Unsupervised learning algorithms applied to grouping problems

One of the tasks of great interest within process mining is the discovery of business process models, which consists of using an event log as input and producing a business process model by analyzing the data contained in the log and applying a process mining method, task and/or technique. The disco...

Full description

Autores:
amelec, viloria
Lizardo Zelaya, Nelson Alberto
Varela, Noel
Tipo de recurso:
Article of journal
Fecha de publicación:
2020
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/7654
Acceso en línea:
https://hdl.handle.net/11323/7654
https://doi.org/10.1016/j.procs.2020.07.099
https://repositorio.cuc.edu.co/
Palabra clave:
Trace grouping
Data mining
Unsupervised learning techniques
Rights
openAccess
License
CC0 1.0 Universal
id RCUC2_7dd0b8d59e9d9796cd33ffec678b819e
oai_identifier_str oai:repositorio.cuc.edu.co:11323/7654
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.spa.fl_str_mv Unsupervised learning algorithms applied to grouping problems
title Unsupervised learning algorithms applied to grouping problems
spellingShingle Unsupervised learning algorithms applied to grouping problems
Trace grouping
Data mining
Unsupervised learning techniques
title_short Unsupervised learning algorithms applied to grouping problems
title_full Unsupervised learning algorithms applied to grouping problems
title_fullStr Unsupervised learning algorithms applied to grouping problems
title_full_unstemmed Unsupervised learning algorithms applied to grouping problems
title_sort Unsupervised learning algorithms applied to grouping problems
dc.creator.fl_str_mv amelec, viloria
Lizardo Zelaya, Nelson Alberto
Varela, Noel
dc.contributor.author.spa.fl_str_mv amelec, viloria
Lizardo Zelaya, Nelson Alberto
Varela, Noel
dc.subject.spa.fl_str_mv Trace grouping
Data mining
Unsupervised learning techniques
topic Trace grouping
Data mining
Unsupervised learning techniques
description One of the tasks of great interest within process mining is the discovery of business process models, which consists of using an event log as input and producing a business process model by analyzing the data contained in the log and applying a process mining method, task and/or technique. The discovery allows the identification of the behaviors contained in the cases of the event log in order to detect possible deviations and/or validate that the business process is executed according to the business requirements. This paper presents an approach based on unsupervised learning techniques for the grouping of traces to generate simpler and more understandable models. The algorithms implemented for clustering are K-means, hierarchical agglomerative and density-based spatial clustering of applications with noise (DBSCAN).
publishDate 2020
dc.date.issued.none.fl_str_mv 2020
dc.date.accessioned.none.fl_str_mv 2021-01-04T21:16:37Z
dc.date.available.none.fl_str_mv 2021-01-04T21:16:37Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_6501
status_str acceptedVersion
dc.identifier.issn.spa.fl_str_mv 1877-0509
dc.identifier.uri.spa.fl_str_mv https://hdl.handle.net/11323/7654
dc.identifier.doi.spa.fl_str_mv https://doi.org/10.1016/j.procs.2020.07.099
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
identifier_str_mv 1877-0509
Corporación Universidad de la Costa
REDICUC - Repositorio CUC
url https://hdl.handle.net/11323/7654
https://doi.org/10.1016/j.procs.2020.07.099
https://repositorio.cuc.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.references.spa.fl_str_mv [1] Celebi, M. E., & Aydin, K. (Eds.). (2016). Unsupervised learning algorithms (Vol. 9, p. 103). Springer.
[2] Albert, S., Teletin, M., & Czibula, G. (2018). Analysing protein data using unsupervised learning techniques. Int. J. Innovative Comput. Inf. Control, 14(3), 861-880.
[3] Suominen, A., Toivanen, H., & Seppänen, M. (2017). Firms' knowledge profiles: Mapping patent data with unsupervised learning. Technological Forecasting and Social Change, 115, 131-142.
[4] Banerjee, N., Giannetsos, T., Panaousis, E., & Took, C. C. (2018, July). Unsupervised learning for trustworthy IoT. In 2018 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE) (pp. 1-8). IEEE.
[5] Ge, Z., Song, Z., Ding, S. X., & Huang, B. (2017). Data mining and analytics in the process industry: The role of machine learning. Ieee Access, 5, 20590-20616.
[6] Chauhan, R., Kaur, H., & Puri, R. (2017). An Empirical Analysis of Unsupervised Learning Approach on Medical Databases. In Emerging Trends in Electrical, Communications and Information Technologies (pp. 63-70). Springer, Singapore.
[7] Srinivas, C., & Rao, C. G. (2019, June). A novel approach for unsupervised learning of software components. In Proceedings of the 5th International Conference on Engineering and MIS (1-6).
[8] Fu, W., & Menzies, T. (2017, August). Revisiting unsupervised learning for defect prediction. In Proceedings of the 2017 11th Joint Meeting on Foundations of Software Engineering (pp. 72-83).
[9] Packianather, M. S., Davies, A., Harraden, S., Soman, S., & White, J. (2017). Data mining techniques applied to a manufacturing SME. Procedia CIRP, 62, 123-128.
[10] Bokhari, S. M. A., & Khan, S. A. (2016). Applying Supervised and Unsupervised Learning Techniques on Dental Patients’ Records. In Emerging Trends and Advanced Technologies for Computational Intelligence (pp. 83-102). Springer, Cham.
[11] Unnisa, M., Ameen, A., Raziuddin, S. (2016). Opinion mining on twitter data using unsupervised learning technique. International Journal of Computer Applications, 148(12), 975-8887.
[12] Henkel, J., Lahiri, S. K., Liblit, B., & Reps, T. (2019). Enabling Open-World Specification Mining via Unsupervised Learning. arXiv preprint arXiv:1904.12098.
[13] Viloria, A., Guerrero, I. M., Caraballo, H. M., Llinas, N. O., Valero, L., Palma, H. H., … Lezama, O. B. P. (2019). Effect on the demand and stock returns: Cross-sectional of big data and time-series analysis. In Communications in Computer and Information Science (Vol. 1122 CCIS, pp. 211–220). Springer. https://doi.org/10.1007/978-981-15-1301-5_17.
[14] Tax, N., Sidorova, N., Haakma, R., & van der Aalst, W. M. (2016, September). Event abstraction for process mining using supervised learning techniques. In Proceedings of SAI Intelligent Systems Conference (pp. 251-269). Springer, Cham.
[15] Viloria, A., Angulo, M. G., Kamatkar, S. J., de la Hoz – Hernandez, J., Guiliany, J. G., Bilbao, O. R., & Hernandez-P, H. (2020). Prediction Rules in E-Learning Systems Using Genetic Programming. In Smart Innovation, Systems and Technologies (Vol. 164, pp. 55–63). Springer. https://doi.org/10.1007/978-981-32-9889-7_5
dc.rights.spa.fl_str_mv CC0 1.0 Universal
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/publicdomain/zero/1.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv CC0 1.0 Universal
http://creativecommons.org/publicdomain/zero/1.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Corporación Universidad de la Costa
dc.source.spa.fl_str_mv Procedia Computer Science
institution Corporación Universidad de la Costa
dc.source.url.spa.fl_str_mv https://www.sciencedirect.com/science/article/pii/S1877050920317993
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/2ef1cd93-3a62-4281-b403-13647e8a22b4/download
https://repositorio.cuc.edu.co/bitstreams/bb36df1c-f22b-4745-83fa-3f3a8e714791/download
https://repositorio.cuc.edu.co/bitstreams/dbba23ea-1dd4-4dd2-8787-1c0ea7bbb84c/download
https://repositorio.cuc.edu.co/bitstreams/54f21b49-5c55-4d34-9ee6-d12f568a294d/download
https://repositorio.cuc.edu.co/bitstreams/5324b7f7-0ebd-4a58-ac44-5ddd9efdff54/download
bitstream.checksum.fl_str_mv ec4daeaeedd0ccb120225b54175d96f7
42fd4ad1e89814f5e4a476b409eb708c
e30e9215131d99561d40d6b0abbe9bad
0ac19318f09b60f114290f653d0a5566
3579ac6975565de6d0d09cf5a43872e8
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1811760820355334144
spelling amelec, viloriaLizardo Zelaya, Nelson AlbertoVarela, Noel2021-01-04T21:16:37Z2021-01-04T21:16:37Z20201877-0509https://hdl.handle.net/11323/7654https://doi.org/10.1016/j.procs.2020.07.099Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/One of the tasks of great interest within process mining is the discovery of business process models, which consists of using an event log as input and producing a business process model by analyzing the data contained in the log and applying a process mining method, task and/or technique. The discovery allows the identification of the behaviors contained in the cases of the event log in order to detect possible deviations and/or validate that the business process is executed according to the business requirements. This paper presents an approach based on unsupervised learning techniques for the grouping of traces to generate simpler and more understandable models. The algorithms implemented for clustering are K-means, hierarchical agglomerative and density-based spatial clustering of applications with noise (DBSCAN).amelec, viloria-will be generated-orcid-0000-0003-2673-6350-600Lizardo Zelaya, Nelson Alberto-will be generated-orcid-0000-0002-3963-5690-600Varela, Noelapplication/pdfengCorporación Universidad de la CostaCC0 1.0 Universalhttp://creativecommons.org/publicdomain/zero/1.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Procedia Computer Sciencehttps://www.sciencedirect.com/science/article/pii/S1877050920317993Trace groupingData miningUnsupervised learning techniquesUnsupervised learning algorithms applied to grouping problemsArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersion[1] Celebi, M. E., & Aydin, K. (Eds.). (2016). Unsupervised learning algorithms (Vol. 9, p. 103). Springer.[2] Albert, S., Teletin, M., & Czibula, G. (2018). Analysing protein data using unsupervised learning techniques. Int. J. Innovative Comput. Inf. Control, 14(3), 861-880.[3] Suominen, A., Toivanen, H., & Seppänen, M. (2017). Firms' knowledge profiles: Mapping patent data with unsupervised learning. Technological Forecasting and Social Change, 115, 131-142.[4] Banerjee, N., Giannetsos, T., Panaousis, E., & Took, C. C. (2018, July). Unsupervised learning for trustworthy IoT. In 2018 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE) (pp. 1-8). IEEE.[5] Ge, Z., Song, Z., Ding, S. X., & Huang, B. (2017). Data mining and analytics in the process industry: The role of machine learning. Ieee Access, 5, 20590-20616.[6] Chauhan, R., Kaur, H., & Puri, R. (2017). An Empirical Analysis of Unsupervised Learning Approach on Medical Databases. In Emerging Trends in Electrical, Communications and Information Technologies (pp. 63-70). Springer, Singapore.[7] Srinivas, C., & Rao, C. G. (2019, June). A novel approach for unsupervised learning of software components. In Proceedings of the 5th International Conference on Engineering and MIS (1-6).[8] Fu, W., & Menzies, T. (2017, August). Revisiting unsupervised learning for defect prediction. In Proceedings of the 2017 11th Joint Meeting on Foundations of Software Engineering (pp. 72-83).[9] Packianather, M. S., Davies, A., Harraden, S., Soman, S., & White, J. (2017). Data mining techniques applied to a manufacturing SME. Procedia CIRP, 62, 123-128.[10] Bokhari, S. M. A., & Khan, S. A. (2016). Applying Supervised and Unsupervised Learning Techniques on Dental Patients’ Records. In Emerging Trends and Advanced Technologies for Computational Intelligence (pp. 83-102). Springer, Cham.[11] Unnisa, M., Ameen, A., Raziuddin, S. (2016). Opinion mining on twitter data using unsupervised learning technique. International Journal of Computer Applications, 148(12), 975-8887.[12] Henkel, J., Lahiri, S. K., Liblit, B., & Reps, T. (2019). Enabling Open-World Specification Mining via Unsupervised Learning. arXiv preprint arXiv:1904.12098.[13] Viloria, A., Guerrero, I. M., Caraballo, H. M., Llinas, N. O., Valero, L., Palma, H. H., … Lezama, O. B. P. (2019). Effect on the demand and stock returns: Cross-sectional of big data and time-series analysis. In Communications in Computer and Information Science (Vol. 1122 CCIS, pp. 211–220). Springer. https://doi.org/10.1007/978-981-15-1301-5_17.[14] Tax, N., Sidorova, N., Haakma, R., & van der Aalst, W. M. (2016, September). Event abstraction for process mining using supervised learning techniques. In Proceedings of SAI Intelligent Systems Conference (pp. 251-269). Springer, Cham.[15] Viloria, A., Angulo, M. G., Kamatkar, S. J., de la Hoz – Hernandez, J., Guiliany, J. G., Bilbao, O. R., & Hernandez-P, H. (2020). Prediction Rules in E-Learning Systems Using Genetic Programming. In Smart Innovation, Systems and Technologies (Vol. 164, pp. 55–63). Springer. https://doi.org/10.1007/978-981-32-9889-7_5PublicationORIGINALUnsupervised learning algorithms applied to grouping problems.pdfUnsupervised learning algorithms applied to grouping problems.pdfapplication/pdf800013https://repositorio.cuc.edu.co/bitstreams/2ef1cd93-3a62-4281-b403-13647e8a22b4/downloadec4daeaeedd0ccb120225b54175d96f7MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8701https://repositorio.cuc.edu.co/bitstreams/bb36df1c-f22b-4745-83fa-3f3a8e714791/download42fd4ad1e89814f5e4a476b409eb708cMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/dbba23ea-1dd4-4dd2-8787-1c0ea7bbb84c/downloade30e9215131d99561d40d6b0abbe9badMD53THUMBNAILUnsupervised learning algorithms applied to grouping problems.pdf.jpgUnsupervised learning algorithms applied to grouping problems.pdf.jpgimage/jpeg45193https://repositorio.cuc.edu.co/bitstreams/54f21b49-5c55-4d34-9ee6-d12f568a294d/download0ac19318f09b60f114290f653d0a5566MD54TEXTUnsupervised learning algorithms applied to grouping problems.pdf.txtUnsupervised learning algorithms applied to grouping problems.pdf.txttext/plain21742https://repositorio.cuc.edu.co/bitstreams/5324b7f7-0ebd-4a58-ac44-5ddd9efdff54/download3579ac6975565de6d0d09cf5a43872e8MD5511323/7654oai:repositorio.cuc.edu.co:11323/76542024-09-17 12:50:25.823http://creativecommons.org/publicdomain/zero/1.0/CC0 1.0 Universalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA==