Bayesian Classifiers in Intrusion Detection Systems

To be able to identify computer attacks, detection systems that are based on faults are not dependent on data base upgrades unlike the ones based on misuse. The first type of systems mentioned generate a knowledge pattern from which the usual and unusual traffic is distinguished. Within computer net...

Full description

Autores:
Mardini-Bovea, Johan
De-La-Hoz-Franco, Emiro
Molina Estren, Diego
Ariza Colpas, Paola Patricia
Ortíz, Andrés
Ortega, Julio
R. Cárdenas, César A.
COLLAZOS MORALES, CARLOS ANDRES
Tipo de recurso:
http://purl.org/coar/resource_type/c_816b
Fecha de publicación:
2020
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/6241
Acceso en línea:
https://hdl.handle.net/11323/6241
https://doi.org/10.1007/978-3-030-45778-5_26
https://repositorio.cuc.edu.co/
Palabra clave:
Naïve bayes
Bayesian networks
Feature selection
Rights
openAccess
License
CC0 1.0 Universal
id RCUC2_80937c3b23916b1de12936da8546c4c9
oai_identifier_str oai:repositorio.cuc.edu.co:11323/6241
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.spa.fl_str_mv Bayesian Classifiers in Intrusion Detection Systems
title Bayesian Classifiers in Intrusion Detection Systems
spellingShingle Bayesian Classifiers in Intrusion Detection Systems
Naïve bayes
Bayesian networks
Feature selection
title_short Bayesian Classifiers in Intrusion Detection Systems
title_full Bayesian Classifiers in Intrusion Detection Systems
title_fullStr Bayesian Classifiers in Intrusion Detection Systems
title_full_unstemmed Bayesian Classifiers in Intrusion Detection Systems
title_sort Bayesian Classifiers in Intrusion Detection Systems
dc.creator.fl_str_mv Mardini-Bovea, Johan
De-La-Hoz-Franco, Emiro
Molina Estren, Diego
Ariza Colpas, Paola Patricia
Ortíz, Andrés
Ortega, Julio
R. Cárdenas, César A.
COLLAZOS MORALES, CARLOS ANDRES
dc.contributor.author.spa.fl_str_mv Mardini-Bovea, Johan
De-La-Hoz-Franco, Emiro
Molina Estren, Diego
Ariza Colpas, Paola Patricia
Ortíz, Andrés
Ortega, Julio
R. Cárdenas, César A.
COLLAZOS MORALES, CARLOS ANDRES
dc.subject.spa.fl_str_mv Naïve bayes
Bayesian networks
Feature selection
topic Naïve bayes
Bayesian networks
Feature selection
description To be able to identify computer attacks, detection systems that are based on faults are not dependent on data base upgrades unlike the ones based on misuse. The first type of systems mentioned generate a knowledge pattern from which the usual and unusual traffic is distinguished. Within computer networks, different classification traffic techniques have been implemented in intruder detection systems based on abnormalities. These try to improve the measurement that assess the performance quality of classifiers and reduce computational cost. In this research work, a comparative analysis of the obtained results is carried out after implementing different selection techniques such as Info.Gain, Gain ratio and Relief as well as Bayesian (Naïve Bayes and Bayesians Networks). Hence, 97.6% of right answers were got with 13 features. Likewise, through the implementation of both load balanced methods and attributes normalization and choice, it was also possible to diminish the number of features used in the ID classification process. Also, a reduced computational expense was achieved.
publishDate 2020
dc.date.accessioned.none.fl_str_mv 2020-04-23T16:38:13Z
dc.date.available.none.fl_str_mv 2020-04-23T16:38:13Z
dc.date.issued.none.fl_str_mv 2020
dc.type.spa.fl_str_mv Pre-Publicación
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_816b
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/preprint
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ARTOTR
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_816b
status_str acceptedVersion
dc.identifier.uri.spa.fl_str_mv https://hdl.handle.net/11323/6241
dc.identifier.doi.spa.fl_str_mv https://doi.org/10.1007/978-3-030-45778-5_26
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
url https://hdl.handle.net/11323/6241
https://doi.org/10.1007/978-3-030-45778-5_26
https://repositorio.cuc.edu.co/
identifier_str_mv Corporación Universidad de la Costa
REDICUC - Repositorio CUC
dc.language.iso.none.fl_str_mv eng
language eng
dc.rights.spa.fl_str_mv CC0 1.0 Universal
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/publicdomain/zero/1.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv CC0 1.0 Universal
http://creativecommons.org/publicdomain/zero/1.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.publisher.spa.fl_str_mv Universidad de la Costa
institution Corporación Universidad de la Costa
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/51b47633-5ef8-4bcd-bb0e-c50a86b240bf/download
https://repositorio.cuc.edu.co/bitstreams/34305c2b-77c4-4fad-8f42-df0c30f8d2f3/download
https://repositorio.cuc.edu.co/bitstreams/8b12289e-85c9-4dcd-b9ff-2a2647dec1e0/download
https://repositorio.cuc.edu.co/bitstreams/8b57ff46-c403-428d-ad76-1d8ba20deeda/download
https://repositorio.cuc.edu.co/bitstreams/7f23b1da-0ea7-4c6d-bcec-28e972735933/download
bitstream.checksum.fl_str_mv 8ee58bca2cfeaaaa59c5fa4fa304cd4c
42fd4ad1e89814f5e4a476b409eb708c
8a4605be74aa9ea9d79846c1fba20a33
b4acc6af10de13d8cb6f042403140013
33e983d3293732c5be4ec07ebb2a391e
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1828166846564532224
spelling Mardini-Bovea, JohanDe-La-Hoz-Franco, EmiroMolina Estren, DiegoAriza Colpas, Paola PatriciaOrtíz, AndrésOrtega, JulioR. Cárdenas, César A.COLLAZOS MORALES, CARLOS ANDRES2020-04-23T16:38:13Z2020-04-23T16:38:13Z2020https://hdl.handle.net/11323/6241https://doi.org/10.1007/978-3-030-45778-5_26Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/To be able to identify computer attacks, detection systems that are based on faults are not dependent on data base upgrades unlike the ones based on misuse. The first type of systems mentioned generate a knowledge pattern from which the usual and unusual traffic is distinguished. Within computer networks, different classification traffic techniques have been implemented in intruder detection systems based on abnormalities. These try to improve the measurement that assess the performance quality of classifiers and reduce computational cost. In this research work, a comparative analysis of the obtained results is carried out after implementing different selection techniques such as Info.Gain, Gain ratio and Relief as well as Bayesian (Naïve Bayes and Bayesians Networks). Hence, 97.6% of right answers were got with 13 features. Likewise, through the implementation of both load balanced methods and attributes normalization and choice, it was also possible to diminish the number of features used in the ID classification process. Also, a reduced computational expense was achieved.Mardini-Bovea, JohanDe-La-Hoz-Franco, Emiro-will be generated-orcid-0000-0002-4926-7414-600Molina Estren, Diego-will be generated-orcid-0000-0003-4084-7567-0Ariza Colpas, Paola Patricia-will be generated-orcid-0000-0003-4503-5461-600Ortíz, AndrésOrtega, JulioR. Cárdenas, César A.COLLAZOS MORALES, CARLOS ANDRES-will be generated-orcid-0000-0002-1996-1384-600engUniversidad de la CostaCC0 1.0 Universalhttp://creativecommons.org/publicdomain/zero/1.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Naïve bayesBayesian networksFeature selectionBayesian Classifiers in Intrusion Detection SystemsPre-Publicaciónhttp://purl.org/coar/resource_type/c_816bTextinfo:eu-repo/semantics/preprinthttp://purl.org/redcol/resource_type/ARTOTRinfo:eu-repo/semantics/acceptedVersionPublicationORIGINALBayesian Classifiers in Intrusion Detection Systems.pdfBayesian Classifiers in Intrusion Detection Systems.pdfapplication/pdf109696https://repositorio.cuc.edu.co/bitstreams/51b47633-5ef8-4bcd-bb0e-c50a86b240bf/download8ee58bca2cfeaaaa59c5fa4fa304cd4cMD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8701https://repositorio.cuc.edu.co/bitstreams/34305c2b-77c4-4fad-8f42-df0c30f8d2f3/download42fd4ad1e89814f5e4a476b409eb708cMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.cuc.edu.co/bitstreams/8b12289e-85c9-4dcd-b9ff-2a2647dec1e0/download8a4605be74aa9ea9d79846c1fba20a33MD53THUMBNAILBayesian Classifiers in Intrusion Detection Systems.pdf.jpgBayesian Classifiers in Intrusion Detection Systems.pdf.jpgimage/jpeg53198https://repositorio.cuc.edu.co/bitstreams/8b57ff46-c403-428d-ad76-1d8ba20deeda/downloadb4acc6af10de13d8cb6f042403140013MD54TEXTBayesian Classifiers in Intrusion Detection Systems.pdf.txtBayesian Classifiers in Intrusion Detection Systems.pdf.txttext/plain1422https://repositorio.cuc.edu.co/bitstreams/7f23b1da-0ea7-4c6d-bcec-28e972735933/download33e983d3293732c5be4ec07ebb2a391eMD5511323/6241oai:repositorio.cuc.edu.co:11323/62412024-09-17 14:17:25.654http://creativecommons.org/publicdomain/zero/1.0/CC0 1.0 Universalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=