBsaWNlbmNpYWRhIGJham8gbGljZW5jaWFzIGdlbmVyYWxlcywgc2kgbGEgaW50ZXJwcmV0YWNpw7NuIG8gZWplY3VjacOzbiBkZSBsYSBvYnJhIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBvcmllbnRhZGEgcG9yIG8gZGlyaWdpZGEgYSBsYSBvYnRlbmNpw7NuIGRlIHVuYSB2ZW50YWphIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLgoKaWkuCVJlZ2Fsw61hcyBwb3IgRm9ub2dyYW1hcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSByZWNvbGVjdGFyLCBpbmRpdmlkdWFsbWVudGUgbyBhIHRyYXbDqXMgZGUgdW5hIHNvY2llZGFkIGRlIGdlc3Rpw7NuIGNvbGVjdGl2YSBkZSBkZXJlY2hvcyBkZSBhdXRvciB5IGRlcmVjaG9zIGNvbmV4b3MgKHBvciBlamVtcGxvLCBsb3MgY29uc2FncmFkb3MgcG9yIGxhIFNBWUNPKSwgdW5hIGFnZW5jaWEgZGUgZGVyZWNob3MgbXVzaWNhbGVzIG8gYWxnw7puIGFnZW50ZSBkZXNpZ25hZG8sIGxhcyByZWdhbMOtYXMgcG9yIGN1YWxxdWllciBmb25vZ3JhbWEgcXVlIFVzdGVkIGNyZWUgYSBwYXJ0aXIgZGUgbGEgb2JyYSAo4oCcdmVyc2nDs24gY292ZXLigJ0pIHkgZGlzdHJpYnV5YSwgZW4gbG9zIHTDqXJtaW5vcyBkZWwgcsOpZ2ltZW4gZGUgZGVyZWNob3MgZGUgYXV0b3IsIHNpIGxhIGNyZWFjacOzbiBvIGRpc3RyaWJ1Y2nDs24gZGUgZXNhIHZlcnNpw7NuIGNvdmVyIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkZXN0aW5hZGEgbyBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuCgplLglHZXN0acOzbiBkZSBEZXJlY2hvcyBkZSBBdXRvciBzb2JyZSBJbnRlcnByZXRhY2lvbmVzIHkgRWplY3VjaW9uZXMgRGlnaXRhbGVzIChXZWJDYXN0aW5nKS4gUGFyYSBldml0YXIgdG9kYSBjb25mdXNpw7NuLCBlbCBMaWNlbmNpYW50ZSBhY2xhcmEgcXVlLCBjdWFuZG8gbGEgb2JyYSBzZWEgdW4gZm9ub2dyYW1hLCBlbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gZXhjbHVzaXZvIGRlIGF1dG9yaXphciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8sIHdlYmNhc3QpIHkgZGUgcmVjb2xlY3RhciwgaW5kaXZpZHVhbG1lbnRlIG8gYSB0cmF2w6lzIGRlIHVuYSBzb2NpZWRhZCBkZSBnZXN0acOzbiBjb2xlY3RpdmEgZGUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIChwb3IgZWplbXBsbywgQUNJTlBSTyksIGxhcyByZWdhbMOtYXMgcG9yIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIChwb3IgZWplbXBsbywgd2ViY2FzdCksIHN1amV0YSBhIGxhcyBkaXNwb3NpY2lvbmVzIGFwbGljYWJsZXMgZGVsIHLDqWdpbWVuIGRlIERlcmVjaG8gZGUgQXV0b3IsIHNpIGVzdGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuCgo1LiBSZXByZXNlbnRhY2lvbmVzLCBHYXJhbnTDrWFzIHkgTGltaXRhY2lvbmVzIGRlIFJlc3BvbnNhYmlsaWRhZC4KQSBNRU5PUyBRVUUgTEFTIFBBUlRFUyBMTyBBQ09SREFSQU4gREUgT1RSQSBGT1JNQSBQT1IgRVNDUklUTywgRUwgTElDRU5DSUFOVEUgT0ZSRUNFIExBIE9CUkEgKEVOIEVMIEVTVEFETyBFTiBFTCBRVUUgU0UgRU5DVUVOVFJBKSDigJxUQUwgQ1VBTOKAnSwgU0lOIEJSSU5EQVIgR0FSQU5Uw41BUyBERSBDTEFTRSBBTEdVTkEgUkVTUEVDVE8gREUgTEEgT0JSQSwgWUEgU0VBIEVYUFJFU0EsIElNUEzDjUNJVEEsIExFR0FMIE8gQ1VBTFFVSUVSQSBPVFJBLCBJTkNMVVlFTkRPLCBTSU4gTElNSVRBUlNFIEEgRUxMQVMsIEdBUkFOVMONQVMgREUgVElUVUxBUklEQUQsIENPTUVSQ0lBQklMSURBRCwgQURBUFRBQklMSURBRCBPIEFERUNVQUNJw5NOIEEgUFJPUMOTU0lUTyBERVRFUk1JTkFETywgQVVTRU5DSUEgREUgSU5GUkFDQ0nDk04sIERFIEFVU0VOQ0lBIERFIERFRkVDVE9TIExBVEVOVEVTIE8gREUgT1RSTyBUSVBPLCBPIExBIFBSRVNFTkNJQSBPIEFVU0VOQ0lBIERFIEVSUk9SRVMsIFNFQU4gTyBOTyBERVNDVUJSSUJMRVMgKFBVRURBTiBPIE5PIFNFUiBFU1RPUyBERVNDVUJJRVJUT1MpLiBBTEdVTkFTIEpVUklTRElDQ0lPTkVTIE5PIFBFUk1JVEVOIExBIEVYQ0xVU0nDk04gREUgR0FSQU5Uw41BUyBJTVBMw41DSVRBUywgRU4gQ1VZTyBDQVNPIEVTVEEgRVhDTFVTScOTTiBQVUVERSBOTyBBUExJQ0FSU0UgQSBVU1RFRC4KCjYuIExpbWl0YWNpw7NuIGRlIHJlc3BvbnNhYmlsaWRhZC4KQSBNRU5PUyBRVUUgTE8gRVhJSkEgRVhQUkVTQU1FTlRFIExBIExFWSBBUExJQ0FCTEUsIEVMIExJQ0VOQ0lBTlRFIE5PIFNFUsOBIFJFU1BPTlNBQkxFIEFOVEUgVVNURUQgUE9SIERBw5FPIEFMR1VOTywgU0VBIFBPUiBSRVNQT05TQUJJTElEQUQgRVhUUkFDT05UUkFDVFVBTCwgUFJFQ09OVFJBQ1RVQUwgTyBDT05UUkFDVFVBTCwgT0JKRVRJVkEgTyBTVUJKRVRJVkEsIFNFIFRSQVRFIERFIERBw5FPUyBNT1JBTEVTIE8gUEFUUklNT05JQUxFUywgRElSRUNUT1MgTyBJTkRJUkVDVE9TLCBQUkVWSVNUT1MgTyBJTVBSRVZJU1RPUyBQUk9EVUNJRE9TIFBPUiBFTCBVU08gREUgRVNUQSBMSUNFTkNJQSBPIERFIExBIE9CUkEsIEFVTiBDVUFORE8gRUwgTElDRU5DSUFOVEUgSEFZQSBTSURPIEFEVkVSVElETyBERSBMQSBQT1NJQklMSURBRCBERSBESUNIT1MgREHDkU9TLiBBTEdVTkFTIExFWUVTIE5PIFBFUk1JVEVOIExBIEVYQ0xVU0nDk04gREUgQ0lFUlRBIFJFU1BPTlNBQklMSURBRCwgRU4gQ1VZTyBDQVNPIEVTVEEgRVhDTFVTScOTTiBQVUVERSBOTyBBUExJQ0FSU0UgQSBVU1RFRC4KCjcuIFTDqXJtaW5vLgoKYS4JRXN0YSBMaWNlbmNpYSB5IGxvcyBkZXJlY2hvcyBvdG9yZ2Fkb3MgZW4gdmlydHVkIGRlIGVsbGEgdGVybWluYXLDoW4gYXV0b23DoXRpY2FtZW50ZSBzaSBVc3RlZCBpbmZyaW5nZSBhbGd1bmEgY29uZGljacOzbiBlc3RhYmxlY2lkYSBlbiBlbGxhLiBTaW4gZW1iYXJnbywgbG9zIGluZGl2aWR1b3MgbyBlbnRpZGFkZXMgcXVlIGhhbiByZWNpYmlkbyBPYnJhcyBEZXJpdmFkYXMgbyBDb2xlY3RpdmFzIGRlIFVzdGVkIGRlIGNvbmZvcm1pZGFkIGNvbiBlc3RhIExpY2VuY2lhLCBubyB2ZXLDoW4gdGVybWluYWRhcyBzdXMgbGljZW5jaWFzLCBzaWVtcHJlIHF1ZSBlc3RvcyBpbmRpdmlkdW9zIG8gZW50aWRhZGVzIHNpZ2FuIGN1bXBsaWVuZG8gw61udGVncmFtZW50ZSBsYXMgY29uZGljaW9uZXMgZGUgZXN0YXMgbGljZW5jaWFzLiBMYXMgU2VjY2lvbmVzIDEsIDIsIDUsIDYsIDcsIHkgOCBzdWJzaXN0aXLDoW4gYSBjdWFscXVpZXIgdGVybWluYWNpw7NuIGRlIGVzdGEgTGljZW5jaWEuCgpiLglTdWpldGEgYSBsYXMgY29uZGljaW9uZXMgeSB0w6lybWlub3MgYW50ZXJpb3JlcywgbGEgbGljZW5jaWEgb3RvcmdhZGEgYXF1w60gZXMgcGVycGV0dWEgKGR1cmFudGUgZWwgcGVyw61vZG8gZGUgdmlnZW5jaWEgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGRlIGxhIG9icmEpLiBObyBvYnN0YW50ZSBsbyBhbnRlcmlvciwgZWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGEgcHVibGljYXIgeS9vIGVzdHJlbmFyIGxhIE9icmEgYmFqbyBjb25kaWNpb25lcyBkZSBsaWNlbmNpYSBkaWZlcmVudGVzIG8gYSBkZWphciBkZSBkaXN0cmlidWlybGEgZW4gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIExpY2VuY2lhIGVuIGN1YWxxdWllciBtb21lbnRvOyBlbiBlbCBlbnRlbmRpZG8sIHNpbiBlbWJhcmdvLCBxdWUgZXNhIGVsZWNjacOzbiBubyBzZXJ2aXLDoSBwYXJhIHJldm9jYXIgZXN0YSBsaWNlbmNpYSBvIHF1ZSBkZWJhIHNlciBvdG9yZ2FkYSAsIGJham8gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIGxpY2VuY2lhKSwgeSBlc3RhIGxpY2VuY2lhIGNvbnRpbnVhcsOhIGVuIHBsZW5vIHZpZ29yIHkgZWZlY3RvIGEgbWVub3MgcXVlIHNlYSB0ZXJtaW5hZGEgY29tbyBzZSBleHByZXNhIGF0csOhcy4gTGEgTGljZW5jaWEgcmV2b2NhZGEgY29udGludWFyw6Egc2llbmRvIHBsZW5hbWVudGUgdmlnZW50ZSB5IGVmZWN0aXZhIHNpIG5vIHNlIGxlIGRhIHTDqXJtaW5vIGVuIGxhcyBjb25kaWNpb25lcyBpbmRpY2FkYXMgYW50ZXJpb3JtZW50ZS4KCjguIFZhcmlvcy4KCmEuCUNhZGEgdmV6IHF1ZSBVc3RlZCBkaXN0cmlidXlhIG8gcG9uZ2EgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBvIHVuYSBPYnJhIENvbGVjdGl2YSwgZWwgTGljZW5jaWFudGUgb2ZyZWNlcsOhIGFsIGRlc3RpbmF0YXJpbyB1bmEgbGljZW5jaWEgZW4gbG9zIG1pc21vcyB0w6lybWlub3MgeSBjb25kaWNpb25lcyBxdWUgbGEgbGljZW5jaWEgb3RvcmdhZGEgYSBVc3RlZCBiYWpvIGVzdGEgTGljZW5jaWEuCgpiLglTaSBhbGd1bmEgZGlzcG9zaWNpw7NuIGRlIGVzdGEgTGljZW5jaWEgcmVzdWx0YSBpbnZhbGlkYWRhIG8gbm8gZXhpZ2libGUsIHNlZ8O6biBsYSBsZWdpc2xhY2nDs24gdmlnZW50ZSwgZXN0byBubyBhZmVjdGFyw6EgbmkgbGEgdmFsaWRleiBuaSBsYSBhcGxpY2FiaWxpZGFkIGRlbCByZXN0byBkZSBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhIHksIHNpbiBhY2Npw7NuIGFkaWNpb25hbCBwb3IgcGFydGUgZGUgbG9zIHN1amV0b3MgZGUgZXN0ZSBhY3VlcmRvLCBhcXXDqWxsYSBzZSBlbnRlbmRlcsOhIHJlZm9ybWFkYSBsbyBtw61uaW1vIG5lY2VzYXJpbyBwYXJhIGhhY2VyIHF1ZSBkaWNoYSBkaXNwb3NpY2nDs24gc2VhIHbDoWxpZGEgeSBleGlnaWJsZS4KCmMuCU5pbmfDum4gdMOpcm1pbm8gbyBkaXNwb3NpY2nDs24gZGUgZXN0YSBMaWNlbmNpYSBzZSBlc3RpbWFyw6EgcmVudW5jaWFkYSB5IG5pbmd1bmEgdmlvbGFjacOzbiBkZSBlbGxhIHNlcsOhIGNvbnNlbnRpZGEgYSBtZW5vcyBxdWUgZXNhIHJlbnVuY2lhIG8gY29uc2VudGltaWVudG8gc2VhIG90b3JnYWRvIHBvciBlc2NyaXRvIHkgZmlybWFkbyBwb3IgbGEgcGFydGUgcXVlIHJlbnVuY2llIG8gY29uc2llbnRhLgoKZC4JRXN0YSBMaWNlbmNpYSByZWZsZWphIGVsIGFjdWVyZG8gcGxlbm8gZW50cmUgbGFzIHBhcnRlcyByZXNwZWN0byBhIGxhIE9icmEgYXF1w60gbGljZW5jaWFkYS4gTm8gaGF5IGFycmVnbG9zLCBhY3VlcmRvcyBvIGRlY2xhcmFjaW9uZXMgcmVzcGVjdG8gYSBsYSBPYnJhIHF1ZSBubyBlc3TDqW4gZXNwZWNpZmljYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gRWwgTGljZW5jaWFudGUgbm8gc2UgdmVyw6EgbGltaXRhZG8gcG9yIG5pbmd1bmEgZGlzcG9zaWNpw7NuIGFkaWNpb25hbCBxdWUgcHVlZGEgc3VyZ2lyIGVuIGFsZ3VuYSBjb211bmljYWNpw7NuIGVtYW5hZGEgZGUgVXN0ZWQuIEVzdGEgTGljZW5jaWEgbm8gcHVlZGUgc2VyIG1vZGlmaWNhZGEgc2luIGVsIGNvbnNlbnRpbWllbnRvIG11dHVvIHBvciBlc2NyaXRvIGRlbCBMaWNlbmNpYW50ZSB5IFVzdGVkLgo= |