Bayesian Classifiers in Intrusion Detection Systems
To be able to identify computer attacks, detection systems that are based on faults are not dependent on data base upgrades unlike the ones based on misuse. The first type of systems mentioned generate a knowledge pattern from which the usual and unusual traffic is distinguished. Within computer net...
- Autores:
-
Mardini-Bovea, Johan
De-La-Hoz-Franco, Emiro
Molina Estren, Diego
Ariza Colpas, Paola Patricia
Ortíz, Andrés
Ortega, Julio
R. Cárdenas, César A.
COLLAZOS MORALES, CARLOS ANDRES
- Tipo de recurso:
- http://purl.org/coar/resource_type/c_816b
- Fecha de publicación:
- 2020
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/6241
- Acceso en línea:
- https://hdl.handle.net/11323/6241
https://doi.org/10.1007/978-3-030-45778-5_26
https://repositorio.cuc.edu.co/
- Palabra clave:
- Naïve bayes
Bayesian networks
Feature selection
- Rights
- openAccess
- License
- CC0 1.0 Universal
id |
RCUC2_80937c3b23916b1de12936da8546c4c9 |
---|---|
oai_identifier_str |
oai:repositorio.cuc.edu.co:11323/6241 |
network_acronym_str |
RCUC2 |
network_name_str |
REDICUC - Repositorio CUC |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Bayesian Classifiers in Intrusion Detection Systems |
title |
Bayesian Classifiers in Intrusion Detection Systems |
spellingShingle |
Bayesian Classifiers in Intrusion Detection Systems Naïve bayes Bayesian networks Feature selection |
title_short |
Bayesian Classifiers in Intrusion Detection Systems |
title_full |
Bayesian Classifiers in Intrusion Detection Systems |
title_fullStr |
Bayesian Classifiers in Intrusion Detection Systems |
title_full_unstemmed |
Bayesian Classifiers in Intrusion Detection Systems |
title_sort |
Bayesian Classifiers in Intrusion Detection Systems |
dc.creator.fl_str_mv |
Mardini-Bovea, Johan De-La-Hoz-Franco, Emiro Molina Estren, Diego Ariza Colpas, Paola Patricia Ortíz, Andrés Ortega, Julio R. Cárdenas, César A. COLLAZOS MORALES, CARLOS ANDRES |
dc.contributor.author.spa.fl_str_mv |
Mardini-Bovea, Johan De-La-Hoz-Franco, Emiro Molina Estren, Diego Ariza Colpas, Paola Patricia Ortíz, Andrés Ortega, Julio R. Cárdenas, César A. COLLAZOS MORALES, CARLOS ANDRES |
dc.subject.spa.fl_str_mv |
Naïve bayes Bayesian networks Feature selection |
topic |
Naïve bayes Bayesian networks Feature selection |
description |
To be able to identify computer attacks, detection systems that are based on faults are not dependent on data base upgrades unlike the ones based on misuse. The first type of systems mentioned generate a knowledge pattern from which the usual and unusual traffic is distinguished. Within computer networks, different classification traffic techniques have been implemented in intruder detection systems based on abnormalities. These try to improve the measurement that assess the performance quality of classifiers and reduce computational cost. In this research work, a comparative analysis of the obtained results is carried out after implementing different selection techniques such as Info.Gain, Gain ratio and Relief as well as Bayesian (Naïve Bayes and Bayesians Networks). Hence, 97.6% of right answers were got with 13 features. Likewise, through the implementation of both load balanced methods and attributes normalization and choice, it was also possible to diminish the number of features used in the ID classification process. Also, a reduced computational expense was achieved. |
publishDate |
2020 |
dc.date.accessioned.none.fl_str_mv |
2020-04-23T16:38:13Z |
dc.date.available.none.fl_str_mv |
2020-04-23T16:38:13Z |
dc.date.issued.none.fl_str_mv |
2020 |
dc.type.spa.fl_str_mv |
Pre-Publicación |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_816b |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/preprint |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ARTOTR |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
format |
http://purl.org/coar/resource_type/c_816b |
status_str |
acceptedVersion |
dc.identifier.uri.spa.fl_str_mv |
https://hdl.handle.net/11323/6241 |
dc.identifier.doi.spa.fl_str_mv |
https://doi.org/10.1007/978-3-030-45778-5_26 |
dc.identifier.instname.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.identifier.reponame.spa.fl_str_mv |
REDICUC - Repositorio CUC |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.cuc.edu.co/ |
url |
https://hdl.handle.net/11323/6241 https://doi.org/10.1007/978-3-030-45778-5_26 https://repositorio.cuc.edu.co/ |
identifier_str_mv |
Corporación Universidad de la Costa REDICUC - Repositorio CUC |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.rights.spa.fl_str_mv |
CC0 1.0 Universal |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/publicdomain/zero/1.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
CC0 1.0 Universal http://creativecommons.org/publicdomain/zero/1.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.publisher.spa.fl_str_mv |
Universidad de la Costa |
institution |
Corporación Universidad de la Costa |
bitstream.url.fl_str_mv |
https://repositorio.cuc.edu.co/bitstreams/51b47633-5ef8-4bcd-bb0e-c50a86b240bf/download https://repositorio.cuc.edu.co/bitstreams/34305c2b-77c4-4fad-8f42-df0c30f8d2f3/download https://repositorio.cuc.edu.co/bitstreams/8b12289e-85c9-4dcd-b9ff-2a2647dec1e0/download https://repositorio.cuc.edu.co/bitstreams/8b57ff46-c403-428d-ad76-1d8ba20deeda/download https://repositorio.cuc.edu.co/bitstreams/7f23b1da-0ea7-4c6d-bcec-28e972735933/download |
bitstream.checksum.fl_str_mv |
8ee58bca2cfeaaaa59c5fa4fa304cd4c 42fd4ad1e89814f5e4a476b409eb708c 8a4605be74aa9ea9d79846c1fba20a33 b4acc6af10de13d8cb6f042403140013 33e983d3293732c5be4ec07ebb2a391e |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad de la Costa CUC |
repository.mail.fl_str_mv |
repdigital@cuc.edu.co |
_version_ |
1828166846564532224 |
spelling |
Mardini-Bovea, JohanDe-La-Hoz-Franco, EmiroMolina Estren, DiegoAriza Colpas, Paola PatriciaOrtíz, AndrésOrtega, JulioR. Cárdenas, César A.COLLAZOS MORALES, CARLOS ANDRES2020-04-23T16:38:13Z2020-04-23T16:38:13Z2020https://hdl.handle.net/11323/6241https://doi.org/10.1007/978-3-030-45778-5_26Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/To be able to identify computer attacks, detection systems that are based on faults are not dependent on data base upgrades unlike the ones based on misuse. The first type of systems mentioned generate a knowledge pattern from which the usual and unusual traffic is distinguished. Within computer networks, different classification traffic techniques have been implemented in intruder detection systems based on abnormalities. These try to improve the measurement that assess the performance quality of classifiers and reduce computational cost. In this research work, a comparative analysis of the obtained results is carried out after implementing different selection techniques such as Info.Gain, Gain ratio and Relief as well as Bayesian (Naïve Bayes and Bayesians Networks). Hence, 97.6% of right answers were got with 13 features. Likewise, through the implementation of both load balanced methods and attributes normalization and choice, it was also possible to diminish the number of features used in the ID classification process. Also, a reduced computational expense was achieved.Mardini-Bovea, JohanDe-La-Hoz-Franco, Emiro-will be generated-orcid-0000-0002-4926-7414-600Molina Estren, Diego-will be generated-orcid-0000-0003-4084-7567-0Ariza Colpas, Paola Patricia-will be generated-orcid-0000-0003-4503-5461-600Ortíz, AndrésOrtega, JulioR. Cárdenas, César A.COLLAZOS MORALES, CARLOS ANDRES-will be generated-orcid-0000-0002-1996-1384-600engUniversidad de la CostaCC0 1.0 Universalhttp://creativecommons.org/publicdomain/zero/1.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Naïve bayesBayesian networksFeature selectionBayesian Classifiers in Intrusion Detection SystemsPre-Publicaciónhttp://purl.org/coar/resource_type/c_816bTextinfo:eu-repo/semantics/preprinthttp://purl.org/redcol/resource_type/ARTOTRinfo:eu-repo/semantics/acceptedVersionPublicationORIGINALBayesian Classifiers in Intrusion Detection Systems.pdfBayesian Classifiers in Intrusion Detection Systems.pdfapplication/pdf109696https://repositorio.cuc.edu.co/bitstreams/51b47633-5ef8-4bcd-bb0e-c50a86b240bf/download8ee58bca2cfeaaaa59c5fa4fa304cd4cMD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8701https://repositorio.cuc.edu.co/bitstreams/34305c2b-77c4-4fad-8f42-df0c30f8d2f3/download42fd4ad1e89814f5e4a476b409eb708cMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.cuc.edu.co/bitstreams/8b12289e-85c9-4dcd-b9ff-2a2647dec1e0/download8a4605be74aa9ea9d79846c1fba20a33MD53THUMBNAILBayesian Classifiers in Intrusion Detection Systems.pdf.jpgBayesian Classifiers in Intrusion Detection Systems.pdf.jpgimage/jpeg53198https://repositorio.cuc.edu.co/bitstreams/8b57ff46-c403-428d-ad76-1d8ba20deeda/downloadb4acc6af10de13d8cb6f042403140013MD54TEXTBayesian Classifiers in Intrusion Detection Systems.pdf.txtBayesian Classifiers in Intrusion Detection Systems.pdf.txttext/plain1422https://repositorio.cuc.edu.co/bitstreams/7f23b1da-0ea7-4c6d-bcec-28e972735933/download33e983d3293732c5be4ec07ebb2a391eMD5511323/6241oai:repositorio.cuc.edu.co:11323/62412024-09-17 14:17:25.654http://creativecommons.org/publicdomain/zero/1.0/CC0 1.0 Universalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |