Estimación de la Biomasa y Carbono almacenado en la cobertura arbórea de la región del Carare - Opón (Santander)
Introducción: La causa principal del calentamiento global se debe al aumento de los gases de efecto invernadero que se han producido desde la revolución industrial. Se conoce que el dióxido de carbono (CO2) es el segundo gas que más aporta a esta problemática y que los bosques actúan como depósitos...
- Autores:
-
Barón Parra, Mónica Lorena
Triana Gómez, Max Alejandro
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2017
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/12167
- Palabra clave:
- Global warming
biomass
forest carbon
Allometric equations
IVI
Structural variables
Calentamiento global
carbono forestal
ecuaciones alométricas
IVI
variables estructurales
- Rights
- openAccess
- License
- INGE CUC - 2017
id |
RCUC2_7f103b4da014f365f222c7403d946c26 |
---|---|
oai_identifier_str |
oai:repositorio.cuc.edu.co:11323/12167 |
network_acronym_str |
RCUC2 |
network_name_str |
REDICUC - Repositorio CUC |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Estimación de la Biomasa y Carbono almacenado en la cobertura arbórea de la región del Carare - Opón (Santander) |
dc.title.translated.eng.fl_str_mv |
Biomass and Stored Carbon estimation in the tree cover of the Carare - Opón Region (Santander, Colombia) |
title |
Estimación de la Biomasa y Carbono almacenado en la cobertura arbórea de la región del Carare - Opón (Santander) |
spellingShingle |
Estimación de la Biomasa y Carbono almacenado en la cobertura arbórea de la región del Carare - Opón (Santander) Global warming biomass forest carbon Allometric equations IVI Structural variables Calentamiento global carbono forestal ecuaciones alométricas IVI variables estructurales |
title_short |
Estimación de la Biomasa y Carbono almacenado en la cobertura arbórea de la región del Carare - Opón (Santander) |
title_full |
Estimación de la Biomasa y Carbono almacenado en la cobertura arbórea de la región del Carare - Opón (Santander) |
title_fullStr |
Estimación de la Biomasa y Carbono almacenado en la cobertura arbórea de la región del Carare - Opón (Santander) |
title_full_unstemmed |
Estimación de la Biomasa y Carbono almacenado en la cobertura arbórea de la región del Carare - Opón (Santander) |
title_sort |
Estimación de la Biomasa y Carbono almacenado en la cobertura arbórea de la región del Carare - Opón (Santander) |
dc.creator.fl_str_mv |
Barón Parra, Mónica Lorena Triana Gómez, Max Alejandro |
dc.contributor.author.spa.fl_str_mv |
Barón Parra, Mónica Lorena Triana Gómez, Max Alejandro |
dc.subject.eng.fl_str_mv |
Global warming biomass forest carbon Allometric equations IVI Structural variables |
topic |
Global warming biomass forest carbon Allometric equations IVI Structural variables Calentamiento global carbono forestal ecuaciones alométricas IVI variables estructurales |
dc.subject.spa.fl_str_mv |
Calentamiento global carbono forestal ecuaciones alométricas IVI variables estructurales |
description |
Introducción: La causa principal del calentamiento global se debe al aumento de los gases de efecto invernadero que se han producido desde la revolución industrial. Se conoce que el dióxido de carbono (CO2) es el segundo gas que más aporta a esta problemática y que los bosques actúan como depósitos de carbono. De esta forma, los programas de reducción de emisiones por deforestación y degradación (REDD+) son un mecanismo de mitigación y adaptación al cambio climático; uno de sus propósitos es estimar la captura del carbono forestal.Objetivo: Estimar el contenido de biomasa aérea y de carbono almacenado en el ecosistema y, así mismo, en las diez especies con mayor índice de valor de importancia (IVI), conocer cuál es la especie con mayor reserva de carbono y conocer si existen diferencias significativas en las variables estructurales de las especies.Metodología: Las estimaciones de biomasa se realizaron mediante el método indirecto utilizando nueve ecuaciones alométricas que realizan esta estimación en función del diámetro a la altura del pecho (≥10 cm a 1.30 m) y la altura total. El carbono almacenado se calculó tomando el 50% de la biomasa estimada.Resultados: Para el ecosistema se estimaron 465,41 t/0.05 ha de biomasa aérea y 232,70 t/0.05 ha de carbono almacenado. La especie con el valor más alto de biomasa y carbono fue Anacardium excelsum.Conclusiones: Las diez especies con mayor IVI representan el 93,72% de la biomasa total del ecosistema; la más importante representa el 18,23% estando relacionado con las variables estructurales de la vegetación como el área basal y la altura total. |
publishDate |
2017 |
dc.date.accessioned.none.fl_str_mv |
2017-06-28 00:00:00 2024-04-09T20:14:38Z |
dc.date.available.none.fl_str_mv |
2017-06-28 00:00:00 2024-04-09T20:14:38Z |
dc.date.issued.none.fl_str_mv |
2017-06-28 |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.local.eng.fl_str_mv |
Journal article |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.coarversion.spa.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
publishedVersion |
dc.identifier.issn.none.fl_str_mv |
0122-6517 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/11323/12167 |
dc.identifier.url.none.fl_str_mv |
https://doi.org/10.17981/ingecuc.13.2.2017.09 |
dc.identifier.doi.none.fl_str_mv |
10.17981/ingecuc.13.2.2017.09 |
dc.identifier.eissn.none.fl_str_mv |
2382-4700 |
identifier_str_mv |
0122-6517 10.17981/ingecuc.13.2.2017.09 2382-4700 |
url |
https://hdl.handle.net/11323/12167 https://doi.org/10.17981/ingecuc.13.2.2017.09 |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.ispartofjournal.spa.fl_str_mv |
Inge Cuc |
dc.relation.references.spa.fl_str_mv |
F. Castro, “Cambio climático y protocolo de Kioto. Ciencia y Estrategias. Compromisos para España,” Rev. Esp. Salud Pública, vol. 7, núm. 2, pp. 191–210, marzo-abril, 2005. [En línea]. Disponible en: http://www.redalyc.org/pdf/170/17079209.pdf A. Yepes-Mayorga, “Cambio Climático: estrategias de gestión con el tiempo en contra...,” Orinoquia, vol. 16, núm. 1, pp. 77–92, 2012. [En línea]. Disponible en: http://www.scielo.org.co/pdf/rori/v16n1/v16n1a09.pdf J. A. Benjamín y O. Masera, “Captura de carbono ante el cambio climático,” Madera y Bosques, vol. 7, núm. 1, pp. 3–12, 2001. [En línea]. Disponible en: http://www.redalyc.org/pdf/617/61770102.pdf F. Estenssoro, “Crisis ambiental y cambio climático en la política global: Un tema crecientemente complejo para América Latina,” Universum, vol. 2, núm. 25, pp.57–77, julio, 2010. [En línea]. Disponible en: https://doi.org/10.4067/S0718-23762010000200005 FAO, “Los bosques y el cambio climático. La gestión forestal es fundamental para afrontar el cambio climático,”2006. [En línea]. Disponible en: http://www.fao.org/Newsroom/es/focus/2006/1000247/index.html B. Schlegel, “Estimación de la biomasa y carbono en bosques del tipo forestal siempre verde,” Presentando en SIMMCCEF, Chile, octubre, 2001. [En línea]. Disponible en: https://www.uach.cl/procarbono/pdf/simposio_carbono/45_schlegel.PDF A. Vargas-Mena y A. Sandoval. (2004, Enero). “La captura de carbono en bosques: ¿una herramienta para la gestión ambiental?,” Gac. Ecológica, vol. 1, núm. 70, pp. 5–18. [En línea]. Disponible en: http://www.redalyc.org/pdf/539/53907001.pdf M. G. Pece, C. Gaillard, M. Galíndez y M. Acosta, “Bosques y forestaciones como sumideros de carbono en el parque chaqueño,” Presentado en FCF-UNSE, 2000. [En línea]. Disponible en: http://fcf.unse.edu.ar/eventos/2-jornadas-forestales/pdfs/Bosques%20y%20forestaciones%20como%20sumideros%20de%20carbono%20en%20el%20parque%20chaqueno.pdf A. Vásquez y H. Arellano, “Estructura, Biomasa Aérea y Carbono Almacenado en los Bosques del Sur y Noroccidente de Córdoba,” Colomb. Divers. Biótica XII. La región Caribe Colomb., pp. 963–1009, 2012 [En línea]. Disponible en: https://arxiv.org/ftp/arxiv/papers/1208/1208.0248.pdf A. M. Aldana, B. Villanueva, A. Cano, D. F. Correa, M. N. Umaña, L. F. Casas, S. Cárdenas, L. F. Henao-Díaz y P. R. Stevenson (2017) “Drivers of biomass stocks in Northwestern South American forests: Contributing new information on the Neotropics”. Forest Ecology and Management, vol. 389, pp. 86–95, 2017. [En línea]. Disponible en: http://dx.doi.org/10.1016/j.foreco.2016.12.023 Banco Mundial, “Por qué los bosques son fundamentales para el clima, el agua, la salud y los medios de subsistencia,” marzo 2016. [En línea]. Disponible en: http://www.bancomundial.org/es/news/feature/2016/03/18/whyforests-are-key-to-climate-water-health-and-livelihoods FAO, “La gestión de los bosques ante el cambio climático,” 2010. [En línea]. Disponible en: http://www.fao.org/docrep/014/i1960s/i1960s00.pdf E. Mattsson, M. Ostwald, G. Wallin y S. P. Nissanka, “Heterogeneity and assessment uncertainties in forest characteristics and biomass carbon stocks: Important considerations for climate mitigation policies,” Land use policy, vol. 59, pp. 84–94, agosto 2016. [En línea]. Disponible en: http://www.sciencedirect.com/science/article/pii/S0264837716308766 C. R. Sanquetta, A. P. Dalla Corte y G. C. Benedet Maas, “El rol del bosque en el cambio climático,” Quebracho (Santiago del Estero), vol. 19, núm. 2, pp. 84–96, diciembre 2011. [En línea]. Disponible en: http://www.sciencedirect.com/science/article/pii/S0264837716308766 S. W. Chou y E. E. Gutierrez-Espeleta. (). “Equation for estimating tree biomass in tropical forests of Costa Rica,” Teconología en marcha, vol. 26, núm. 2, pp. 41–54, septiembre 2012. [En línea]. Disponible en: https://dialnet.unirioja.es/descarga/articulo/4835699.pdf C. B. Field et. al. “Cambio climático 2014 Impactos, adaptación y vulnerabilidad.” 2014. [En línea]. https://www.ipcc.ch/pdf/assessment-report/ar5/wg2/ar5_wgII_spm_es.pdf J. F. Phillips et al., “Estimación de las reservas actuales (2010) de carbono almacenadas en la biomasa aérea en bosques naturales de Colombia,” octubre, 2010. [En línea]. Disponible en: http://documentacion.ideam.gov.co/openbiblio/bvirtual/022100/EstimaciondelasReservas2010.pdf T. Le Toan et al., “The BIOMASS mission: Mapping global forest biomass to better understand the terrestrial carbon cycle,” Remote Sens. Environ., vol. 115, núm. 11, pp. 2850–2860, 2011. [En línea]. Disponible en: https://doi.org/10.1016/j.rse.2011.03.020 A. Yepes-Quintero, A., Duque-Montoya A. J., Navarrete-Encinales D., Phillips-Bernal, J., Cabrera-Montenegro, E., Corrales-Osorio et al., “Estimación de las Reservas y Pérdidas de Carbono por Deforestación en los Bosques del Departamento de Antioquia, Colombia,” Actual. Biológicas, vol. 33, núm. 95, pp. 193–208, 2011. [En línea]. Disponible en: http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0304-35842011000200005&lng=es&tlng=es R. Franco y J. M. Rodríguez, “Análisis multitemporal satelital de los bosques del Carare - Opón, mediante imágenes landsat de 1991 y 2002,” Colomb. For., vol. 9, núm. 18, pp. 157–162, 2005. [En línea]. Disponible en: http://revistas.udistrital.edu.co/ojs/index.php/colfor/article/view/3054 H. J. Gutiérrez Rey, “Aproximación a un modelo para la evaluación de la vulnerabilidad de las coberturas vegetales de Colombia ante un posible cambio climático utilizando Sistemas de Información Geografica SIG con énfasis en la vulnerabilidad de las coberturas nival y de páramo de Colombia,” Páramos y Ecosistemas Alto Andin. Colomb. en Condición HotSpot Glob. Clim. Tensor, vol. 6, pp. 335–377, 2002. [En línea]. Disponible en: http://documentacion.ideam.gov.co/openbiblio/bvirtual/000689/Capitulo5.pdf A. N. Djomo, A. Ibrahima, J. Saborowski y G. Gravenhorst, “Allometric equations for biomass estimations in Cameroon and pan moist tropical equations including biomass data from Africa,” For. Ecol. Manage, vol. 260, núm. 10, pp. 1873–1885, 2010. [En línea]. Disponible en: http://dx.doi.org/10.1016/j.foreco.2010.08.034 H. Quinto-Mosquera y F. Moreno, “Dinámica de la Biomasa Aérea en un Bosque Pluvial Tropical del Chocó Biogeográfico,” Rev. Fac. Nac. Agron. – Medellín, vol. 64, núm. 1, pp. 5917–5936, 2011. [En línea]. Disponible en: https://revistas.unal.edu.co/index.php/refame/article/view/26399/37133 M. Segura y M. Kanninen, “Allometric Models for Tree Volume and Total Aboveground Biomass in a Tropical Humid Forest in Costa Rica,” Biotropic, vol. 37, núm. 1, pp. 2–8, 2005. [En línea]. Disponible en: https://doi.org/10.1111/j.1744-7429.2005.02027.x J. R. Me Chave, B. R. Ra y M.-A. Dubois, “Estimation of biomass in a neotropical forest of French Guiana: spatial and temporal variability,” J. Trop. Ecol. vol. 17, pp. 79 – 96, 2011. [En línea]. Disponible en: https://doi.org/10.1017/S0266467401001055 B. Huy, K. P. Poudel y H. Temesgen, “Aboveground biomass equations for evergreen broadleaf forests in South Central Coastal ecoregion of Viet Nam: Selection of ecoregional or pantropical models,” For. Ecol. Manage., vol. 376, pp. 276–283, 2016. [En línea]. Disponible en: https://doi.org/10.1017/S0266467401001055 C. A. Sierra et al., “Total carbon stocks in a tropical forest landscape of the Porce region, Colombia,” For. Ecol. Manage., vol. 243, núms. 2–3, pp. 299–309, 2007. [En línea]. Disponible en: http://www.sciencedirect.com/science/article/pii/S0378112707002411 N. Chan, S. Takeda, R. Suzuki y S. Yamamoto, “Establishment of allometric models and estimation of biomass recovery of swidden cultivation fallows in mixed deciduous forests of the Bago Mountains, Myanmar,” For. Ecol. Manage., vol. 304, pp. 427–436, 2013. [En línea]. Disponible en: http://dx.doi.org/10.1016/j.foreco.2013.05.038 H. Quinto-Mosquera y F. Moreno, “Dinámica de la Biomasa Aérea en un Bosque Pluvial Tropical del Chocó Biogeográfico,” Rev. Fac. Nac. Agron. – Medellín, vol. 64, núm. 1, pp. 5917–5936, 2011. [En línea]. Disponible en: https://revistas.unal.edu.co/index.php/refame/article/view/26399/37133 E. Álvarez et al., “Tree above-ground biomass allometries for carbon stocks estimation in the natural forests of Colombia,” For. Ecol. Manage., vol. 267, pp. 297–308, 2012. [En línea]. Disponible en: http://dx.doi.org/10.1016/j.foreco.2011.12.013 S. M. Stas, E. Rutishauser, J. Chave, N. P. R. Anten y Y. Laumonier, “Estimating the aboveground biomass I, an old secondary forest on limestone in the Moluccas, Indonesia: Comparing locally developed versus existing allometric models,” For. Ecol. Manage., vol. 389, pp. 27–34, 2017. [En línea]. Disponible en: http://dx.doi.org/10.1016/j.foreco.2016.12.010 A. Ngomanda et al., “Site-specific versus pantropical allometric equations: Which option to estimate the biomass of a moist central African forest?,” For. Ecol. Manage., vol. 312, pp. 1–9, 2014. [En línea]. Disponible en: http://dx.doi.org/10.1016/j.foreco.2013.10.029 A. M. Aldana et al., “Drivers of biomass stocks in Northwestern South American forests: Contributing new information on the Neotropics,” For. Ecol. Manage., vol. 389, pp. 86–95, 2017. [En línea]. Disponible en: http://dx.doi.org/10.1016/j.foreco.2016.12.023 A. N. Djomo, A. Knohl y G. Gravenhorst, “Estimations of total ecosystem carbon pools distribution and carbon biomass current annual increment of a moist tropical forest,” For. Ecol. Manage., vol. 261, núm. 8, pp. 1448–1459, 2011. [En línea]. Disponible en: http://dx.doi.org/10.1016/j.foreco.2011.01.031 S. K. Behera, N. Sahu, A. K. Mishra, S. S. Bargali, M. D. Behera y R. Tuli, “Aboveground biomass and carbon stock assessment in Indian tropical deciduous forest and relationship with stand structural attributes,” Ecol. Eng., vol. 99, pp. 513–524, 2017. [En línea]. Disponible en: http://dx.doi.org/10.1016/j.ecoleng.2016.11.046 A. N. Djomo y C. D. Chimi, “Tree allometric equations for estimation of above, below and total biomass in a tropical moist forest: Case study with application to remote sensing,” For. Ecol. Manage., vol. 391, pp. 184–193, 2017. [En línea]. Disponible en: http://dx.doi.org/10.1016/j.foreco.2017.02.022 J. Pelletier, K. R. Kirby y C. Potvin, “Significance of carbon stock uncertainties on emission reductions from deforestation and forest degradation in developing countries,” For. Policy Econ., vol. 24, pp. 3–11, 2012. [En línea]. Disponible en: https://doi.org/10.1016/j.forpol.2010.05.005 S. G. de Godoi et al., “The conversion of grassland to acacia forest as an effective option for net reduction in greenhouse gas emissions,” J. Environ. Manage., vol. 169, pp. 91–102, 2016. [En línea]. Disponible en: https://doi.org/10.1016/j.jenvman.2015.11.057 M. Ibrahim y J. Mora, Potencialidades de los sistemas silvopastoriles para la generación de servicios ambientales: memorias de una conferencia electrónica realizada entre septiembre y diciembre del 2001, Turrialba, Costa Rica, 2006 [En línea]. Disponible en: http://www.flacsoandes.edu.ec/libros/124741-opac H. Quinto, J. Cuesta, I. J. Mosquera, L. Palacios y H. Peñaloza, “Biomasa vegetal en zonas degradadas por minería en un bosque pluvial tropical del Chocó Biogeográfico,” Biodivers. Neotrop., vol. 3, núm. 1, pp. 53–64, 2013. [En línea]. Disponible en: http://dx.doi.org/10.18636/bioneotropical.v3i1.127 R. Sikkema, M. Junginger, P. McFarlane y A. Faaij, “The GHG contribution of the cascaded use of harvested wood products in comparison with the use of wood for energy-A case study on available forest resources in Canada,” Environ. Sci. Policy, vol. 31, pp. 96–108, 2013 [En línea]. Disponible en: https://doi.org/10.1016/j.envsci.2013.03.007 A. Thakur, C. E. Canter y A. Kumar, “Life-cycle energy and emission analysis of power generation from forest biomass,” Appl. Energy, vol. 128, pp. 246–253, 2014. [En línea]. Disponible en: http://dx.doi.org/10.1016/j.apenergy.2014.04.085 M. Röder, C. Whittaker y P. Thornley, “How certain are greenhouse gas reductions from bioenergy? Life cycle assessment and uncertainty analysis of wood pellet-toelectricity supply chains from forest residues,” Biomass and Bioenergy, vol. 79, pp. 50–63, 2015. [En línea]. Disponible en: http://dx.doi.org/10.1016/j.biombioe.2015.03.030 Y. Weldemichael y G. Assefa, “Assessing the energy production and GHG (greenhouse gas) emissions mitigation potential of biomass resources for Alberta,” J. Clean. Prod., vol. 112, pp. 4257–4264, 2015. [En línea]. Disponible en: http://dx.doi.org/10.1016/j.jclepro.2015.08.118 |
dc.relation.citationendpage.none.fl_str_mv |
94 |
dc.relation.citationstartpage.none.fl_str_mv |
84 |
dc.relation.citationissue.spa.fl_str_mv |
2 |
dc.relation.citationvolume.spa.fl_str_mv |
13 |
dc.relation.bitstream.none.fl_str_mv |
https://revistascientificas.cuc.edu.co/ingecuc/article/download/1607/Bar%C3%B3n%20Parra%20M https://revistascientificas.cuc.edu.co/ingecuc/article/download/1607/1680 https://revistascientificas.cuc.edu.co/ingecuc/article/download/1607/1681 https://revistascientificas.cuc.edu.co/ingecuc/article/download/1607/1682 https://revistascientificas.cuc.edu.co/ingecuc/article/download/1607/1683 https://revistascientificas.cuc.edu.co/ingecuc/article/download/1607/1684 https://revistascientificas.cuc.edu.co/ingecuc/article/download/1607/1685 https://revistascientificas.cuc.edu.co/ingecuc/article/download/1607/1686 https://revistascientificas.cuc.edu.co/ingecuc/article/download/1607/1687 https://revistascientificas.cuc.edu.co/ingecuc/article/download/1607/1688 https://revistascientificas.cuc.edu.co/ingecuc/article/download/1607/1689 https://revistascientificas.cuc.edu.co/ingecuc/article/download/1607/1690 |
dc.relation.citationedition.spa.fl_str_mv |
Núm. 2 , Año 2017 : (Julio - Diciembre) |
dc.rights.spa.fl_str_mv |
INGE CUC - 2017 |
dc.rights.uri.spa.fl_str_mv |
https://creativecommons.org/licenses/by-nc-sa/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
INGE CUC - 2017 https://creativecommons.org/licenses/by-nc-sa/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.spa.fl_str_mv |
application/pdf image/jpeg application/vnd.openxmlformats-officedocument.spreadsheetml.sheet image/jpeg image/jpeg image/jpeg image/jpeg image/jpeg image/jpeg application/vnd.openxmlformats-officedocument.wordprocessingml.document application/vnd.openxmlformats-officedocument.wordprocessingml.document application/vnd.openxmlformats-officedocument.wordprocessingml.document |
dc.publisher.spa.fl_str_mv |
Universidad de la Costa |
dc.source.spa.fl_str_mv |
https://revistascientificas.cuc.edu.co/ingecuc/article/view/1607 |
institution |
Corporación Universidad de la Costa |
bitstream.url.fl_str_mv |
https://repositorio.cuc.edu.co/bitstreams/c080b990-6497-46e6-b9e6-0e1bf0a3585a/download |
bitstream.checksum.fl_str_mv |
e86fe0a81cfa237f93fb24d6459b9a69 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad de la Costa CUC |
repository.mail.fl_str_mv |
repdigital@cuc.edu.co |
_version_ |
1811760758329966592 |
spelling |
Barón Parra, Mónica LorenaTriana Gómez, Max Alejandro2017-06-28 00:00:002024-04-09T20:14:38Z2017-06-28 00:00:002024-04-09T20:14:38Z2017-06-280122-6517https://hdl.handle.net/11323/12167https://doi.org/10.17981/ingecuc.13.2.2017.0910.17981/ingecuc.13.2.2017.092382-4700Introducción: La causa principal del calentamiento global se debe al aumento de los gases de efecto invernadero que se han producido desde la revolución industrial. Se conoce que el dióxido de carbono (CO2) es el segundo gas que más aporta a esta problemática y que los bosques actúan como depósitos de carbono. De esta forma, los programas de reducción de emisiones por deforestación y degradación (REDD+) son un mecanismo de mitigación y adaptación al cambio climático; uno de sus propósitos es estimar la captura del carbono forestal.Objetivo: Estimar el contenido de biomasa aérea y de carbono almacenado en el ecosistema y, así mismo, en las diez especies con mayor índice de valor de importancia (IVI), conocer cuál es la especie con mayor reserva de carbono y conocer si existen diferencias significativas en las variables estructurales de las especies.Metodología: Las estimaciones de biomasa se realizaron mediante el método indirecto utilizando nueve ecuaciones alométricas que realizan esta estimación en función del diámetro a la altura del pecho (≥10 cm a 1.30 m) y la altura total. El carbono almacenado se calculó tomando el 50% de la biomasa estimada.Resultados: Para el ecosistema se estimaron 465,41 t/0.05 ha de biomasa aérea y 232,70 t/0.05 ha de carbono almacenado. La especie con el valor más alto de biomasa y carbono fue Anacardium excelsum.Conclusiones: Las diez especies con mayor IVI representan el 93,72% de la biomasa total del ecosistema; la más importante representa el 18,23% estando relacionado con las variables estructurales de la vegetación como el área basal y la altura total. Introduction: The main cause of global warming is the increase of greenhouse gases since the industrial revolution; taking into account that carbon dioxide (CO2) is the second bigger contributor to this problem; and that the forests act as reservoirs of carbon. The reduction of emissions by degradation programs (REDD +) is a mechanism of mitigation and adaptation to climate change, one of its objectives is to estimate the capture of forest carbon.Objective: This article aims to estimate the content of aerial biomass and stored carbon in the ecosystem, as well as in the ten species with the highest importance value index (IVI). This in order to know what is the species with the largest reserve of carbon and see whether there are differences in the structural variables of the species.Methodology: The biomass estimations were made using an indirect method with nine allometric equations that estimate according to the diameter at breast height (10 cm to 1.30 m) and the total height. The carbon stored is calculated by taking the 50% of the estimated biomass.Results: A value of 465.41 t/0.05 ha of aerial biomass and 232.70 t/0.05 ha of carbon stored were estimated for the ecosystem. The species with the highest value of biomass and carbon was Anacardium Excelsum.Conclusions: The ten species with the highest IVI represent 93.72% of the total biomass of the ecosystem, the most important represents the 18.23%, is related to the structural variables of the vegetation such as the basal area and the total height.application/pdfimage/jpegapplication/vnd.openxmlformats-officedocument.spreadsheetml.sheetimage/jpegimage/jpegimage/jpegimage/jpegimage/jpegimage/jpegapplication/vnd.openxmlformats-officedocument.wordprocessingml.documentapplication/vnd.openxmlformats-officedocument.wordprocessingml.documentapplication/vnd.openxmlformats-officedocument.wordprocessingml.documentspaUniversidad de la CostaINGE CUC - 2017https://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2https://revistascientificas.cuc.edu.co/ingecuc/article/view/1607Global warmingbiomassforest carbonAllometric equationsIVIStructural variablesCalentamiento globalcarbono forestalecuaciones alométricasIVIvariables estructuralesEstimación de la Biomasa y Carbono almacenado en la cobertura arbórea de la región del Carare - Opón (Santander)Biomass and Stored Carbon estimation in the tree cover of the Carare - Opón Region (Santander, Colombia)Artículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articleJournal articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85Inge CucF. Castro, “Cambio climático y protocolo de Kioto. Ciencia y Estrategias. Compromisos para España,” Rev. Esp. Salud Pública, vol. 7, núm. 2, pp. 191–210, marzo-abril, 2005. [En línea]. Disponible en: http://www.redalyc.org/pdf/170/17079209.pdfA. Yepes-Mayorga, “Cambio Climático: estrategias de gestión con el tiempo en contra...,” Orinoquia, vol. 16, núm. 1, pp. 77–92, 2012. [En línea]. Disponible en: http://www.scielo.org.co/pdf/rori/v16n1/v16n1a09.pdfJ. A. Benjamín y O. Masera, “Captura de carbono ante el cambio climático,” Madera y Bosques, vol. 7, núm. 1, pp. 3–12, 2001. [En línea]. Disponible en: http://www.redalyc.org/pdf/617/61770102.pdfF. Estenssoro, “Crisis ambiental y cambio climático en la política global: Un tema crecientemente complejo para América Latina,” Universum, vol. 2, núm. 25, pp.57–77, julio, 2010. [En línea]. Disponible en: https://doi.org/10.4067/S0718-23762010000200005FAO, “Los bosques y el cambio climático. La gestión forestal es fundamental para afrontar el cambio climático,”2006. [En línea]. Disponible en: http://www.fao.org/Newsroom/es/focus/2006/1000247/index.htmlB. Schlegel, “Estimación de la biomasa y carbono en bosques del tipo forestal siempre verde,” Presentando en SIMMCCEF, Chile, octubre, 2001. [En línea]. Disponible en: https://www.uach.cl/procarbono/pdf/simposio_carbono/45_schlegel.PDFA. Vargas-Mena y A. Sandoval. (2004, Enero). “La captura de carbono en bosques: ¿una herramienta para la gestión ambiental?,” Gac. Ecológica, vol. 1, núm. 70, pp. 5–18. [En línea]. Disponible en: http://www.redalyc.org/pdf/539/53907001.pdfM. G. Pece, C. Gaillard, M. Galíndez y M. Acosta, “Bosques y forestaciones como sumideros de carbono en el parque chaqueño,” Presentado en FCF-UNSE, 2000. [En línea]. Disponible en: http://fcf.unse.edu.ar/eventos/2-jornadas-forestales/pdfs/Bosques%20y%20forestaciones%20como%20sumideros%20de%20carbono%20en%20el%20parque%20chaqueno.pdfA. Vásquez y H. Arellano, “Estructura, Biomasa Aérea y Carbono Almacenado en los Bosques del Sur y Noroccidente de Córdoba,” Colomb. Divers. Biótica XII. La región Caribe Colomb., pp. 963–1009, 2012 [En línea]. Disponible en: https://arxiv.org/ftp/arxiv/papers/1208/1208.0248.pdfA. M. Aldana, B. Villanueva, A. Cano, D. F. Correa, M. N. Umaña, L. F. Casas, S. Cárdenas, L. F. Henao-Díaz y P. R. Stevenson (2017) “Drivers of biomass stocks in Northwestern South American forests: Contributing new information on the Neotropics”. Forest Ecology and Management, vol. 389, pp. 86–95, 2017. [En línea]. Disponible en: http://dx.doi.org/10.1016/j.foreco.2016.12.023Banco Mundial, “Por qué los bosques son fundamentales para el clima, el agua, la salud y los medios de subsistencia,” marzo 2016. [En línea]. Disponible en: http://www.bancomundial.org/es/news/feature/2016/03/18/whyforests-are-key-to-climate-water-health-and-livelihoodsFAO, “La gestión de los bosques ante el cambio climático,” 2010. [En línea]. Disponible en: http://www.fao.org/docrep/014/i1960s/i1960s00.pdfE. Mattsson, M. Ostwald, G. Wallin y S. P. Nissanka, “Heterogeneity and assessment uncertainties in forest characteristics and biomass carbon stocks: Important considerations for climate mitigation policies,” Land use policy, vol. 59, pp. 84–94, agosto 2016. [En línea]. Disponible en: http://www.sciencedirect.com/science/article/pii/S0264837716308766C. R. Sanquetta, A. P. Dalla Corte y G. C. Benedet Maas, “El rol del bosque en el cambio climático,” Quebracho (Santiago del Estero), vol. 19, núm. 2, pp. 84–96, diciembre 2011. [En línea]. Disponible en: http://www.sciencedirect.com/science/article/pii/S0264837716308766S. W. Chou y E. E. Gutierrez-Espeleta. (). “Equation for estimating tree biomass in tropical forests of Costa Rica,” Teconología en marcha, vol. 26, núm. 2, pp. 41–54, septiembre 2012. [En línea]. Disponible en: https://dialnet.unirioja.es/descarga/articulo/4835699.pdfC. B. Field et. al. “Cambio climático 2014 Impactos, adaptación y vulnerabilidad.” 2014. [En línea]. https://www.ipcc.ch/pdf/assessment-report/ar5/wg2/ar5_wgII_spm_es.pdfJ. F. Phillips et al., “Estimación de las reservas actuales (2010) de carbono almacenadas en la biomasa aérea en bosques naturales de Colombia,” octubre, 2010. [En línea]. Disponible en: http://documentacion.ideam.gov.co/openbiblio/bvirtual/022100/EstimaciondelasReservas2010.pdfT. Le Toan et al., “The BIOMASS mission: Mapping global forest biomass to better understand the terrestrial carbon cycle,” Remote Sens. Environ., vol. 115, núm. 11, pp. 2850–2860, 2011. [En línea]. Disponible en: https://doi.org/10.1016/j.rse.2011.03.020A. Yepes-Quintero, A., Duque-Montoya A. J., Navarrete-Encinales D., Phillips-Bernal, J., Cabrera-Montenegro, E., Corrales-Osorio et al., “Estimación de las Reservas y Pérdidas de Carbono por Deforestación en los Bosques del Departamento de Antioquia, Colombia,” Actual. Biológicas, vol. 33, núm. 95, pp. 193–208, 2011. [En línea]. Disponible en: http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0304-35842011000200005&lng=es&tlng=esR. Franco y J. M. Rodríguez, “Análisis multitemporal satelital de los bosques del Carare - Opón, mediante imágenes landsat de 1991 y 2002,” Colomb. For., vol. 9, núm. 18, pp. 157–162, 2005. [En línea]. Disponible en: http://revistas.udistrital.edu.co/ojs/index.php/colfor/article/view/3054H. J. Gutiérrez Rey, “Aproximación a un modelo para la evaluación de la vulnerabilidad de las coberturas vegetales de Colombia ante un posible cambio climático utilizando Sistemas de Información Geografica SIG con énfasis en la vulnerabilidad de las coberturas nival y de páramo de Colombia,” Páramos y Ecosistemas Alto Andin. Colomb. en Condición HotSpot Glob. Clim. Tensor, vol. 6, pp. 335–377, 2002. [En línea]. Disponible en: http://documentacion.ideam.gov.co/openbiblio/bvirtual/000689/Capitulo5.pdfA. N. Djomo, A. Ibrahima, J. Saborowski y G. Gravenhorst, “Allometric equations for biomass estimations in Cameroon and pan moist tropical equations including biomass data from Africa,” For. Ecol. Manage, vol. 260, núm. 10, pp. 1873–1885, 2010. [En línea]. Disponible en: http://dx.doi.org/10.1016/j.foreco.2010.08.034H. Quinto-Mosquera y F. Moreno, “Dinámica de la Biomasa Aérea en un Bosque Pluvial Tropical del Chocó Biogeográfico,” Rev. Fac. Nac. Agron. – Medellín, vol. 64, núm. 1, pp. 5917–5936, 2011. [En línea]. Disponible en: https://revistas.unal.edu.co/index.php/refame/article/view/26399/37133M. Segura y M. Kanninen, “Allometric Models for Tree Volume and Total Aboveground Biomass in a Tropical Humid Forest in Costa Rica,” Biotropic, vol. 37, núm. 1, pp. 2–8, 2005. [En línea]. Disponible en: https://doi.org/10.1111/j.1744-7429.2005.02027.xJ. R. Me Chave, B. R. Ra y M.-A. Dubois, “Estimation of biomass in a neotropical forest of French Guiana: spatial and temporal variability,” J. Trop. Ecol. vol. 17, pp. 79 – 96, 2011. [En línea]. Disponible en: https://doi.org/10.1017/S0266467401001055B. Huy, K. P. Poudel y H. Temesgen, “Aboveground biomass equations for evergreen broadleaf forests in South Central Coastal ecoregion of Viet Nam: Selection of ecoregional or pantropical models,” For. Ecol. Manage., vol. 376, pp. 276–283, 2016. [En línea]. Disponible en: https://doi.org/10.1017/S0266467401001055C. A. Sierra et al., “Total carbon stocks in a tropical forest landscape of the Porce region, Colombia,” For. Ecol. Manage., vol. 243, núms. 2–3, pp. 299–309, 2007. [En línea]. Disponible en: http://www.sciencedirect.com/science/article/pii/S0378112707002411N. Chan, S. Takeda, R. Suzuki y S. Yamamoto, “Establishment of allometric models and estimation of biomass recovery of swidden cultivation fallows in mixed deciduous forests of the Bago Mountains, Myanmar,” For. Ecol. Manage., vol. 304, pp. 427–436, 2013. [En línea]. Disponible en: http://dx.doi.org/10.1016/j.foreco.2013.05.038H. Quinto-Mosquera y F. Moreno, “Dinámica de la Biomasa Aérea en un Bosque Pluvial Tropical del Chocó Biogeográfico,” Rev. Fac. Nac. Agron. – Medellín, vol. 64, núm. 1, pp. 5917–5936, 2011. [En línea]. Disponible en: https://revistas.unal.edu.co/index.php/refame/article/view/26399/37133E. Álvarez et al., “Tree above-ground biomass allometries for carbon stocks estimation in the natural forests of Colombia,” For. Ecol. Manage., vol. 267, pp. 297–308, 2012. [En línea]. Disponible en: http://dx.doi.org/10.1016/j.foreco.2011.12.013S. M. Stas, E. Rutishauser, J. Chave, N. P. R. Anten y Y. Laumonier, “Estimating the aboveground biomass I, an old secondary forest on limestone in the Moluccas, Indonesia: Comparing locally developed versus existing allometric models,” For. Ecol. Manage., vol. 389, pp. 27–34, 2017. [En línea]. Disponible en: http://dx.doi.org/10.1016/j.foreco.2016.12.010A. Ngomanda et al., “Site-specific versus pantropical allometric equations: Which option to estimate the biomass of a moist central African forest?,” For. Ecol. Manage., vol. 312, pp. 1–9, 2014. [En línea]. Disponible en: http://dx.doi.org/10.1016/j.foreco.2013.10.029A. M. Aldana et al., “Drivers of biomass stocks in Northwestern South American forests: Contributing new information on the Neotropics,” For. Ecol. Manage., vol. 389, pp. 86–95, 2017. [En línea]. Disponible en: http://dx.doi.org/10.1016/j.foreco.2016.12.023A. N. Djomo, A. Knohl y G. Gravenhorst, “Estimations of total ecosystem carbon pools distribution and carbon biomass current annual increment of a moist tropical forest,” For. Ecol. Manage., vol. 261, núm. 8, pp. 1448–1459, 2011. [En línea]. Disponible en: http://dx.doi.org/10.1016/j.foreco.2011.01.031S. K. Behera, N. Sahu, A. K. Mishra, S. S. Bargali, M. D. Behera y R. Tuli, “Aboveground biomass and carbon stock assessment in Indian tropical deciduous forest and relationship with stand structural attributes,” Ecol. Eng., vol. 99, pp. 513–524, 2017. [En línea]. Disponible en: http://dx.doi.org/10.1016/j.ecoleng.2016.11.046A. N. Djomo y C. D. Chimi, “Tree allometric equations for estimation of above, below and total biomass in a tropical moist forest: Case study with application to remote sensing,” For. Ecol. Manage., vol. 391, pp. 184–193, 2017. [En línea]. Disponible en: http://dx.doi.org/10.1016/j.foreco.2017.02.022J. Pelletier, K. R. Kirby y C. Potvin, “Significance of carbon stock uncertainties on emission reductions from deforestation and forest degradation in developing countries,” For. Policy Econ., vol. 24, pp. 3–11, 2012. [En línea]. Disponible en: https://doi.org/10.1016/j.forpol.2010.05.005S. G. de Godoi et al., “The conversion of grassland to acacia forest as an effective option for net reduction in greenhouse gas emissions,” J. Environ. Manage., vol. 169, pp. 91–102, 2016. [En línea]. Disponible en: https://doi.org/10.1016/j.jenvman.2015.11.057M. Ibrahim y J. Mora, Potencialidades de los sistemas silvopastoriles para la generación de servicios ambientales: memorias de una conferencia electrónica realizada entre septiembre y diciembre del 2001, Turrialba, Costa Rica, 2006 [En línea]. Disponible en: http://www.flacsoandes.edu.ec/libros/124741-opacH. Quinto, J. Cuesta, I. J. Mosquera, L. Palacios y H. Peñaloza, “Biomasa vegetal en zonas degradadas por minería en un bosque pluvial tropical del Chocó Biogeográfico,” Biodivers. Neotrop., vol. 3, núm. 1, pp. 53–64, 2013. [En línea]. Disponible en: http://dx.doi.org/10.18636/bioneotropical.v3i1.127R. Sikkema, M. Junginger, P. McFarlane y A. Faaij, “The GHG contribution of the cascaded use of harvested wood products in comparison with the use of wood for energy-A case study on available forest resources in Canada,” Environ. Sci. Policy, vol. 31, pp. 96–108, 2013 [En línea]. Disponible en: https://doi.org/10.1016/j.envsci.2013.03.007A. Thakur, C. E. Canter y A. Kumar, “Life-cycle energy and emission analysis of power generation from forest biomass,” Appl. Energy, vol. 128, pp. 246–253, 2014. [En línea]. Disponible en: http://dx.doi.org/10.1016/j.apenergy.2014.04.085M. Röder, C. Whittaker y P. Thornley, “How certain are greenhouse gas reductions from bioenergy? Life cycle assessment and uncertainty analysis of wood pellet-toelectricity supply chains from forest residues,” Biomass and Bioenergy, vol. 79, pp. 50–63, 2015. [En línea]. Disponible en: http://dx.doi.org/10.1016/j.biombioe.2015.03.030Y. Weldemichael y G. Assefa, “Assessing the energy production and GHG (greenhouse gas) emissions mitigation potential of biomass resources for Alberta,” J. Clean. Prod., vol. 112, pp. 4257–4264, 2015. [En línea]. Disponible en: http://dx.doi.org/10.1016/j.jclepro.2015.08.1189484213https://revistascientificas.cuc.edu.co/ingecuc/article/download/1607/Bar%C3%B3n%20Parra%20Mhttps://revistascientificas.cuc.edu.co/ingecuc/article/download/1607/1680https://revistascientificas.cuc.edu.co/ingecuc/article/download/1607/1681https://revistascientificas.cuc.edu.co/ingecuc/article/download/1607/1682https://revistascientificas.cuc.edu.co/ingecuc/article/download/1607/1683https://revistascientificas.cuc.edu.co/ingecuc/article/download/1607/1684https://revistascientificas.cuc.edu.co/ingecuc/article/download/1607/1685https://revistascientificas.cuc.edu.co/ingecuc/article/download/1607/1686https://revistascientificas.cuc.edu.co/ingecuc/article/download/1607/1687https://revistascientificas.cuc.edu.co/ingecuc/article/download/1607/1688https://revistascientificas.cuc.edu.co/ingecuc/article/download/1607/1689https://revistascientificas.cuc.edu.co/ingecuc/article/download/1607/1690Núm. 2 , Año 2017 : (Julio - Diciembre)PublicationOREORE.xmltext/xml2786https://repositorio.cuc.edu.co/bitstreams/c080b990-6497-46e6-b9e6-0e1bf0a3585a/downloade86fe0a81cfa237f93fb24d6459b9a69MD5111323/12167oai:repositorio.cuc.edu.co:11323/121672024-09-17 11:00:26.227https://creativecommons.org/licenses/by-nc-sa/4.0/INGE CUC - 2017metadata.onlyhttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.co |