Thermal and exergetic analysis of the Goswami cycle integrated with mid-grade heat sources

This paper presents a theoretical investigation of a combined Power and Cooling Cycle that employs an Ammonia-Water mixture. The cycle combines a Rankine and an absorption refrigeration cycle. The Goswami cycle can be used in a wide range of applications including recovering waste heat as a bottomin...

Full description

Autores:
Demirkaya, Gökmen
Vasquez Padilla, Ricardo
Fontalvo Lascano, Armando Enrique
Lake, Maree
Lim, Yee Yan
Tipo de recurso:
Article of journal
Fecha de publicación:
2017
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/1634
Acceso en línea:
https://hdl.handle.net/11323/1634
https://repositorio.cuc.edu.co/
Palabra clave:
Ammonia-water mixture
Goswami cycle
Low-temperature cycle
Power and cooling
Rights
openAccess
License
Atribución – No comercial – Compartir igual
id RCUC2_7e746d241650c91ff3db1a1a06328070
oai_identifier_str oai:repositorio.cuc.edu.co:11323/1634
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.eng.fl_str_mv Thermal and exergetic analysis of the Goswami cycle integrated with mid-grade heat sources
title Thermal and exergetic analysis of the Goswami cycle integrated with mid-grade heat sources
spellingShingle Thermal and exergetic analysis of the Goswami cycle integrated with mid-grade heat sources
Ammonia-water mixture
Goswami cycle
Low-temperature cycle
Power and cooling
title_short Thermal and exergetic analysis of the Goswami cycle integrated with mid-grade heat sources
title_full Thermal and exergetic analysis of the Goswami cycle integrated with mid-grade heat sources
title_fullStr Thermal and exergetic analysis of the Goswami cycle integrated with mid-grade heat sources
title_full_unstemmed Thermal and exergetic analysis of the Goswami cycle integrated with mid-grade heat sources
title_sort Thermal and exergetic analysis of the Goswami cycle integrated with mid-grade heat sources
dc.creator.fl_str_mv Demirkaya, Gökmen
Vasquez Padilla, Ricardo
Fontalvo Lascano, Armando Enrique
Lake, Maree
Lim, Yee Yan
dc.contributor.author.spa.fl_str_mv Demirkaya, Gökmen
Vasquez Padilla, Ricardo
Fontalvo Lascano, Armando Enrique
Lake, Maree
Lim, Yee Yan
dc.subject.eng.fl_str_mv Ammonia-water mixture
Goswami cycle
Low-temperature cycle
Power and cooling
topic Ammonia-water mixture
Goswami cycle
Low-temperature cycle
Power and cooling
description This paper presents a theoretical investigation of a combined Power and Cooling Cycle that employs an Ammonia-Water mixture. The cycle combines a Rankine and an absorption refrigeration cycle. The Goswami cycle can be used in a wide range of applications including recovering waste heat as a bottoming cycle or generating power from non-conventional sources like solar radiation or geothermal energy. A thermodynamic study of power and cooling co-generation is presented for heat source temperatures between 100 to 350 °C. A comprehensive analysis of the effect of several operation and configuration parameters, including the number of turbine stages and different superheating configurations, on the power output and the thermal and exergy efficiencies was conducted. Results showed the Goswami cycle can operate at an effective exergy efficiency of 60-80% with thermal efficiencies between 25 to 31%. The investigation also showed that multiple stage turbines had a better performance than single stage turbines when heat source temperatures remain above 200 °C in terms of power, thermal and exergy efficiencies. However, the effect of turbine stages is almost the same when heat source temperatures were below 175 °C. For multiple turbine stages, the use of partial superheating with Single or Double Reheat stream showed a better performance in terms of efficiency. It also showed an increase in exergy destruction when heat source temperature was increased.
publishDate 2017
dc.date.issued.none.fl_str_mv 2017-08-14
dc.date.accessioned.none.fl_str_mv 2018-11-21T15:00:53Z
dc.date.available.none.fl_str_mv 2018-11-21T15:00:53Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_6501
status_str acceptedVersion
dc.identifier.issn.spa.fl_str_mv 10994300
dc.identifier.uri.spa.fl_str_mv https://hdl.handle.net/11323/1634
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
identifier_str_mv 10994300
Corporación Universidad de la Costa
REDICUC - Repositorio CUC
url https://hdl.handle.net/11323/1634
https://repositorio.cuc.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.rights.spa.fl_str_mv Atribución – No comercial – Compartir igual
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Atribución – No comercial – Compartir igual
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.publisher.spa.fl_str_mv Entropy
institution Corporación Universidad de la Costa
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/9e84e0e8-989f-48b3-8226-3a95a54e86d6/download
https://repositorio.cuc.edu.co/bitstreams/0b271f7c-0b03-428a-b7ae-aa689278b75d/download
https://repositorio.cuc.edu.co/bitstreams/284a7b29-8eed-4b30-9043-c8abff0af7ac/download
https://repositorio.cuc.edu.co/bitstreams/3cf830d0-756f-4e4c-be60-77b6f78c37ef/download
bitstream.checksum.fl_str_mv f207c5ae7ad4c75b008da5c8f51e2409
8a4605be74aa9ea9d79846c1fba20a33
4efc48925af5630ce25a41c1cd69da82
420d8115145807073c2c35eae2368121
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1811760822395863040
spelling Demirkaya, GökmenVasquez Padilla, RicardoFontalvo Lascano, Armando EnriqueLake, MareeLim, Yee Yan2018-11-21T15:00:53Z2018-11-21T15:00:53Z2017-08-1410994300https://hdl.handle.net/11323/1634Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/This paper presents a theoretical investigation of a combined Power and Cooling Cycle that employs an Ammonia-Water mixture. The cycle combines a Rankine and an absorption refrigeration cycle. The Goswami cycle can be used in a wide range of applications including recovering waste heat as a bottoming cycle or generating power from non-conventional sources like solar radiation or geothermal energy. A thermodynamic study of power and cooling co-generation is presented for heat source temperatures between 100 to 350 °C. A comprehensive analysis of the effect of several operation and configuration parameters, including the number of turbine stages and different superheating configurations, on the power output and the thermal and exergy efficiencies was conducted. Results showed the Goswami cycle can operate at an effective exergy efficiency of 60-80% with thermal efficiencies between 25 to 31%. The investigation also showed that multiple stage turbines had a better performance than single stage turbines when heat source temperatures remain above 200 °C in terms of power, thermal and exergy efficiencies. However, the effect of turbine stages is almost the same when heat source temperatures were below 175 °C. For multiple turbine stages, the use of partial superheating with Single or Double Reheat stream showed a better performance in terms of efficiency. It also showed an increase in exergy destruction when heat source temperature was increased.Demirkaya, Gökmen-34995816-baf0-4930-b451-6e94cfd764fd-600Vasquez Padilla, Ricardo-a5f77ef8-b26e-4957-9a56-850ae1bd5825-600Fontalvo Lascano, Armando Enrique-71be8473-b34a-4a34-b6cc-ecaa01735bbb-600Lake, Maree-cb2d9f19-21df-4c98-a607-3df87205ccb6-600Lim, Yee Yan-2c54f01f-0495-4bf2-a675-fe660887c70a-600engEntropyAtribución – No comercial – Compartir igualinfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Ammonia-water mixtureGoswami cycleLow-temperature cyclePower and coolingThermal and exergetic analysis of the Goswami cycle integrated with mid-grade heat sourcesArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersionPublicationORIGINALThermal and Exergetic Analysis of the Goswami.pdfThermal and Exergetic Analysis of the Goswami.pdfapplication/pdf1073945https://repositorio.cuc.edu.co/bitstreams/9e84e0e8-989f-48b3-8226-3a95a54e86d6/downloadf207c5ae7ad4c75b008da5c8f51e2409MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.cuc.edu.co/bitstreams/0b271f7c-0b03-428a-b7ae-aa689278b75d/download8a4605be74aa9ea9d79846c1fba20a33MD52THUMBNAILThermal and Exergetic Analysis of the Goswami.pdf.jpgThermal and Exergetic Analysis of the Goswami.pdf.jpgimage/jpeg69719https://repositorio.cuc.edu.co/bitstreams/284a7b29-8eed-4b30-9043-c8abff0af7ac/download4efc48925af5630ce25a41c1cd69da82MD54TEXTThermal and Exergetic Analysis of the Goswami.pdf.txtThermal and Exergetic Analysis of the Goswami.pdf.txttext/plain71930https://repositorio.cuc.edu.co/bitstreams/3cf830d0-756f-4e4c-be60-77b6f78c37ef/download420d8115145807073c2c35eae2368121MD5511323/1634oai:repositorio.cuc.edu.co:11323/16342024-09-17 14:05:20.353open.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=