Global atlas of solar and wind resources temporal complementarity

The concept of renewable energy sources complementarity has attracted the attention of researchers across the globe over recent years. Studies have been published regularly with focuses on aspects such as new metrics for complementarity assessment, the optimal operation of hybrid power systems based...

Full description

Autores:
Kapica, Jacek
Canales, Fausto
Jurasz, Jakub
Tipo de recurso:
http://purl.org/coar/resource_type/c_816b
Fecha de publicación:
2021
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/8791
Acceso en línea:
https://hdl.handle.net/11323/8791
https://doi.org/10.1016/j.enconman.2021.114692
https://repositorio.cuc.edu.co/
Palabra clave:
Renewable energy
Variable renewables
Complementarity
Hybrid power systems
Rights
openAccess
License
CC0 1.0 Universal
id RCUC2_7f47c78af50fd1025fa7c9dd23fb933e
oai_identifier_str oai:repositorio.cuc.edu.co:11323/8791
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.spa.fl_str_mv Global atlas of solar and wind resources temporal complementarity
title Global atlas of solar and wind resources temporal complementarity
spellingShingle Global atlas of solar and wind resources temporal complementarity
Renewable energy
Variable renewables
Complementarity
Hybrid power systems
title_short Global atlas of solar and wind resources temporal complementarity
title_full Global atlas of solar and wind resources temporal complementarity
title_fullStr Global atlas of solar and wind resources temporal complementarity
title_full_unstemmed Global atlas of solar and wind resources temporal complementarity
title_sort Global atlas of solar and wind resources temporal complementarity
dc.creator.fl_str_mv Kapica, Jacek
Canales, Fausto
Jurasz, Jakub
dc.contributor.author.spa.fl_str_mv Kapica, Jacek
Canales, Fausto
Jurasz, Jakub
dc.subject.spa.fl_str_mv Renewable energy
Variable renewables
Complementarity
Hybrid power systems
topic Renewable energy
Variable renewables
Complementarity
Hybrid power systems
description The concept of renewable energy sources complementarity has attracted the attention of researchers across the globe over recent years. Studies have been published regularly with focuses on aspects such as new metrics for complementarity assessment, the optimal operation of hybrid power systems based on variable renewables, or mapping resources complementarity in a specific region. This study targets the present literature gap, namely a lack of complementarity study covering explicitly the whole World, based on the same data source and methodology. The research employs Kendall's Tau correlation as the complementarity metric between global solar and wind resources and a pair of indicators such as the solar share and a sizing coefficient usually applied in the domain of hybrid generators. This method allows to conduct a preliminary estimation of a solar and wind energy hybrid generator based on a daily demand of 1 kWh. The data series employed in this study come from NASA’s POWER Project Program, covering the years 2001–2020. This work provides an interesting insight into the global variability of the complementarity between these two variable energy sources. Significant findings of this paper include that Kendall’s Tau ranges between –0.75 and 0.75, in line with previous research for specific regions, thus providing a theoretical maximum for planning. Additionally, the results suggest that in most tropical and subtropical areas, the hybrid solar-wind generator should be dominated by the solar portion to minimize the variability of the total daily energy produced.
publishDate 2021
dc.date.accessioned.none.fl_str_mv 2021-10-19T22:48:48Z
dc.date.available.none.fl_str_mv 2021-10-19T22:48:48Z
dc.date.issued.none.fl_str_mv 2021-10-15
dc.date.embargoEnd.none.fl_str_mv 2023-09-15
dc.type.spa.fl_str_mv Pre-Publicación
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_816b
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/preprint
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ARTOTR
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_816b
status_str acceptedVersion
dc.identifier.issn.spa.fl_str_mv 0196-8904
dc.identifier.uri.spa.fl_str_mv https://hdl.handle.net/11323/8791
dc.identifier.doi.spa.fl_str_mv https://doi.org/10.1016/j.enconman.2021.114692
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
identifier_str_mv 0196-8904
Corporación Universidad de la Costa
REDICUC - Repositorio CUC
url https://hdl.handle.net/11323/8791
https://doi.org/10.1016/j.enconman.2021.114692
https://repositorio.cuc.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.references.spa.fl_str_mv [1] J. Rogelj, M. Den Elzen, N. Höhne, T. Fransen, H. Fekete, H. Winkler, et al. Paris Agreement climate proposals need a boost to keep warming well below 2 °C Nature, 534 (2016), pp. 631-639, 10.1038/nature18307
[2] A. Aghahosseini, D. Bogdanov, L.S.N.S. Barbosa, C. Breyer Analysing the feasibility of powering the Americas with renewable energy and inter-regional grid interconnections by 2030 Renew Sustain Energy Rev, 105 (2019), pp. 187-205, 10.1016/j.rser.2019.01.046
[3] Fragoso-Altamirano. México y su transición energética: un cambio en pro de la energía Renovable Lat Am Dev Energy Eng, 1 (2020), pp. 26-42
[4] P. Denholm, G. Brinkman, T. Mai How low can you go? The importance of quantifying minimum generation levels for renewable integration Energy Policy, 115 (2018), pp. 249-257, 10.1016/j.enpol.2018.01.023
[5] R.E.H. Sims Renewable energy: A response to climate change Sol Energy, 76 (1-3) (2004), pp. 9-17, 10.1016/S0038-092X(03)00101-4
[6] M. Bilgili, H. Bilirgen, A. Ozbek, F. Ekinci, T. Demirdelen The role of hydropower installations for sustainable energy development in Turkey and the World Renew Energy, 126 (2018), pp. 755-764, 10.1016/j.renene.2018.03.089
[7] F.A. Canales, A. Beluco, C.A.B. Mendes Modelling a hydropower plant with reservoir with the micropower optimisation model (HOMER) Int J Sustain Energy, 36 (2017), pp. 654-667, 10.1080/14786451.2015.1080706
[8] B. Tarroja, K. Forrest, F. Chiang, A. AghaKouchak, S. Samuelsen Implications of hydropower variability from climate change for a future, highly-renewable electric grid in California Appl Energy, 237 (2019), pp. 353-366, 10.1016/j.apenergy.2018.12.079
[9] J.S. Silva, F.A. Canales, A. Beluco A “feasibility space” as a goal to be achieved in the development of new technologies for converting renewable energies MethodsX, 7 (2020), 10.1016/j.mex.2020.100960
[10] International Renewable Energy Agency Global Renewables Outlook: Energy transformation 2050 IRENA, Abu Dhabi (2020)
[11] European Network of Transmission System Operators for Electricity. ENTSO-E transparency platform 2021. https://transparency.entsoe.eu/dashboard/show (accessed February 3, 2021).
[12] M.S. Javed, T. Ma, J. Jurasz, F.A. Canales, S. Lin, S. Ahmed, et al. Economic analysis and optimization of a renewable energy based power supply system with different energy storages for a remote island Renew Energy, 164 (2021), pp. 1376-1394, 10.1016/j.renene.2020.10.063
[13] F.A. Canales, J.K. Jurasz, M. Guezgouz, A. Beluco Cost-reliability analysis of hybrid pumped-battery storage for solar and wind energy integration in an island community Sustain Energy Technol Assessments, 44 (2021), Article 101062, 10.1016/j.seta.2021.101062
[14] A.A. Solomon, D. Bogdanov, C. Breyer Curtailment-storage-penetration nexus in the energy transition Appl Energy, 235 (2019), pp. 1351-1368, 10.1016/j.apenergy.2018.11.069
[15] B.K. Sovacool The intermittency of wind, solar, and renewable electricity generators: Technical barrier or rhetorical excuse? Util Policy, 17 (2009), pp. 288-296, 10.1016/j.jup.2008.07.001
[16] B.P. Heard, B.W. Brook, T.M.L. Wigley, C.J.A. Bradshaw Burden of proof: a comprehensive review of the feasibility of 100% renewable-electricity systems Renew Sustain Energy Rev, 76 (2017), pp. 1122-1133, 10.1016/j.rser.2017.03.114
[17] M. Schlott, A. Kies, T. Brown, S. Schramm, M. Greiner The impact of climate change on a cost-optimal highly renewable European electricity network Appl Energy, 230 (2018), pp. 1645-1659, 10.1016/j.apenergy.2018.09.084
[18] M. Fasihi, C. Breyer Baseload electricity and hydrogen supply based on hybrid PV-wind power plants J Clean Prod, 243 (2020), Article 118466, 10.1016/j.jclepro.2019.118466
[19] J. Jurasz, F.A. Canales, A. Kies, M. Guezgouz, A. Beluco A review on the complementarity of renewable energy sources: concept, metrics, application and future research directions Sol Energy, 195 (2020), pp. 703-724, 10.1016/j.solener.2019.11.087
[20] F. Weschenfelder, G. de Novaes Pires Leite, A.C. Araújo da Costa, O. de Castro Vilela, C.M. Ribeiro, A.A. Villa Ochoa, et al. A review on the complementarity between grid-connected solar and wind power systems J Clean Prod, 257 (2020), p. 120617, 10.1016/j.jclepro.2020.120617
[21] G. Bandoc, R. Prăvălie, C. Patriche, M. Degeratu Spatial assessment of wind power potential at global scale. A geographical approach J Clean Prod, 200 (2018), pp. 1065-1086, 10.1016/j.jclepro.2018.07.288
[22] R. Prăvălie, C. Patriche, G. Bandoc Spatial assessment of solar energy potential at global scale. A geographical approach J Clean Prod, 209 (2019), pp. 692-721, 10.1016/j.jclepro.2018.10.239
[23] M. D’Isidoro, G. Briganti, L. Vitali, G. Righini, M. Adani, G. Guarnieri, et al. Estimation of solar and wind energy resources over Lesotho and their complementarity by means of WRF yearly simulation at high resolution Renew Energy, 158 (2020), pp. 114-129, 10.1016/j.renene.2020.05.106
[24] M. Guezgouz, J. Jurasz, M. Chouai, H. Bloomfield, B. Bekkouche Assessment of solar and wind energy complementarity in Algeria Energy Convers Manag, 238 (2021), Article 114170, 10.1016/j.enconman.2021.114170
[25] A. Beluco, P.K. de Souza, A. Krenzinger A dimensionless index evaluating the time complementarity between solar and hydraulic energies Renew Energy, 33 (2008), pp. 2157-2165, 10.1016/j.renene.2008.01.019
[26] M.P. Cantão, M.R. Bessa, R. Bettega, D.H.M. Detzel, J.M. Lima Evaluation of hydro-wind complementarity in the Brazilian territory by means of correlation maps Renew Energy, 101 (2017), pp. 1215-1225, 10.1016/j.renene.2016.10.012
[27] P.E. Bett, H.E. Thornton The climatological relationships between wind and solar energy supply in Britain Renew Energy, 87 (2016), pp. 96-110, 10.1016/j.renene.2015.10.006
[28] G. Ren, J. Wan, J. Liu, D. Yu Spatial and temporal assessments of complementarity for renewable energy resources in China Energy, 177 (2019), pp. 262-275, 10.1016/j.energy.2019.04.023
[29] A.R. Silva, F.M. Pimenta, A.T. Assireu, M.H.C. Spyrides Complementarity of Brazil’s hydro and offshore wind power Renew Sustain Energy Rev, 56 (2016), pp. 413-427, 10.1016/j.rser.2015.11.045
[30] F.J. Santos-Alamillos, D. Pozo-Vázquez, J.A. Ruiz-Arias, V. Lara-Fanego, J. Tovar-Pescador A methodology for evaluating the spatial variability of wind energy resources: application to assess the potential contribution of wind energy to baseload power Renew Energy, 69 (2014), pp. 147-156, 10.1016/j.renene.2014.03.006
[31] F.J. Santos-Alamillos, D. Pozo-Vázquez, J.A. Ruiz-Arias, L. Von Bremen, J. Tovar-Pescador Combining wind farms with concentrating solar plants to provide stable renewable power Renew Energy, 76 (2015), pp. 539-550, 10.1016/j.renene.2014.11.055
[32] H. Zhang, Y. Cao, Y. Zhang, V. Terzija Quantitative synergy assessment of regional wind-solar energy resources based on MERRA reanalysis data Appl Energy, 216 (2018), pp. 172-182, 10.1016/j.apenergy.2018.02.094
[33] F.J. Santos-Alamillos, J. Tovar-Pescador, V. Lara-Fanego, J.A. Ruiz-Arias, D. Pozo-Vázquez Analysis of spatiotemporal balancing between wind and solar energy resources in the Southern Iberian Peninsula J Appl Meteorol Climatol, 51 (2012), pp. 2005-2024, 10.1175/jamc-d-11-0189.1
[34] W. Li, S. Stadler, R. Ramakumar Modeling and assessment of wind and insolation resources with a focus on their complementary nature: a case study of Oklahoma Ann Assoc Am Geogr, 101 (2011), pp. 717-729, 10.1080/00045608.2011.567926
[35] F.A. Canales, J. Jurasz, A. Kies, A. Beluco, M. Arrieta-Castro, A. Peralta-Cayón Spatial representation of temporal complementarity between three variable energy sources using correlation coefficients and compromise programming MethodsX, 7 (2020), Article 100871, 10.1016/j.mex.2020.100871
[36] L. Ramirez Camargo, R. Zink, W. Dorner Spatiotemporal modeling for assessing complementarity of renewable energy sources in distributed energy systems ISPRS Ann Photogramm Remote Sens Spat Inf Sci, II-4/W2 (2015), pp. 147-154, 10.5194/isprsannals-II-4-W2-147-2015
[37] S. Sterl, I. Vanderkelen, C.J. Chawanda, D. Russo, R.J. Brecha, A. van Griensven, et al. Smart renewable electricity portfolios in West Africa Nat Sustain, 3 (2020), pp. 710-719, 10.1038/s41893-020-0539-0
[38] The World Bank. Renewable Energy Potential in Selected Countries. Washington, DC: 2005.
[39] K. Chattopadhyay, A. Kies, E. Lorenz, L. von Bremen, D. Heinemann The impact of different PV module configurations on storage and additional balancing needs for a fully renewable European power system Renew Energy, 113 (2017), pp. 176-189, 10.1016/j.renene.2017.05.069
[40] P. Berrill, A. Arvesen, Y. Scholz, H.C. Gils, E.G. Hertwich Environmental impacts of high penetration renewable energy scenarios for Europe Environ Res Lett, 11 (2016), p. 14012, 10.1088/1748-9326/11/1/014012
[41] C. Viviescas, L. Lima, F.A. Diuana, E. Vasquez, C. Ludovique, G.N. Silva, et al. Contribution of Variable Renewable Energy to increase energy security in Latin America: Complementarity and climate change impacts on wind and solar resources Renew Sustain Energy Rev, 113 (2019), 10.1016/j.rser.2019.06.039
[42] S. Sterl, S. Liersch, H. Koch, N.P.M. van Lipzig, W. Thiery A new approach for assessing synergies of solar and wind power: implications for West Africa Environ Res Lett, 13 (2018), Article 094009, 10.1088/1748-9326/aad8f6
[43] K. Hansen, C. Breyer, H. Lund Status and perspectives on 100% renewable energy systems Energy, 175 (2019), pp. 471-480, 10.1016/j.energy.2019.03.092
[44] D. Schindler, S. Schmidt-Rohr, C. Jung On the spatiotemporal complementarity of the European onshore wind resource Energy Convers Manag, 237 (2021), Article 114098, 10.1016/j.enconman.2021.114098
[45] F. Steinke, P. Wolfrum, C. Hoffmann Grid vs. storage in a 100% renewable Europe. Renew Energy, 50 (2013), pp. 826-832, 10.1016/j.renene.2012.07.044
[46] M.M. Miglietta, T. Huld, F. Monforti-Ferrario Local Complementarity of Wind and Solar Energy Resources over Europe: An Assessment Study from a Meteorological Perspective J Appl Meteorol Climatol, 56 (2017), pp. 217-234, 10.1175/JAMC-D-16-0031.1
[47] S. Cox, A. Lopez, A. Watson, N. Grue, J.E. Leisch Renewable Energy Data, Analysis, and Decisions: A Guide for Practitioners National Renewable Energy Laboratory (NREL), Golden (2018)
[48] World Meteorological Organization Technical regulations. Basic Documents No. 2 Volume I – General Meteorological Standards and Recommended Practices. vol. I World Meteorological Organization, Geneva (2019)
[49] L. Ramirez Camargo, K. Gruber, F. Nitsch Assessing variables of regional reanalysis data sets relevant for modelling small-scale renewable energy systems Renew Energy, 133 (2019), pp. 1468-1478, 10.1016/j.renene.2018.09.015
[50] J.A. Sobrino, Y. Julien, S. García-Monteiro Surface temperature of the planet earth from satellite data Remote Sens, 12 (2020), pp. 1-10, 10.3390/rs12020218
[51] National Aeronautics and Space Administration. NASA POWER | Prediction Of Worldwide Energy Resources 2020. https://power.larc.nasa.gov/.
[52] J. Kapica Wind and photovoltaic potential in Europe in the context of mid-term energy storage J Renew Sustain Energy, 12 (2020), Article 034101, 10.1063/1.5131560
[53] M.H. Soulouknga, S.Y. Doka, N. Revanna, N. Djongyang, T.C. Kofane Analysis of wind speed data and wind energy potential in Faya-Largeau, Chad, using Weibull distribution Renew Energy, 121 (2018), pp. 1-8, 10.1016/j.renene.2018.01.002
[54] J.A. Duffie, W.A. Beckman Solar Engineering of Thermal Processes (4th Ed.), John Wiley & Sons, Inc., Hoboken, NJ (2013)
[55] Y. El Mghouchi, A. El Bouardi, Z. Choulli, T. Ajzoul New model to estimate and evaluate the solar radiation Int J Sustain Built Environ, 3 (2014), pp. 225-234, 10.1016/j.ijsbe.2014.11.001
[56] C.S. Schuster The quest for the optimum angular-tilt of terrestrial solar panels or their angle-resolved annual insolation Renew Energy, 152 (2020), pp. 1186-1191, 10.1016/j.renene.2020.01.076
[57] M. Denault, D. Dupuis, S. Couture-Cardinal Complementarity of hydro and wind power: Improving the risk profile of energy inflows Energy Policy, 37 (2009), pp. 5376-5384, 10.1016/j.enpol.2009.07.064
[58] L. Xu, Z. Wang, Y. Liu The spatial and temporal variation features of wind-sun complementarity in China Energy Convers Manag, 154 (2017), pp. 138-148, 10.1016/j.enconman.2017.10.031
[59] S. Han, L. Zhang, Y. Liu, H. Zhang, J. Yan, L. Li, et al. Quantitative evaluation method for the complementarity of wind-solar-hydro power and optimization of wind-solar ratio Appl Energy, 236 (2019), pp. 973-984, 10.1016/j.apenergy.2018.12.059
[60] M.G. Kendall Rank correlation methods Griffin, Oxford, England (1948)
[61] J. van Doorn, A. Ly, M. Marsman, E.-J. Wagenmakers Bayesian Inference for Kendall’s Rank Correlation Coefficient Am Stat, 72 (2018), pp. 303-308, 10.1080/00031305.2016.1264998
[62] D. Heide, L. von Bremen, M. Greiner, C. Hoffmann, M. Speckmann, S. Bofinger Seasonal optimal mix of wind and solar power in a future, highly renewable Europe Renew Energy, 35 (2010), pp. 2483-2489, 10.1016/j.renene.2010.03.012
[63] J. Jurasz, A. Beluco, F.A. Canales The impact of complementarity on power supply reliability of small scale hybrid energy systems Energy, 161 (2018), pp. 737-743, 10.1016/j.energy.2018.07.182
[64] P.W. Stackhouse Jr., T. Zhang, D. Westberg, A.J. Barnett, T. Bristow, B. Macpherson, et al. POWER Release 8.0.1 (with GIS Applications) Methodology (Data Parameters, Sources, & Validation) NASA Langley Research Center, Norfolk, VA (2018)
[65] S. Chatzivasileiadis, D. Ernst, G. Andersson The Global Grid Renew Energy, 57 (2013), pp. 372-383, 10.1016/j.renene.2013.01.032
[66] F.A. Canales, J. Jurasz, A. Beluco, A. Kies Assessing temporal complementarity between three variable energy sources through correlation and compromise programming Energy, 192 (2020), Article 116637, 10.1016/j.energy.2019.116637
[67] L. Liu, Z. Wang, Y. Wang, J. Wang, R. Chang, G. He, et al. Optimizing wind/solar combinations at finer scales to mitigate renewable energy variability in China Renew Sustain Energy Rev, 132 (2020), Article 110151, 10.1016/j.rser.2020.110151
[68] A.A. Prasad, R.A. Taylor, M. Kay Assessment of solar and wind resource synergy in Australia Appl Energy, 190 (2017), pp. 354-367, 10.1016/j.apenergy.2016.12.135
[69] Dupont E, Jeanmart H. Global potential of wind and solar energy with physical and energy return on investment (EROI) constraints; application at the European level (EU 28 countries). ECOS 2019 - Proc. 32nd Int. Conf. Effic. Cost, Optim. Simul. Environ. Impact Energy Syst., 2019, p. 489–503.
dc.rights.spa.fl_str_mv CC0 1.0 Universal
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/publicdomain/zero/1.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv CC0 1.0 Universal
http://creativecommons.org/publicdomain/zero/1.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Corporación Universidad de la Costa
dc.source.spa.fl_str_mv Energy Conversion and Management
institution Corporación Universidad de la Costa
dc.source.url.spa.fl_str_mv https://www.sciencedirect.com/science/article/pii/S0196890421008682
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/73bde733-906d-4b2e-8871-9aa4e63bd4d8/download
https://repositorio.cuc.edu.co/bitstreams/a7fbf681-67eb-4b99-b90a-9fd5c5836f4e/download
https://repositorio.cuc.edu.co/bitstreams/46fe98b3-cb79-4923-972e-ee77b1093e8c/download
https://repositorio.cuc.edu.co/bitstreams/a06e4f53-4232-47b3-9b02-4e7efe7b8e4d/download
https://repositorio.cuc.edu.co/bitstreams/b4dea1c7-135a-41ec-a01c-7bb7d8d9d3a9/download
bitstream.checksum.fl_str_mv 292cbc5447b271ebc6c9af3bc1a9e1fe
42fd4ad1e89814f5e4a476b409eb708c
e30e9215131d99561d40d6b0abbe9bad
c57da35633f3207560487e0e34f42365
7b2c58dded270c0418576846a55e5302
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1811760756709916672
spelling Kapica, JacekCanales, FaustoJurasz, Jakub2021-10-19T22:48:48Z2021-10-19T22:48:48Z2021-10-152023-09-150196-8904https://hdl.handle.net/11323/8791https://doi.org/10.1016/j.enconman.2021.114692Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/The concept of renewable energy sources complementarity has attracted the attention of researchers across the globe over recent years. Studies have been published regularly with focuses on aspects such as new metrics for complementarity assessment, the optimal operation of hybrid power systems based on variable renewables, or mapping resources complementarity in a specific region. This study targets the present literature gap, namely a lack of complementarity study covering explicitly the whole World, based on the same data source and methodology. The research employs Kendall's Tau correlation as the complementarity metric between global solar and wind resources and a pair of indicators such as the solar share and a sizing coefficient usually applied in the domain of hybrid generators. This method allows to conduct a preliminary estimation of a solar and wind energy hybrid generator based on a daily demand of 1 kWh. The data series employed in this study come from NASA’s POWER Project Program, covering the years 2001–2020. This work provides an interesting insight into the global variability of the complementarity between these two variable energy sources. Significant findings of this paper include that Kendall’s Tau ranges between –0.75 and 0.75, in line with previous research for specific regions, thus providing a theoretical maximum for planning. Additionally, the results suggest that in most tropical and subtropical areas, the hybrid solar-wind generator should be dominated by the solar portion to minimize the variability of the total daily energy produced.Kapica, Jacek-will be generated-orcid-0000-0001-8378-0249-600Canales, Fausto-will be generated-orcid-0000-0002-6858-1855-600Jurasz, Jakub-will be generated-orcid-0000-0001-9576-7877-600application/pdfengCorporación Universidad de la CostaCC0 1.0 Universalhttp://creativecommons.org/publicdomain/zero/1.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Energy Conversion and Managementhttps://www.sciencedirect.com/science/article/pii/S0196890421008682Renewable energyVariable renewablesComplementarityHybrid power systemsGlobal atlas of solar and wind resources temporal complementarityPre-Publicaciónhttp://purl.org/coar/resource_type/c_816bTextinfo:eu-repo/semantics/preprinthttp://purl.org/redcol/resource_type/ARTOTRinfo:eu-repo/semantics/acceptedVersion[1] J. Rogelj, M. Den Elzen, N. Höhne, T. Fransen, H. Fekete, H. Winkler, et al. Paris Agreement climate proposals need a boost to keep warming well below 2 °C Nature, 534 (2016), pp. 631-639, 10.1038/nature18307[2] A. Aghahosseini, D. Bogdanov, L.S.N.S. Barbosa, C. Breyer Analysing the feasibility of powering the Americas with renewable energy and inter-regional grid interconnections by 2030 Renew Sustain Energy Rev, 105 (2019), pp. 187-205, 10.1016/j.rser.2019.01.046[3] Fragoso-Altamirano. México y su transición energética: un cambio en pro de la energía Renovable Lat Am Dev Energy Eng, 1 (2020), pp. 26-42[4] P. Denholm, G. Brinkman, T. Mai How low can you go? The importance of quantifying minimum generation levels for renewable integration Energy Policy, 115 (2018), pp. 249-257, 10.1016/j.enpol.2018.01.023[5] R.E.H. Sims Renewable energy: A response to climate change Sol Energy, 76 (1-3) (2004), pp. 9-17, 10.1016/S0038-092X(03)00101-4[6] M. Bilgili, H. Bilirgen, A. Ozbek, F. Ekinci, T. Demirdelen The role of hydropower installations for sustainable energy development in Turkey and the World Renew Energy, 126 (2018), pp. 755-764, 10.1016/j.renene.2018.03.089[7] F.A. Canales, A. Beluco, C.A.B. Mendes Modelling a hydropower plant with reservoir with the micropower optimisation model (HOMER) Int J Sustain Energy, 36 (2017), pp. 654-667, 10.1080/14786451.2015.1080706[8] B. Tarroja, K. Forrest, F. Chiang, A. AghaKouchak, S. Samuelsen Implications of hydropower variability from climate change for a future, highly-renewable electric grid in California Appl Energy, 237 (2019), pp. 353-366, 10.1016/j.apenergy.2018.12.079[9] J.S. Silva, F.A. Canales, A. Beluco A “feasibility space” as a goal to be achieved in the development of new technologies for converting renewable energies MethodsX, 7 (2020), 10.1016/j.mex.2020.100960[10] International Renewable Energy Agency Global Renewables Outlook: Energy transformation 2050 IRENA, Abu Dhabi (2020)[11] European Network of Transmission System Operators for Electricity. ENTSO-E transparency platform 2021. https://transparency.entsoe.eu/dashboard/show (accessed February 3, 2021).[12] M.S. Javed, T. Ma, J. Jurasz, F.A. Canales, S. Lin, S. Ahmed, et al. Economic analysis and optimization of a renewable energy based power supply system with different energy storages for a remote island Renew Energy, 164 (2021), pp. 1376-1394, 10.1016/j.renene.2020.10.063[13] F.A. Canales, J.K. Jurasz, M. Guezgouz, A. Beluco Cost-reliability analysis of hybrid pumped-battery storage for solar and wind energy integration in an island community Sustain Energy Technol Assessments, 44 (2021), Article 101062, 10.1016/j.seta.2021.101062[14] A.A. Solomon, D. Bogdanov, C. Breyer Curtailment-storage-penetration nexus in the energy transition Appl Energy, 235 (2019), pp. 1351-1368, 10.1016/j.apenergy.2018.11.069[15] B.K. Sovacool The intermittency of wind, solar, and renewable electricity generators: Technical barrier or rhetorical excuse? Util Policy, 17 (2009), pp. 288-296, 10.1016/j.jup.2008.07.001[16] B.P. Heard, B.W. Brook, T.M.L. Wigley, C.J.A. Bradshaw Burden of proof: a comprehensive review of the feasibility of 100% renewable-electricity systems Renew Sustain Energy Rev, 76 (2017), pp. 1122-1133, 10.1016/j.rser.2017.03.114[17] M. Schlott, A. Kies, T. Brown, S. Schramm, M. Greiner The impact of climate change on a cost-optimal highly renewable European electricity network Appl Energy, 230 (2018), pp. 1645-1659, 10.1016/j.apenergy.2018.09.084[18] M. Fasihi, C. Breyer Baseload electricity and hydrogen supply based on hybrid PV-wind power plants J Clean Prod, 243 (2020), Article 118466, 10.1016/j.jclepro.2019.118466[19] J. Jurasz, F.A. Canales, A. Kies, M. Guezgouz, A. Beluco A review on the complementarity of renewable energy sources: concept, metrics, application and future research directions Sol Energy, 195 (2020), pp. 703-724, 10.1016/j.solener.2019.11.087[20] F. Weschenfelder, G. de Novaes Pires Leite, A.C. Araújo da Costa, O. de Castro Vilela, C.M. Ribeiro, A.A. Villa Ochoa, et al. A review on the complementarity between grid-connected solar and wind power systems J Clean Prod, 257 (2020), p. 120617, 10.1016/j.jclepro.2020.120617[21] G. Bandoc, R. Prăvălie, C. Patriche, M. Degeratu Spatial assessment of wind power potential at global scale. A geographical approach J Clean Prod, 200 (2018), pp. 1065-1086, 10.1016/j.jclepro.2018.07.288[22] R. Prăvălie, C. Patriche, G. Bandoc Spatial assessment of solar energy potential at global scale. A geographical approach J Clean Prod, 209 (2019), pp. 692-721, 10.1016/j.jclepro.2018.10.239[23] M. D’Isidoro, G. Briganti, L. Vitali, G. Righini, M. Adani, G. Guarnieri, et al. Estimation of solar and wind energy resources over Lesotho and their complementarity by means of WRF yearly simulation at high resolution Renew Energy, 158 (2020), pp. 114-129, 10.1016/j.renene.2020.05.106[24] M. Guezgouz, J. Jurasz, M. Chouai, H. Bloomfield, B. Bekkouche Assessment of solar and wind energy complementarity in Algeria Energy Convers Manag, 238 (2021), Article 114170, 10.1016/j.enconman.2021.114170[25] A. Beluco, P.K. de Souza, A. Krenzinger A dimensionless index evaluating the time complementarity between solar and hydraulic energies Renew Energy, 33 (2008), pp. 2157-2165, 10.1016/j.renene.2008.01.019[26] M.P. Cantão, M.R. Bessa, R. Bettega, D.H.M. Detzel, J.M. Lima Evaluation of hydro-wind complementarity in the Brazilian territory by means of correlation maps Renew Energy, 101 (2017), pp. 1215-1225, 10.1016/j.renene.2016.10.012[27] P.E. Bett, H.E. Thornton The climatological relationships between wind and solar energy supply in Britain Renew Energy, 87 (2016), pp. 96-110, 10.1016/j.renene.2015.10.006[28] G. Ren, J. Wan, J. Liu, D. Yu Spatial and temporal assessments of complementarity for renewable energy resources in China Energy, 177 (2019), pp. 262-275, 10.1016/j.energy.2019.04.023[29] A.R. Silva, F.M. Pimenta, A.T. Assireu, M.H.C. Spyrides Complementarity of Brazil’s hydro and offshore wind power Renew Sustain Energy Rev, 56 (2016), pp. 413-427, 10.1016/j.rser.2015.11.045[30] F.J. Santos-Alamillos, D. Pozo-Vázquez, J.A. Ruiz-Arias, V. Lara-Fanego, J. Tovar-Pescador A methodology for evaluating the spatial variability of wind energy resources: application to assess the potential contribution of wind energy to baseload power Renew Energy, 69 (2014), pp. 147-156, 10.1016/j.renene.2014.03.006[31] F.J. Santos-Alamillos, D. Pozo-Vázquez, J.A. Ruiz-Arias, L. Von Bremen, J. Tovar-Pescador Combining wind farms with concentrating solar plants to provide stable renewable power Renew Energy, 76 (2015), pp. 539-550, 10.1016/j.renene.2014.11.055[32] H. Zhang, Y. Cao, Y. Zhang, V. Terzija Quantitative synergy assessment of regional wind-solar energy resources based on MERRA reanalysis data Appl Energy, 216 (2018), pp. 172-182, 10.1016/j.apenergy.2018.02.094[33] F.J. Santos-Alamillos, J. Tovar-Pescador, V. Lara-Fanego, J.A. Ruiz-Arias, D. Pozo-Vázquez Analysis of spatiotemporal balancing between wind and solar energy resources in the Southern Iberian Peninsula J Appl Meteorol Climatol, 51 (2012), pp. 2005-2024, 10.1175/jamc-d-11-0189.1[34] W. Li, S. Stadler, R. Ramakumar Modeling and assessment of wind and insolation resources with a focus on their complementary nature: a case study of Oklahoma Ann Assoc Am Geogr, 101 (2011), pp. 717-729, 10.1080/00045608.2011.567926[35] F.A. Canales, J. Jurasz, A. Kies, A. Beluco, M. Arrieta-Castro, A. Peralta-Cayón Spatial representation of temporal complementarity between three variable energy sources using correlation coefficients and compromise programming MethodsX, 7 (2020), Article 100871, 10.1016/j.mex.2020.100871[36] L. Ramirez Camargo, R. Zink, W. Dorner Spatiotemporal modeling for assessing complementarity of renewable energy sources in distributed energy systems ISPRS Ann Photogramm Remote Sens Spat Inf Sci, II-4/W2 (2015), pp. 147-154, 10.5194/isprsannals-II-4-W2-147-2015[37] S. Sterl, I. Vanderkelen, C.J. Chawanda, D. Russo, R.J. Brecha, A. van Griensven, et al. Smart renewable electricity portfolios in West Africa Nat Sustain, 3 (2020), pp. 710-719, 10.1038/s41893-020-0539-0[38] The World Bank. Renewable Energy Potential in Selected Countries. Washington, DC: 2005.[39] K. Chattopadhyay, A. Kies, E. Lorenz, L. von Bremen, D. Heinemann The impact of different PV module configurations on storage and additional balancing needs for a fully renewable European power system Renew Energy, 113 (2017), pp. 176-189, 10.1016/j.renene.2017.05.069[40] P. Berrill, A. Arvesen, Y. Scholz, H.C. Gils, E.G. Hertwich Environmental impacts of high penetration renewable energy scenarios for Europe Environ Res Lett, 11 (2016), p. 14012, 10.1088/1748-9326/11/1/014012[41] C. Viviescas, L. Lima, F.A. Diuana, E. Vasquez, C. Ludovique, G.N. Silva, et al. Contribution of Variable Renewable Energy to increase energy security in Latin America: Complementarity and climate change impacts on wind and solar resources Renew Sustain Energy Rev, 113 (2019), 10.1016/j.rser.2019.06.039[42] S. Sterl, S. Liersch, H. Koch, N.P.M. van Lipzig, W. Thiery A new approach for assessing synergies of solar and wind power: implications for West Africa Environ Res Lett, 13 (2018), Article 094009, 10.1088/1748-9326/aad8f6[43] K. Hansen, C. Breyer, H. Lund Status and perspectives on 100% renewable energy systems Energy, 175 (2019), pp. 471-480, 10.1016/j.energy.2019.03.092[44] D. Schindler, S. Schmidt-Rohr, C. Jung On the spatiotemporal complementarity of the European onshore wind resource Energy Convers Manag, 237 (2021), Article 114098, 10.1016/j.enconman.2021.114098[45] F. Steinke, P. Wolfrum, C. Hoffmann Grid vs. storage in a 100% renewable Europe. Renew Energy, 50 (2013), pp. 826-832, 10.1016/j.renene.2012.07.044[46] M.M. Miglietta, T. Huld, F. Monforti-Ferrario Local Complementarity of Wind and Solar Energy Resources over Europe: An Assessment Study from a Meteorological Perspective J Appl Meteorol Climatol, 56 (2017), pp. 217-234, 10.1175/JAMC-D-16-0031.1[47] S. Cox, A. Lopez, A. Watson, N. Grue, J.E. Leisch Renewable Energy Data, Analysis, and Decisions: A Guide for Practitioners National Renewable Energy Laboratory (NREL), Golden (2018)[48] World Meteorological Organization Technical regulations. Basic Documents No. 2 Volume I – General Meteorological Standards and Recommended Practices. vol. I World Meteorological Organization, Geneva (2019)[49] L. Ramirez Camargo, K. Gruber, F. Nitsch Assessing variables of regional reanalysis data sets relevant for modelling small-scale renewable energy systems Renew Energy, 133 (2019), pp. 1468-1478, 10.1016/j.renene.2018.09.015[50] J.A. Sobrino, Y. Julien, S. García-Monteiro Surface temperature of the planet earth from satellite data Remote Sens, 12 (2020), pp. 1-10, 10.3390/rs12020218[51] National Aeronautics and Space Administration. NASA POWER | Prediction Of Worldwide Energy Resources 2020. https://power.larc.nasa.gov/.[52] J. Kapica Wind and photovoltaic potential in Europe in the context of mid-term energy storage J Renew Sustain Energy, 12 (2020), Article 034101, 10.1063/1.5131560[53] M.H. Soulouknga, S.Y. Doka, N. Revanna, N. Djongyang, T.C. Kofane Analysis of wind speed data and wind energy potential in Faya-Largeau, Chad, using Weibull distribution Renew Energy, 121 (2018), pp. 1-8, 10.1016/j.renene.2018.01.002[54] J.A. Duffie, W.A. Beckman Solar Engineering of Thermal Processes (4th Ed.), John Wiley & Sons, Inc., Hoboken, NJ (2013)[55] Y. El Mghouchi, A. El Bouardi, Z. Choulli, T. Ajzoul New model to estimate and evaluate the solar radiation Int J Sustain Built Environ, 3 (2014), pp. 225-234, 10.1016/j.ijsbe.2014.11.001[56] C.S. Schuster The quest for the optimum angular-tilt of terrestrial solar panels or their angle-resolved annual insolation Renew Energy, 152 (2020), pp. 1186-1191, 10.1016/j.renene.2020.01.076[57] M. Denault, D. Dupuis, S. Couture-Cardinal Complementarity of hydro and wind power: Improving the risk profile of energy inflows Energy Policy, 37 (2009), pp. 5376-5384, 10.1016/j.enpol.2009.07.064[58] L. Xu, Z. Wang, Y. Liu The spatial and temporal variation features of wind-sun complementarity in China Energy Convers Manag, 154 (2017), pp. 138-148, 10.1016/j.enconman.2017.10.031[59] S. Han, L. Zhang, Y. Liu, H. Zhang, J. Yan, L. Li, et al. Quantitative evaluation method for the complementarity of wind-solar-hydro power and optimization of wind-solar ratio Appl Energy, 236 (2019), pp. 973-984, 10.1016/j.apenergy.2018.12.059[60] M.G. Kendall Rank correlation methods Griffin, Oxford, England (1948)[61] J. van Doorn, A. Ly, M. Marsman, E.-J. Wagenmakers Bayesian Inference for Kendall’s Rank Correlation Coefficient Am Stat, 72 (2018), pp. 303-308, 10.1080/00031305.2016.1264998[62] D. Heide, L. von Bremen, M. Greiner, C. Hoffmann, M. Speckmann, S. Bofinger Seasonal optimal mix of wind and solar power in a future, highly renewable Europe Renew Energy, 35 (2010), pp. 2483-2489, 10.1016/j.renene.2010.03.012[63] J. Jurasz, A. Beluco, F.A. Canales The impact of complementarity on power supply reliability of small scale hybrid energy systems Energy, 161 (2018), pp. 737-743, 10.1016/j.energy.2018.07.182[64] P.W. Stackhouse Jr., T. Zhang, D. Westberg, A.J. Barnett, T. Bristow, B. Macpherson, et al. POWER Release 8.0.1 (with GIS Applications) Methodology (Data Parameters, Sources, & Validation) NASA Langley Research Center, Norfolk, VA (2018)[65] S. Chatzivasileiadis, D. Ernst, G. Andersson The Global Grid Renew Energy, 57 (2013), pp. 372-383, 10.1016/j.renene.2013.01.032[66] F.A. Canales, J. Jurasz, A. Beluco, A. Kies Assessing temporal complementarity between three variable energy sources through correlation and compromise programming Energy, 192 (2020), Article 116637, 10.1016/j.energy.2019.116637[67] L. Liu, Z. Wang, Y. Wang, J. Wang, R. Chang, G. He, et al. Optimizing wind/solar combinations at finer scales to mitigate renewable energy variability in China Renew Sustain Energy Rev, 132 (2020), Article 110151, 10.1016/j.rser.2020.110151[68] A.A. Prasad, R.A. Taylor, M. Kay Assessment of solar and wind resource synergy in Australia Appl Energy, 190 (2017), pp. 354-367, 10.1016/j.apenergy.2016.12.135[69] Dupont E, Jeanmart H. Global potential of wind and solar energy with physical and energy return on investment (EROI) constraints; application at the European level (EU 28 countries). ECOS 2019 - Proc. 32nd Int. Conf. Effic. Cost, Optim. Simul. Environ. Impact Energy Syst., 2019, p. 489–503.PublicationORIGINALGlobal atlas of solar and wind resources temporal complementarity.pdfGlobal atlas of solar and wind resources temporal complementarity.pdfapplication/pdf55045https://repositorio.cuc.edu.co/bitstreams/73bde733-906d-4b2e-8871-9aa4e63bd4d8/download292cbc5447b271ebc6c9af3bc1a9e1feMD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8701https://repositorio.cuc.edu.co/bitstreams/a7fbf681-67eb-4b99-b90a-9fd5c5836f4e/download42fd4ad1e89814f5e4a476b409eb708cMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/46fe98b3-cb79-4923-972e-ee77b1093e8c/downloade30e9215131d99561d40d6b0abbe9badMD53THUMBNAILGlobal atlas of solar and wind resources temporal complementarity.pdf.jpgGlobal atlas of solar and wind resources temporal complementarity.pdf.jpgimage/jpeg60617https://repositorio.cuc.edu.co/bitstreams/a06e4f53-4232-47b3-9b02-4e7efe7b8e4d/downloadc57da35633f3207560487e0e34f42365MD54TEXTGlobal atlas of solar and wind resources temporal complementarity.pdf.txtGlobal atlas of solar and wind resources temporal complementarity.pdf.txttext/plain1837https://repositorio.cuc.edu.co/bitstreams/b4dea1c7-135a-41ec-a01c-7bb7d8d9d3a9/download7b2c58dded270c0418576846a55e5302MD5511323/8791oai:repositorio.cuc.edu.co:11323/87912024-09-17 11:00:02.844http://creativecommons.org/publicdomain/zero/1.0/CC0 1.0 Universalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA==