Production system in a collaborative supply chain considering deterioration
This research presents a mathematical model for a collaborative planning of the supply chain involving four echelons (supplier, production plants, distribution, retails, or clients). The model seeks to maximize profit (utility) when all members of the chain share information related to demand. It is...
- Autores:
-
Acevedo-Chedid, Jaime
Salas-Navarro, Katherinne
Villalobo, Alina
Sana, Shib
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2021
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/8346
- Acceso en línea:
- https://hdl.handle.net/11323/8346
https://doi.org/10.1007/s40819-021-00965-z
https://repositorio.cuc.edu.co/
- Palabra clave:
- Collaborative supply chain
Deteriorating products
Reverse flow
Cadena de suministro colaborativa
Productos en deterioro
Flujo inverso
- Rights
- embargoedAccess
- License
- Attribution-NonCommercial-NoDerivatives 4.0 International
id |
RCUC2_7f279d28dd709a31f251e8ea51a61dc4 |
---|---|
oai_identifier_str |
oai:repositorio.cuc.edu.co:11323/8346 |
network_acronym_str |
RCUC2 |
network_name_str |
REDICUC - Repositorio CUC |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Production system in a collaborative supply chain considering deterioration |
dc.title.translated.spa.fl_str_mv |
Sistema de producción en una cadena de suministro colaborativa considerando el deterioro |
title |
Production system in a collaborative supply chain considering deterioration |
spellingShingle |
Production system in a collaborative supply chain considering deterioration Collaborative supply chain Deteriorating products Reverse flow Cadena de suministro colaborativa Productos en deterioro Flujo inverso |
title_short |
Production system in a collaborative supply chain considering deterioration |
title_full |
Production system in a collaborative supply chain considering deterioration |
title_fullStr |
Production system in a collaborative supply chain considering deterioration |
title_full_unstemmed |
Production system in a collaborative supply chain considering deterioration |
title_sort |
Production system in a collaborative supply chain considering deterioration |
dc.creator.fl_str_mv |
Acevedo-Chedid, Jaime Salas-Navarro, Katherinne Villalobo, Alina Sana, Shib |
dc.contributor.author.spa.fl_str_mv |
Acevedo-Chedid, Jaime Salas-Navarro, Katherinne Villalobo, Alina Sana, Shib |
dc.subject.eng.fl_str_mv |
Collaborative supply chain Deteriorating products Reverse flow |
topic |
Collaborative supply chain Deteriorating products Reverse flow Cadena de suministro colaborativa Productos en deterioro Flujo inverso |
dc.subject.spa.fl_str_mv |
Cadena de suministro colaborativa Productos en deterioro Flujo inverso |
description |
This research presents a mathematical model for a collaborative planning of the supply chain involving four echelons (supplier, production plants, distribution, retails, or clients). The model seeks to maximize profit (utility) when all members of the chain share information related to demand. It is developed for the aggregate consolidation of different raw materials in cement production. The novelty of the model is the consideration of products that deteriorate in the process and thus it has effect on the production times in the plant and lead time. In this supply chain, quality and compliant products and the return of deteriorated products are two flows. The considerations are lead time, inventories with shortages and excesses, production times in normal and extra days, and subcontracting, among others. A mixed integer linear programming with demand scenario analysis is used to optimize and analyze the uncertainty that is consistent with the performance of the construction sector. The model is formed considering two suppliers, two production plants, two distributors, two retailers and two end customers. Four manufacturing inputs (raw materials) are considered for the manufacture of two types of products. A case study of the cement production supply chain of Cartagena (Colombia) is illustrated. The shared benefit is generated around 5 billion pesos (COP) for all members of the chain in a period of 6 months. |
publishDate |
2021 |
dc.date.accessioned.none.fl_str_mv |
2021-06-02T22:34:16Z |
dc.date.available.none.fl_str_mv |
2021-06-02T22:34:16Z |
dc.date.issued.none.fl_str_mv |
2021-01-24 |
dc.date.embargoEnd.none.fl_str_mv |
2022-01-24 |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
acceptedVersion |
dc.identifier.issn.spa.fl_str_mv |
21995796 |
dc.identifier.uri.spa.fl_str_mv |
https://hdl.handle.net/11323/8346 |
dc.identifier.doi.spa.fl_str_mv |
https://doi.org/10.1007/s40819-021-00965-z |
dc.identifier.instname.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.identifier.reponame.spa.fl_str_mv |
REDICUC - Repositorio CUC |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.cuc.edu.co/ |
identifier_str_mv |
21995796 Corporación Universidad de la Costa REDICUC - Repositorio CUC |
url |
https://hdl.handle.net/11323/8346 https://doi.org/10.1007/s40819-021-00965-z https://repositorio.cuc.edu.co/ |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.references.spa.fl_str_mv |
1. Angerhofer, B.J., Angelides, M.C.: A model and a performance measurement system for collaborative supply chains. Decis. Support Syst. 42(1), 283–301 (2006) 2. Arns, M., Fischer, M., Kemper, P., Tepper, C.: Supply chain modelling and its analytical evaluation. J. Oper. Res. Soc. 53(8), 885–894 (2002) 3. Aviv, Y.: The effect of collaborative forecasting on supply chain performance. Manag. Sci. 47(10), 1326–1343 (2001) 4. Aviv, Y.: Gaining benefits from joint forecasting and replenishment processes: the case of auto-correlated demand. Manuf. Serv. Oper. Manag. 4(1), 55–74 (2002) 5. Aviv, Y.: On the benefits of collaborative forecasting partnerships between retailers and manufacturers. Manag. Sci. 53(5), 777–794 (2007) 6. Barratt, M.: Understanding the meaning of collaboration in the supply chain. Supply Chain Manag. Int. J. 9(1), 30–42 (2004) 7. Binder, M., Clegg, B.: Enterprise management: a new frontier for organisations. Int. J. Prod. Econ. 106(2), 409–430 (2007) 8. Cárdenas, M., Reina, M.: La minería en Colombia: impacto socioeconómico y fiscal (2008) 9. Chan, F.T., Zhang, T.: The impact of collaborative transportation management on supply chain performance: a simulation approach. Expert Syst. Appl. 38(3), 2319–2329 (2011) 10. Chedid, J.A., Vidal, G.H.: Análisis del Problema de Planificación de la Producción en Cadenas de Suministro Colaborativas: Una Revisión de la Literatura en el Enfoque de Teoría de Juegos (2012) 11. Chen, C.-L., Lee, W.-C.: Multi-objective optimization of multi-echelon supply chain networks with uncertain product demands and prices. Comput. Chem. Eng. 28(6–7), 1131–1144 (2004) 12. Chen, T.-H., Chen, J.-M.: Optimizing supply chain collaboration based on joint replenishment and channel coordination. Transp. Res. Part E Logist. Transp. Rev. 41(4), 261–285 (2005) 13. Cheung, C.F., Cheung, C., Kwok, S.: A knowledge-based customization system for supply chain integration. Expert Syst. Appl. 39(4), 3906–3924 (2012) 14. Chopra, S., Meindl, P.: Supply Chain Management. Strategy, Planning & Operation, pp. 265–275. Springer, Berlin (2007) 15. de Kruijff, J.T., Hurkens, C.A., de Kok, T.G.: Integer programming models for mid-term production planning for high-tech low-volume supply chains. Eur. J. Oper. Res. 269(3), 984–997 (2018) 16. Diabat, A., Al-Salem, M.: An integrated supply chain problem with environmental considerations. Int. J. Prod. Econ. 164, 330–338 (2015) 17. Dobos, I., Pintér, M.: Cooperation in supply chains: a cooperative game theoretic analysis. Working paper. Corvinus University of Budapest (2010) 18. Doukidis, G.I., Chang, T.H., Fu, H.P., Lee, W.I., Lin, Y., Hsueh, H.C.: A study of an augmented CPFR model for the 3C retail industry. Supply Chain Manag. Int. J. (2007) 19. Ellram, L.M.: Supply-chain management: the industrial organisation perspective. Int. J. Phys. Distrib. Logist. Manag. 21(1), 13–22 (1991) 20. Entezaminia, A., Heydari, M., Rahmani, D.: A multi-objective model for multi-product multi-site aggregate production planning in a green supply chain: considering collection and recycling centers. J. Manuf. Syst. 40, 63–75 (2016) 21. Esmaeili, M., Aryanezhad, M.-B., Zeephongsekul, P.: A game theory approach in seller–buyer supply chain. Eur. J. Oper. Res. 195(2), 442–448 (2009) 22. Fu, Y., Piplani, R.: Supply-side collaboration and its value in supply chains. Eur. J. Oper. Res. 152(1), 281–288 (2004) 23. Golicic, S.L., Foggin, J.H., Mentzer, J.T.: Relationship magnitude and its role in interorganizational relationship structure. J. Bus. Logist. 24(1), 57–75 (2003) 24. Han, J.-H., Lee, J.-Y., Kim, Y.-D.: Production planning in a two-level supply chain for production-timedependent products with dynamic demands. Comput. Ind. Eng. 135, 1–9 (2019) 25. Hennet, J.-C., Arda, Y.: Supply chain coordination: a game-theory approach. Eng. Appl. Artif. Intell. 21(3), 399–405 (2008) 26. Holweg, M., Disney, S., Holmström, J., Småros, J.: Supply chain collaboration: making sense of the strategy continuum. Eur. Manag. J. 23(2), 170–181 (2005) 27. Huang, Y., Huang, G.Q., Newman, S.T.: Coordinating pricing and inventory decisions in a multi-level supply chain: a game-theoretic approach. Transp. Res. Part E Logist. Transp. Rev. 47(2), 115–129 (2011) 28. Huang, Z., Li, S.X.: Co-op advertising models in manufacturer–retailer supply chains: a game theory approach. Eur. J. Oper. Res. 135(3), 527–544 (2001) 29. Huiskonen, J.: Maintenance spare parts logistics: special characteristics and strategic choices. Int. J. Prod. Econ. 71(1–3), 125–133 (2001) 30. Jena, S.K., Sarmah, S.: Price competition and co-operation in a duopoly closed-loop supply chain. Int. J. Prod. Econ. 156, 346–360 (2014) 31. John, T.,DeWitt, W., Keebler, J.S., Min, S., Nix, N., Smith, C., Zacharia, Z.: Defining supply chain management. J. Bus. Logist. (2001) 32. Kim, B., Oh, H.: The impact of decision-making sharing between supplier and manufacturer on their collaboration performance. Supply Chain Manag. Int. J. (2005) 33. Kwon, O., Im, G.P., Lee, K.C.: MACE-SCM: a multi-agent and case-based reasoning collaboration mechanism for supply chain management under supply and demand uncertainties. Expert Syst. Appl. 33(3), 690–705 (2007) 34. Leng, M., Parlar, M.: Allocation of cost savings in a three-level supply chain with demand information sharing: a cooperative-game approach. Oper. Res. 57(1), 200–213 (2009) 35. Leng, M., Parlar, M.: Game-theoretic analyses of decentralized assembly supply chains: non-cooperative equilibria vs. coordination with cost-sharing contracts. Eur. J. Oper. Res. 204(1), 96–104 (2010) 36. Li, J., Wang, S., Cheng, T.E.: Competition and cooperation in a single-retailer two-supplier supply chain with supply disruption. Int. J. Prod. Econ. 124(1), 137–150 (2010) 37. Long, Q.: A multi-methodological collaborative simulation for inter-organizational supply chain networks. Knowl.-Based Syst. 96, 84–95 (2016) 38. Manthou, V., Vlachopoulou, M., Folinas, D.: Virtual e-Chain (VeC) model for supply chain collaboration. Int. J. Prod. Econ. 87(3), 241–250 (2004) 39. Mena O’meara, N. A. (2010). Planificación Maestra de operaciones en la Gestión de la Cadena de Suministro en contexto de INcertidumbre en el Sector Cerámico. Propuesta de Modelado y Resolución Basada en Redes Neuronales Artificiales (ANN). 40. Mentzer, J.T., Foggin, J.H., Golicic, S.L.: Collaboration: the enablers, impediments, and benefits. Supply Chain Manag. Rev. 4(4), 52–58 (2000) 41. Mishra, A.A., Shah, R.: In union lies strength: collaborative competence in new product development and its performance effects. J. Oper. Manag. 27(4), 324–338 (2009) 42. Mishra, U., Wu, J.-Z., Sarkar, B.: A sustainable production-inventory model for a controllable carbon emissions rate under shortages. J. Clean. Prod. 256, 120268 (2020) 43. Mohammaditabar, D., Ghodsypour, S.H., Hafezalkotob, A.: A game theoretic analysis in capacityconstrained supplier-selection and cooperation by considering the total supply chain inventory costs. Int. J. Prod. Econ. 181, 87–97 (2016) 44. Nagarajan, M., Soši´c, G.: Game-theoretic analysis of cooperation among supply chain agents: review and extensions. Eur. J. Oper. Res. 187(3), 719–745 (2008) 45. Navarro, K.S., Chedid, J.A., Florez, W.F., Mateus, H.O., Cárdenas-Barrón, L.E., Sana, S.S.: A collaborative EPQ inventory model for a three-echelon supply chain with multiple products considering the effect of marketing effort on demand. J. Ind.Manag. Optim. 16, 272–283 (2019) 46. Nyaga, G.N., Whipple, J.M., Lynch, D.F.: Examining supply chain relationships: do buyer and supplier perspectives on collaborative relationships differ? J. Oper. Manag. 28(2), 101–114 (2010) 47. Ospina-Mateus, H., Montero-Perez, J., Acevedo-Chedid, J., Salas-Navarro, K., Morales-Londoño, N.: A mathematical model for the optimization of the non-metallic mining supply chain in the mining district of Calamarí-Sucre (Colombia). Applied Computer Sciences in Engineering, Cham, Springer International Publishing (2020) 48. Pimentel, B.S., Mateus, G.R., Almeida, F.A.: Mathematical models for optimizing the global mining supply chain. In: Intelligent Systems in Operations: Methods, Models and Applications in the Supply Chain, IGI global, pp 133–163 (2010) 49. Rafiei, H., Safaei, F., Rabbani, M.: Integrated production-distribution planning problem in a competitionbased four-echelon supply chain. Comput. Ind. Eng. 119, 85–99 (2018) 50. Raghunathan, S.: Information sharing in a supply chain: a note on its value when demand is nonstationary. Manag. Sci. 47(4), 605–610 (2001) 51. Ramanathan, U.: Aligning supply chain collaboration using analytic hierarchy process. Omega 41(2), 431–440 (2013) 52. Ramanathan, U., Gunasekaran, A.: Supply chain collaboration: impact of success in long-term partnerships. Int. J. Prod. Econ. 147, 252–259 (2014) 53. Ren, Z.J., Cohen, M.A., Ho, T.H., Terwiesch, C.: Information sharing in a long-term supply chain relationship: the role of customer review strategy. Oper. Res. 58(1), 81–93 (2010) 54. Renna, P., Argoneto, P.: Capacity sharing in a network of independent factories: a cooperative game theory approach. Robot. Comput. Integr. Manuf. 27(2), 405–417 (2011) 55. Rosenthal, E.C.: A game-theoretic approach to transfer pricing in a vertically integrated supply chain. Int. J. Prod. Econ. 115(2), 542–552 (2008) 56. Sahay, B.: Supply chain collaboration: the key to value creation. Work study (2003) 57. Sana, S.S., Chedid, J.A., Navarro, K.S.: A three layer supply chain model with multiple suppliers, manufacturers and retailers for multiple items. Appl. Math. Comput. 229, 139–150 (2014) 58. Sarkar, B., Majumder, A., Sarkar, M., Dey, B.K., Roy, G.: Two-echelon supply chain model with manufacturing quality improvement and setup cost reduction. J. Ind. Manag. Optim. 13(2), 1085 (2017) 59. Sarkar, B., Omair, M., Kim, N.: A cooperative advertising collaboration policy in supply chain management under uncertain conditions. Appl Soft Comput 88, 105948 (2020) 60. Seifert, D.: Collaborative planning, forecasting, and replenishment: how to create a supply chain advantage, AMACOM Div American Mgmt Assn (2003) 61. SeyedEsfahani, M.M., Biazaran, M., Gharakhani, M.: A game theoretic approach to coordinate pricing and vertical co-op advertising in manufacturer–retailer supply chains. Eur. J. Oper. Res. 211(2), 263–273 (2011) 62. Sheu, C., Rebecca Yen, H., Chae, B.: Determinants of supplier-retailer collaboration: evidence from an international study. Int. J. Oper. Prod. Manag. 26(1), 24–49 (2006) 63. Shirodkar, S., Kempf, K.: Supply chain collaboration through shared capacity models. Interfaces 36(5), 420–432 (2006) 64. Simatupang, T.M., Sridharan, R.: The collaborative supply chain. Int. J. Logist. Manag. 13(1), 15–30 (2002) 65. Simatupang, T.M., Sridharan, R.: Benchmarking supply chain collaboration. Benchmark. Int. J. (2004) 66. Sinha, A.K., Aditya, H., Tiwari, M., Chan, F.T.: Agent oriented petroleum supply chain coordination: co-evolutionary particle swarm optimization based approach. Expert Syst. Appl. 38(5), 6132–6145 (2011) 67. Stank, T.P., Keller, S.B., Daugherty, P.J.: Supply chain collaboration and logistical service performance. J. Bus. Logist. 22(1), 29–48 (2001) 68. Vonderembse, M.A., Uppal, M., Huang, S.H., Dismukes, J.P.: Designing supply chains: Towards theory development. Int. J. Prod. Econ. 100(2), 223–238 (2006) 69. Wang, H., Guo, M., Efstathiou, J.: A game-theoretical cooperative mechanism design for a two-echelon decentralized supply chain. Eur. J. Oper. Res. 157(2), 372–388 (2004) 70. Xiao, T., Qi, X.: Price competition, cost and demand disruptions and coordination of a supply chain with one manufacturer and two competing retailers. Omega 36(5), 741–753 (2008) 71. Xie, J., Neyret, A.: Co-op advertising and pricing models in manufacturer–retailer supply chains. Comput. Ind. Eng. 56(4), 1375–1385 (2009) 72. Yaghin, R.G.: Integrated multi-site aggregate production-pricing planning in a two-echelon supply chain with multiple demand classes. Appl. Math. Model. 53, 276–295 (2018) 73. Zhang, X., Huang, G.Q.: Game-theoretic approach to simultaneous configuration of platform products and supply chains with one manufacturing firm and multiple cooperative suppliers. Int. J. Prod. Econ. 124(1), 121–136 (2010) 74. Zhao, Y., Wang, S., Cheng, T.E., Yang, X., Huang, Z.: Coordination of supply chains by option contracts: a cooperative game theory approach. Eur. J. Oper. Res. 207(2), 668–675 (2010) |
dc.rights.spa.fl_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/embargoedAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_f1cf |
rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_f1cf |
eu_rights_str_mv |
embargoedAccess |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
International Journal of Applied and Computational Mathematics |
institution |
Corporación Universidad de la Costa |
dc.source.url.spa.fl_str_mv |
https://link.springer.com/article/10.1007/s40819-021-00965-z |
bitstream.url.fl_str_mv |
https://repositorio.cuc.edu.co/bitstreams/c5b70bcb-a1cf-4856-a2df-b5954bdb06df/download https://repositorio.cuc.edu.co/bitstreams/fc0945e7-bf3e-401f-a99a-6c40a6cbe37e/download https://repositorio.cuc.edu.co/bitstreams/5e5b19ac-7c18-4926-8b21-ffbe082bacc2/download https://repositorio.cuc.edu.co/bitstreams/58cb6d27-bac5-484b-bfc1-6d6d14ea6c41/download https://repositorio.cuc.edu.co/bitstreams/a46adf0e-8db8-46ae-a4d1-4d3a7b8bee47/download |
bitstream.checksum.fl_str_mv |
7a8eb86ec50d5d0dcfe62bf0bd18b70a 4460e5956bc1d1639be9ae6146a50347 e30e9215131d99561d40d6b0abbe9bad 8ea8ece63162056dc619230e80a006e7 f253dab0506599486dce21e91468ff65 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad de la Costa CUC |
repository.mail.fl_str_mv |
repdigital@cuc.edu.co |
_version_ |
1811760784516055040 |
spelling |
Acevedo-Chedid, JaimeSalas-Navarro, KatherinneVillalobo, AlinaSana, Shib2021-06-02T22:34:16Z2021-06-02T22:34:16Z2021-01-242022-01-2421995796https://hdl.handle.net/11323/8346https://doi.org/10.1007/s40819-021-00965-zCorporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/This research presents a mathematical model for a collaborative planning of the supply chain involving four echelons (supplier, production plants, distribution, retails, or clients). The model seeks to maximize profit (utility) when all members of the chain share information related to demand. It is developed for the aggregate consolidation of different raw materials in cement production. The novelty of the model is the consideration of products that deteriorate in the process and thus it has effect on the production times in the plant and lead time. In this supply chain, quality and compliant products and the return of deteriorated products are two flows. The considerations are lead time, inventories with shortages and excesses, production times in normal and extra days, and subcontracting, among others. A mixed integer linear programming with demand scenario analysis is used to optimize and analyze the uncertainty that is consistent with the performance of the construction sector. The model is formed considering two suppliers, two production plants, two distributors, two retailers and two end customers. Four manufacturing inputs (raw materials) are considered for the manufacture of two types of products. A case study of the cement production supply chain of Cartagena (Colombia) is illustrated. The shared benefit is generated around 5 billion pesos (COP) for all members of the chain in a period of 6 months.Esta investigación presenta un modelo matemático para una planificación colaborativa de la cadena de suministro. involucrando cuatro escalones (proveedor, plantas de producción, distribución, ventas al por menor o clientes). La El modelo busca maximizar las ganancias (utilidad) cuando todos los miembros de la cadena comparten información. relacionados con la demanda. Está desarrollado para la consolidación agregada de diferentes materias primas en producción de cemento. La novedad del modelo es la consideración de productos que se deterioran en el proceso y por lo tanto tiene efecto sobre los tiempos de producción en la planta y el tiempo de entrega. En esto cadena de suministro, productos de calidad y conformes y la devolución de productos deteriorados son dos fluye. Las consideraciones son tiempo de entrega, inventarios con faltas y excesos, producción tiempos en días normales y extras, y subcontratación, entre otros. Un entero mixto lineal La programación con análisis de escenarios de demanda se utiliza para optimizar y analizar la incertidumbre. que sea consistente con el desempeño del sector de la construcción. El modelo está formado considerando dos proveedores, dos plantas de producción, dos distribuidores, dos minoristas y dos finales clientes. Se consideran cuatro insumos de fabricación (materias primas) para la fabricación. de dos tipos de productos. Un estudio de caso de la cadena de suministro de la producción de cemento de Cartagena (Colombia) se ilustra. El beneficio compartido se genera alrededor de 5 mil millones de pesos (COP) para todos los integrantes de la cadena en un plazo de 6 meses.Acevedo-Chedid, Jaime-will be generated-orcid-0000-0001-8318-2636-600Salas-Navarro, Katherinne-will be generated-orcid-0000-0002-6290-3542-600Villalobo, AlinaSana, Shib-will be generated-orcid-0000-0002-7834-8969-600application/pdfengInternational Journal of Applied and Computational MathematicsAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/embargoedAccesshttp://purl.org/coar/access_right/c_f1cfCollaborative supply chainDeteriorating productsReverse flowCadena de suministro colaborativaProductos en deterioroFlujo inversoProduction system in a collaborative supply chain considering deteriorationSistema de producción en una cadena de suministro colaborativa considerando el deterioroArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersionhttps://link.springer.com/article/10.1007/s40819-021-00965-z1. Angerhofer, B.J., Angelides, M.C.: A model and a performance measurement system for collaborative supply chains. Decis. Support Syst. 42(1), 283–301 (2006)2. Arns, M., Fischer, M., Kemper, P., Tepper, C.: Supply chain modelling and its analytical evaluation. J. Oper. Res. Soc. 53(8), 885–894 (2002)3. Aviv, Y.: The effect of collaborative forecasting on supply chain performance. Manag. Sci. 47(10), 1326–1343 (2001)4. Aviv, Y.: Gaining benefits from joint forecasting and replenishment processes: the case of auto-correlated demand. Manuf. Serv. Oper. Manag. 4(1), 55–74 (2002)5. Aviv, Y.: On the benefits of collaborative forecasting partnerships between retailers and manufacturers. Manag. Sci. 53(5), 777–794 (2007)6. Barratt, M.: Understanding the meaning of collaboration in the supply chain. Supply Chain Manag. Int. J. 9(1), 30–42 (2004)7. Binder, M., Clegg, B.: Enterprise management: a new frontier for organisations. Int. J. Prod. Econ. 106(2), 409–430 (2007)8. Cárdenas, M., Reina, M.: La minería en Colombia: impacto socioeconómico y fiscal (2008)9. Chan, F.T., Zhang, T.: The impact of collaborative transportation management on supply chain performance: a simulation approach. Expert Syst. Appl. 38(3), 2319–2329 (2011)10. Chedid, J.A., Vidal, G.H.: Análisis del Problema de Planificación de la Producción en Cadenas de Suministro Colaborativas: Una Revisión de la Literatura en el Enfoque de Teoría de Juegos (2012)11. Chen, C.-L., Lee, W.-C.: Multi-objective optimization of multi-echelon supply chain networks with uncertain product demands and prices. Comput. Chem. Eng. 28(6–7), 1131–1144 (2004)12. Chen, T.-H., Chen, J.-M.: Optimizing supply chain collaboration based on joint replenishment and channel coordination. Transp. Res. Part E Logist. Transp. Rev. 41(4), 261–285 (2005)13. Cheung, C.F., Cheung, C., Kwok, S.: A knowledge-based customization system for supply chain integration. Expert Syst. Appl. 39(4), 3906–3924 (2012)14. Chopra, S., Meindl, P.: Supply Chain Management. Strategy, Planning & Operation, pp. 265–275. Springer, Berlin (2007)15. de Kruijff, J.T., Hurkens, C.A., de Kok, T.G.: Integer programming models for mid-term production planning for high-tech low-volume supply chains. Eur. J. Oper. Res. 269(3), 984–997 (2018)16. Diabat, A., Al-Salem, M.: An integrated supply chain problem with environmental considerations. Int. J. Prod. Econ. 164, 330–338 (2015)17. Dobos, I., Pintér, M.: Cooperation in supply chains: a cooperative game theoretic analysis. Working paper. Corvinus University of Budapest (2010)18. Doukidis, G.I., Chang, T.H., Fu, H.P., Lee, W.I., Lin, Y., Hsueh, H.C.: A study of an augmented CPFR model for the 3C retail industry. Supply Chain Manag. Int. J. (2007)19. Ellram, L.M.: Supply-chain management: the industrial organisation perspective. Int. J. Phys. Distrib. Logist. Manag. 21(1), 13–22 (1991)20. Entezaminia, A., Heydari, M., Rahmani, D.: A multi-objective model for multi-product multi-site aggregate production planning in a green supply chain: considering collection and recycling centers. J. Manuf. Syst. 40, 63–75 (2016)21. Esmaeili, M., Aryanezhad, M.-B., Zeephongsekul, P.: A game theory approach in seller–buyer supply chain. Eur. J. Oper. Res. 195(2), 442–448 (2009)22. Fu, Y., Piplani, R.: Supply-side collaboration and its value in supply chains. Eur. J. Oper. Res. 152(1), 281–288 (2004)23. Golicic, S.L., Foggin, J.H., Mentzer, J.T.: Relationship magnitude and its role in interorganizational relationship structure. J. Bus. Logist. 24(1), 57–75 (2003)24. Han, J.-H., Lee, J.-Y., Kim, Y.-D.: Production planning in a two-level supply chain for production-timedependent products with dynamic demands. Comput. Ind. Eng. 135, 1–9 (2019)25. Hennet, J.-C., Arda, Y.: Supply chain coordination: a game-theory approach. Eng. Appl. Artif. Intell. 21(3), 399–405 (2008)26. Holweg, M., Disney, S., Holmström, J., Småros, J.: Supply chain collaboration: making sense of the strategy continuum. Eur. Manag. J. 23(2), 170–181 (2005)27. Huang, Y., Huang, G.Q., Newman, S.T.: Coordinating pricing and inventory decisions in a multi-level supply chain: a game-theoretic approach. Transp. Res. Part E Logist. Transp. Rev. 47(2), 115–129 (2011)28. Huang, Z., Li, S.X.: Co-op advertising models in manufacturer–retailer supply chains: a game theory approach. Eur. J. Oper. Res. 135(3), 527–544 (2001)29. Huiskonen, J.: Maintenance spare parts logistics: special characteristics and strategic choices. Int. J. Prod. Econ. 71(1–3), 125–133 (2001)30. Jena, S.K., Sarmah, S.: Price competition and co-operation in a duopoly closed-loop supply chain. Int. J. Prod. Econ. 156, 346–360 (2014)31. John, T.,DeWitt, W., Keebler, J.S., Min, S., Nix, N., Smith, C., Zacharia, Z.: Defining supply chain management. J. Bus. Logist. (2001)32. Kim, B., Oh, H.: The impact of decision-making sharing between supplier and manufacturer on their collaboration performance. Supply Chain Manag. Int. J. (2005)33. Kwon, O., Im, G.P., Lee, K.C.: MACE-SCM: a multi-agent and case-based reasoning collaboration mechanism for supply chain management under supply and demand uncertainties. Expert Syst. Appl. 33(3), 690–705 (2007)34. Leng, M., Parlar, M.: Allocation of cost savings in a three-level supply chain with demand information sharing: a cooperative-game approach. Oper. Res. 57(1), 200–213 (2009)35. Leng, M., Parlar, M.: Game-theoretic analyses of decentralized assembly supply chains: non-cooperative equilibria vs. coordination with cost-sharing contracts. Eur. J. Oper. Res. 204(1), 96–104 (2010)36. Li, J., Wang, S., Cheng, T.E.: Competition and cooperation in a single-retailer two-supplier supply chain with supply disruption. Int. J. Prod. Econ. 124(1), 137–150 (2010)37. Long, Q.: A multi-methodological collaborative simulation for inter-organizational supply chain networks. Knowl.-Based Syst. 96, 84–95 (2016)38. Manthou, V., Vlachopoulou, M., Folinas, D.: Virtual e-Chain (VeC) model for supply chain collaboration. Int. J. Prod. Econ. 87(3), 241–250 (2004)39. Mena O’meara, N. A. (2010). Planificación Maestra de operaciones en la Gestión de la Cadena de Suministro en contexto de INcertidumbre en el Sector Cerámico. Propuesta de Modelado y Resolución Basada en Redes Neuronales Artificiales (ANN).40. Mentzer, J.T., Foggin, J.H., Golicic, S.L.: Collaboration: the enablers, impediments, and benefits. Supply Chain Manag. Rev. 4(4), 52–58 (2000)41. Mishra, A.A., Shah, R.: In union lies strength: collaborative competence in new product development and its performance effects. J. Oper. Manag. 27(4), 324–338 (2009)42. Mishra, U., Wu, J.-Z., Sarkar, B.: A sustainable production-inventory model for a controllable carbon emissions rate under shortages. J. Clean. Prod. 256, 120268 (2020)43. Mohammaditabar, D., Ghodsypour, S.H., Hafezalkotob, A.: A game theoretic analysis in capacityconstrained supplier-selection and cooperation by considering the total supply chain inventory costs. Int. J. Prod. Econ. 181, 87–97 (2016)44. Nagarajan, M., Soši´c, G.: Game-theoretic analysis of cooperation among supply chain agents: review and extensions. Eur. J. Oper. Res. 187(3), 719–745 (2008)45. Navarro, K.S., Chedid, J.A., Florez, W.F., Mateus, H.O., Cárdenas-Barrón, L.E., Sana, S.S.: A collaborative EPQ inventory model for a three-echelon supply chain with multiple products considering the effect of marketing effort on demand. J. Ind.Manag. Optim. 16, 272–283 (2019)46. Nyaga, G.N., Whipple, J.M., Lynch, D.F.: Examining supply chain relationships: do buyer and supplier perspectives on collaborative relationships differ? J. Oper. Manag. 28(2), 101–114 (2010)47. Ospina-Mateus, H., Montero-Perez, J., Acevedo-Chedid, J., Salas-Navarro, K., Morales-Londoño, N.: A mathematical model for the optimization of the non-metallic mining supply chain in the mining district of Calamarí-Sucre (Colombia). Applied Computer Sciences in Engineering, Cham, Springer International Publishing (2020)48. Pimentel, B.S., Mateus, G.R., Almeida, F.A.: Mathematical models for optimizing the global mining supply chain. In: Intelligent Systems in Operations: Methods, Models and Applications in the Supply Chain, IGI global, pp 133–163 (2010)49. Rafiei, H., Safaei, F., Rabbani, M.: Integrated production-distribution planning problem in a competitionbased four-echelon supply chain. Comput. Ind. Eng. 119, 85–99 (2018)50. Raghunathan, S.: Information sharing in a supply chain: a note on its value when demand is nonstationary. Manag. Sci. 47(4), 605–610 (2001)51. Ramanathan, U.: Aligning supply chain collaboration using analytic hierarchy process. Omega 41(2), 431–440 (2013)52. Ramanathan, U., Gunasekaran, A.: Supply chain collaboration: impact of success in long-term partnerships. Int. J. Prod. Econ. 147, 252–259 (2014)53. Ren, Z.J., Cohen, M.A., Ho, T.H., Terwiesch, C.: Information sharing in a long-term supply chain relationship: the role of customer review strategy. Oper. Res. 58(1), 81–93 (2010)54. Renna, P., Argoneto, P.: Capacity sharing in a network of independent factories: a cooperative game theory approach. Robot. Comput. Integr. Manuf. 27(2), 405–417 (2011)55. Rosenthal, E.C.: A game-theoretic approach to transfer pricing in a vertically integrated supply chain. Int. J. Prod. Econ. 115(2), 542–552 (2008)56. Sahay, B.: Supply chain collaboration: the key to value creation. Work study (2003)57. Sana, S.S., Chedid, J.A., Navarro, K.S.: A three layer supply chain model with multiple suppliers, manufacturers and retailers for multiple items. Appl. Math. Comput. 229, 139–150 (2014)58. Sarkar, B., Majumder, A., Sarkar, M., Dey, B.K., Roy, G.: Two-echelon supply chain model with manufacturing quality improvement and setup cost reduction. J. Ind. Manag. Optim. 13(2), 1085 (2017)59. Sarkar, B., Omair, M., Kim, N.: A cooperative advertising collaboration policy in supply chain management under uncertain conditions. Appl Soft Comput 88, 105948 (2020)60. Seifert, D.: Collaborative planning, forecasting, and replenishment: how to create a supply chain advantage, AMACOM Div American Mgmt Assn (2003)61. SeyedEsfahani, M.M., Biazaran, M., Gharakhani, M.: A game theoretic approach to coordinate pricing and vertical co-op advertising in manufacturer–retailer supply chains. Eur. J. Oper. Res. 211(2), 263–273 (2011)62. Sheu, C., Rebecca Yen, H., Chae, B.: Determinants of supplier-retailer collaboration: evidence from an international study. Int. J. Oper. Prod. Manag. 26(1), 24–49 (2006)63. Shirodkar, S., Kempf, K.: Supply chain collaboration through shared capacity models. Interfaces 36(5), 420–432 (2006)64. Simatupang, T.M., Sridharan, R.: The collaborative supply chain. Int. J. Logist. Manag. 13(1), 15–30 (2002)65. Simatupang, T.M., Sridharan, R.: Benchmarking supply chain collaboration. Benchmark. Int. J. (2004)66. Sinha, A.K., Aditya, H., Tiwari, M., Chan, F.T.: Agent oriented petroleum supply chain coordination: co-evolutionary particle swarm optimization based approach. Expert Syst. Appl. 38(5), 6132–6145 (2011)67. Stank, T.P., Keller, S.B., Daugherty, P.J.: Supply chain collaboration and logistical service performance. J. Bus. Logist. 22(1), 29–48 (2001)68. Vonderembse, M.A., Uppal, M., Huang, S.H., Dismukes, J.P.: Designing supply chains: Towards theory development. Int. J. Prod. Econ. 100(2), 223–238 (2006)69. Wang, H., Guo, M., Efstathiou, J.: A game-theoretical cooperative mechanism design for a two-echelon decentralized supply chain. Eur. J. Oper. Res. 157(2), 372–388 (2004)70. Xiao, T., Qi, X.: Price competition, cost and demand disruptions and coordination of a supply chain with one manufacturer and two competing retailers. Omega 36(5), 741–753 (2008)71. Xie, J., Neyret, A.: Co-op advertising and pricing models in manufacturer–retailer supply chains. Comput. Ind. Eng. 56(4), 1375–1385 (2009)72. Yaghin, R.G.: Integrated multi-site aggregate production-pricing planning in a two-echelon supply chain with multiple demand classes. Appl. Math. Model. 53, 276–295 (2018)73. Zhang, X., Huang, G.Q.: Game-theoretic approach to simultaneous configuration of platform products and supply chains with one manufacturing firm and multiple cooperative suppliers. Int. J. Prod. Econ. 124(1), 121–136 (2010)74. Zhao, Y., Wang, S., Cheng, T.E., Yang, X., Huang, Z.: Coordination of supply chains by option contracts: a cooperative game theory approach. Eur. J. Oper. Res. 207(2), 668–675 (2010)PublicationORIGINALPRODUCTION SYSTEM IN A COLLABORATIVE SUPPLY CHAIN CONSIDERING DETERIORATION.pdfPRODUCTION SYSTEM IN A COLLABORATIVE SUPPLY CHAIN CONSIDERING DETERIORATION.pdfapplication/pdf6715https://repositorio.cuc.edu.co/bitstreams/c5b70bcb-a1cf-4856-a2df-b5954bdb06df/download7a8eb86ec50d5d0dcfe62bf0bd18b70aMD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.cuc.edu.co/bitstreams/fc0945e7-bf3e-401f-a99a-6c40a6cbe37e/download4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/5e5b19ac-7c18-4926-8b21-ffbe082bacc2/downloade30e9215131d99561d40d6b0abbe9badMD53THUMBNAILPRODUCTION SYSTEM IN A COLLABORATIVE SUPPLY CHAIN CONSIDERING DETERIORATION.pdf.jpgPRODUCTION SYSTEM IN A COLLABORATIVE SUPPLY CHAIN CONSIDERING DETERIORATION.pdf.jpgimage/jpeg52757https://repositorio.cuc.edu.co/bitstreams/58cb6d27-bac5-484b-bfc1-6d6d14ea6c41/download8ea8ece63162056dc619230e80a006e7MD54TEXTPRODUCTION SYSTEM IN A COLLABORATIVE SUPPLY CHAIN CONSIDERING DETERIORATION.pdf.txtPRODUCTION SYSTEM IN A COLLABORATIVE SUPPLY CHAIN CONSIDERING DETERIORATION.pdf.txttext/plain1731https://repositorio.cuc.edu.co/bitstreams/a46adf0e-8db8-46ae-a4d1-4d3a7b8bee47/downloadf253dab0506599486dce21e91468ff65MD5511323/8346oai:repositorio.cuc.edu.co:11323/83462024-09-17 11:08:38.979http://creativecommons.org/licenses/by-nc-nd/4.0/Attribution-NonCommercial-NoDerivatives 4.0 Internationalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA== |