Assessment of carwash wastewater reclamation potential based on household water treatment technologies

This paper assesses a bench-scale carwash wastewater treatment system's removal efficiency based on coagulation-flocculation and a household-type activated carbon filter and water ozonator. For the experiment, the wastewater that went through an oil/water separator (OWS) from a medium-sized car...

Full description

Autores:
Canales, Fausto
Plata-Solano, Diego
Cantero Rodelo, Ruben Dario
Ávila Pereira, Yoleimy
Díaz-Martínez, Karina
Carpintero Durango, Javier Andrés
Kaźmierczak, Bartosz
Tavera-Quiroz, Humberto
Tipo de recurso:
Article of journal
Fecha de publicación:
2021
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/9068
Acceso en línea:
https://hdl.handle.net/11323/9068
https://doi.org/10.1016/j.wri.2021.100164
https://repositorio.cuc.edu.co/
Palabra clave:
Water reclamation
Wastewater reuse
Carwash
Ozonation
Activated carbon
Rights
openAccess
License
© 2021 The Authors. Published by Elsevier B.V
id RCUC2_7dcc88d3cad10adf0e489de2d3bd9574
oai_identifier_str oai:repositorio.cuc.edu.co:11323/9068
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.eng.fl_str_mv Assessment of carwash wastewater reclamation potential based on household water treatment technologies
title Assessment of carwash wastewater reclamation potential based on household water treatment technologies
spellingShingle Assessment of carwash wastewater reclamation potential based on household water treatment technologies
Water reclamation
Wastewater reuse
Carwash
Ozonation
Activated carbon
title_short Assessment of carwash wastewater reclamation potential based on household water treatment technologies
title_full Assessment of carwash wastewater reclamation potential based on household water treatment technologies
title_fullStr Assessment of carwash wastewater reclamation potential based on household water treatment technologies
title_full_unstemmed Assessment of carwash wastewater reclamation potential based on household water treatment technologies
title_sort Assessment of carwash wastewater reclamation potential based on household water treatment technologies
dc.creator.fl_str_mv Canales, Fausto
Plata-Solano, Diego
Cantero Rodelo, Ruben Dario
Ávila Pereira, Yoleimy
Díaz-Martínez, Karina
Carpintero Durango, Javier Andrés
Kaźmierczak, Bartosz
Tavera-Quiroz, Humberto
dc.contributor.author.spa.fl_str_mv Canales, Fausto
Plata-Solano, Diego
Cantero Rodelo, Ruben Dario
Ávila Pereira, Yoleimy
Díaz-Martínez, Karina
Carpintero Durango, Javier Andrés
Kaźmierczak, Bartosz
Tavera-Quiroz, Humberto
dc.subject.proposal.eng.fl_str_mv Water reclamation
Wastewater reuse
Carwash
Ozonation
Activated carbon
topic Water reclamation
Wastewater reuse
Carwash
Ozonation
Activated carbon
description This paper assesses a bench-scale carwash wastewater treatment system's removal efficiency based on coagulation-flocculation and a household-type activated carbon filter and water ozonator. For the experiment, the wastewater that went through an oil/water separator (OWS) from a medium-sized carwash facility located in a dense commercial area in Barranquilla, Colombia, was collected. The study evaluates the following parameters: water quality indicators recommended by the U.S. Environmental Protection Agency and literature related to carwash water reclamation. The treatment results are compared to related regional studies in Latin America and Colombian legislation in force. Experimental results evidence that reclaimed water's characteristics are similar to those of a groundwater source for most analyzed variables, and the system was able to reduce organic matter concentrations considerably. Regarding the organoleptic characteristics, the system eliminated foaming and generated a transparent and odorless product. The coliform test showed that reclaimed water has an average total coliform count of around 5800 MPN/100 ml, which is above the proposed health risk limit per most international standards for water reuse; but as it complies with industrial wastewater and non-food irrigation purposes in Colombia, additional disinfection is recommended depending on the reuse purpose. The results from this research may assist future carwash wastewater reclamation regulations in Colombia and the Latin American region.
publishDate 2021
dc.date.issued.none.fl_str_mv 2021
dc.date.accessioned.none.fl_str_mv 2022-03-10T19:27:52Z
dc.date.available.none.fl_str_mv 2022-03-10T19:27:52Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_6501
status_str acceptedVersion
dc.identifier.uri.spa.fl_str_mv https://hdl.handle.net/11323/9068
dc.identifier.url.spa.fl_str_mv https://doi.org/10.1016/j.wri.2021.100164
dc.identifier.doi.spa.fl_str_mv 10.1016/j.wri.2021.100164
dc.identifier.eissn.spa.fl_str_mv 2212-3717
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
url https://hdl.handle.net/11323/9068
https://doi.org/10.1016/j.wri.2021.100164
https://repositorio.cuc.edu.co/
identifier_str_mv 10.1016/j.wri.2021.100164
2212-3717
Corporación Universidad de la Costa
REDICUC - Repositorio CUC
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.references.spa.fl_str_mv [1] C. Schaum, D. Lensch, P. Cornel, Water reuse and reclamation: a contribution to energy efficiency in the water cycle, J. Water Reuse Desalin 5 (2015) 83–94, https://doi.org/10.2166/wrd.2014.159.
[2] G. Lozano Sandoval, E.A. Monsalve Durango, P.L. García Reinoso, C.A. Rodríguez Mejía, J.P. Gomez ´ Ospina, H.J. Trivino ˜ Loaiza, Environmental flow estimation using hydrological and hydraulic methods for the Quindío river basin: WEAP as a support tool, Inge CUC 11 (2015) 34–48, https://doi.org/10.17981/ingecuc.11.2.2015.04.
[3] J. Struk-Sokołowska, J. Gwo´zdziej-Mazur, P. Jadwiszczak, A. Butarewicz, P. Ofman, M. Wdowikowski, B. Ka´zmierczak, The quality of stored rainwater for washing purposes, Water 12 (2020) 252, https://doi.org/10.3390/w12010252.
[4] R. Zaneti, R. Etchepare, J. Rubio, More environmentally friendly vehicle washes: water reclamation, J. Clean. Prod. 37 (2012) 115–124, https://doi.org/10.1016/j.jclepro.2012.06.017.
[5] WWAP (United Nations World Water Assessment Programme), The United Nations World Water Development Report 2017. Wastewater: the Untapped Resource, the United Nations World Water Development Report. Wastewater. The Untapped Resource, UNESCO, Paris, 2017.
[6] The World Bank, Making the Most of Scarcity, Making the Most of Scarcity: Accountability for Better Water Management Results in the Middle East and North Africa, The World Bank, Washington, D.C, 2007, https://doi.org/10.1596/978-0-8213-6925-8.
[7] D. Saurí, A. Arahuetes, Water reuse: a review of recent international contributions and an agenda for future research, Doc. d’Analisi Geogr. 65 (2019) 399–417, https://doi.org/10.5565/rev/dag.534.
[8] N. Saporiti, E. Robins, Scaling up water reuse: why recycling our wastewater makes sense [WWW Document], World Bank Blogs (2021). https://blogs. worldbank.org/climatechange/scaling-water-reuse-why-recycling-our-wastewater-makes-sense.
[9] C. Leong, L. Lebel, Can conformity overcome the yuck factor? Explaining the choice for recycled drinking water, J. Clean. Prod. 242 (2020) 118196, https://doi.org/10.1016/j.jclepro.2019.118196.
[10] R. Saliba, R. Callieris, D. D’Agostino, R. Roma, A. Scardigno, Stakeholders’ attitude towards the reuse of treated wastewater for irrigation in Mediterranean agriculture, Agric. Water Manag. 204 (2018) 60–68, https://doi.org/10.1016/j.agwat.2018.03.036.
[11] T.W. Hartley, Public perception and participation in water reuse, Desalination 187 (2006) 115–126, https://doi.org/10.1016/j.desal.2005.04.072.
[12] G. Deviller, L. Lundy, D. Fatta-Kassinos, Recommendations to derive quality standards for chemical pollutants in reclaimed water intended for reuse in agricultural irrigation, Chemosphere 240 (2020), https://doi.org/10.1016/j.chemosphere.2019.124911.
[13] A. Jurga, A. Pacak, D. Pandelidis, B. Ka´zmierczak, A long-term analysis of the possibility of water recovery for hydroponic lettuce irrigation in an indoor vertical farm. Part 2: rainwater harvesting, Appl. Sci. 11 (2021) 310, https://doi.org/10.3390/app11010310.
[14] A. Jurga, K. Janiak, K. Ratkiewicz, D. Podstawczyk, An overview of blackwater data collection from space life support systems and its comparison to a terrestrial wastewater dataset, J. Environ. Manag. 241 (2019) 198–210, https://doi.org/10.1016/j.jenvman.2019.03.135.
[15] A. Pacak, A. Jurga, P. Drąg, D. Pandelidis, B. Ka´zmierczak, A long-term analysis of the possibility of water recovery for hydroponic lettuce irrigation in indoor vertical farm. Part 1: water recovery from exhaust air, Appl. Sci. 10 (2020) 8907, https://doi.org/10.3390/app10248907.
[16] F.A. Canales, J. Gwo´zdziej-Mazur, P. Jadwiszczak, J. Struk-Sokołowska, K. Wartalska, M. Wdowikowski, B. Ka´zmierczak, Long-term trends in 20-day cumulative precipitation for residential rainwater harvesting in Poland, Water 12 (2020), https://doi.org/10.3390/w12071932, 1932.
[17] H. Jeong, O.A. Broesicke, B. Drew, J.C. Crittenden, Life cycle assessment of small-scale greywater reclamation systems combined with conventional centralized water systems for the City of Atlanta, Georgia, J. Clean. Prod. 174 (2018) 333–342, https://doi.org/10.1016/j.jclepro.2017.10.193.
[18] H. Yoonus, S.G. Al-Ghamdi, Environmental performance of building integrated grey water reuse systems based on Life-Cycle Assessment: a systematic and bibliographic analysis, Sci. Total Environ. 712 (2020) 136535, https://doi.org/10.1016/j.scitotenv.2020.136535.
[19] J.L. Bowen, C.J. Baillie, J.H. Grabowski, A.R. Hughes, S.B. Scyphers, K.R. Gilbert, S.G. Gorney, J. Slevin, K.A. Geigley, Boston Harbor, Boston, Massachusetts, USA: transformation from ‘the harbor of shame’ to a vibrant coastal resource, Reg. Stud. Mar. Sci. 25 (2019) 100482, https://doi.org/10.1016/j.rsma.2018.100482.
[20] Z. Chen, Q. Wu, G. Wu, H.Y. Hu, Centralized water reuse system with multiple applications in urban areas: lessons from China’s experience, Resour. Conserv. Recycl. 117 (2017) 125–136, https://doi.org/10.1016/j.resconrec.2016.11.008.
[21] M. Ernst, A. Sperlich, X. Zheng, Y. Gan, J. Hu, X. Zhao, J. Wang, M. Jekel, An integrated wastewater treatment and reuse concept for the Olympic Park 2008, Beijing, Desalination 202 (2007) 293–301, https://doi.org/10.1016/j.desal.2005.12.067.
[22] M.H. Plumlee, C.J. Gurr, M. Reinhard, Recycled water for stream flow augmentation: benefits, challenges, and the presence of wastewater-derived organic compounds, Sci. Total Environ. 438 (2012) 541–548, https://doi.org/10.1016/j.scitotenv.2012.08.062.
[23] N. Voulvoulis, The potential of water reuse as a management option for water security under the ecosystem services approach, Desalin. Water Treat. 53 (2015) 3263–3271, https://doi.org/10.1080/19443994.2014.934106.
[24] M. Donn, D. Reed, J. Vanderzalm, D. Page, Assessment of E. coli attenuation during infiltration of treated wastewater: a pathway to future managed aquifer recharge, Water 12 (2020) 173, https://doi.org/10.3390/w12010173
[25] J. Yuan, M.I. Van Dyke, P.M. Huck, Selection and evaluation of water pretreatment technologies for managed aquifer recharge (MAR) with reclaimed water, Chemosphere 236 (2019) 124886, https://doi.org/10.1016/j.chemosphere.2019.124886.
[26] M.P. Alderson, A.B. dos Santos, C.R. Mota Filho, Reliability analysis of low-cost, full-scale domestic wastewater treatment plants for reuse in aquaculture and agriculture, Ecol. Eng. 82 (2015) 6–14, https://doi.org/10.1016/j.ecoleng.2015.04.081.
[27] L.Y. Ng, C.Y. Ng, E. Mahmoudi, C.B. Ong, A.W. Mohammad, A review of the management of inflow water, wastewater and water reuse by membrane technology for a sustainable production in shrimp farming, J. Water Process Eng. 23 (2018) 27–44, https://doi.org/10.1016/j.jwpe.2018.02.020.
[28] S. Redman, K.J. Ormerod, S. Kelley, Reclaiming suburbia: differences in local identity and public perceptions of potable water reuse, Sustain. 11 (2019) 1–18, https://doi.org/10.3390/su11030564.
[29] B. Maryam, H. Büyükgüngor, ¨ Wastewater reclamation and reuse trends in Turkey: opportunities and challenges, J. Water Process Eng. 30 (2019) 100501, https://doi.org/10.1016/j.jwpe.2017.10.001.
[30] N. Sasi Kumar, M.S. Chauhan, Treatment of car washing unit wastewater—a review, in: V.P. Singh, S. Yadav, R.N. Yadava (Eds.), Water Quality Management, Springer Nature, 2018, pp. 247–255, https://doi.org/10.1007/978-981-10-5795-3_21.
[31] S. Vajnhandl, J.V. Valh, The status of water reuse in European textile sector, J. Environ. Manag. 141 (2014) 29–35, https://doi.org/10.1016/j.jenvman.2014.03.014.
[32] N. Diaz-Elsayed, N. Rezaei, T. Guo, S. Mohebbi, Q. Zhang, Wastewater-based resource recovery technologies across scale: a review, Resour. Conserv. Recycl. 145 (2019) 94–112, https://doi.org/10.1016/j.resconrec.2018.12.035.
[33] IANAS The Inter-American Network of Academies of Sciences, Urban Water Challenges in the Americas. A Perspective from the Academies of Sciences, IANAS & UNESCO, M´exico D.F, 2015.
[34] V. Jegatheesan, L. Shu, L. Jegatheesan, Producing fit-for-purpose water and recovering resources from various sources: an overview, Environ. Qual. Manag. (2021) 1–20, https://doi.org/10.1002/tqem.21780.
[35] A. Al-Odwani, M. Ahmed, S. Bou-Hamad, Carwash water reclamation in Kuwait, Desalination 206 (2007) 17–28, https://doi.org/10.1016/j.desal.2006.03.560.
[36] A.E. Ghaly, N.S. Mahmoud, M.M. Ibrahim, E.A. Mostafa, E.N. Abdelrahman, R.H. Emam, M.A. Kassem, M.H. Hatem, Water use, wastewater characteristics, best management practices and reclaimed water criteria in the carwash industry: a review, Int. J. Biopro Biotechnol. Adv. 7 (1) (2021) 240–261.
[37] M. Panizza, G. Cerisola, Applicability of electrochemical methods to carwash wastewaters for reuse. Part 1: anodic oxidation with diamond and lead dioxide anodes, J. Electroanal. Chem. 638 (2010) 28–32, https://doi.org/10.1016/j.jelechem.2009.10.025.
[38] I. Monney, E.A. Donkor, R. Buamah, Clean vehicles, polluted waters: empirical estimates of water consumption and pollution loads of the carwash industry, Heliyon 6 (2020), e03952, https://doi.org/10.1016/j.heliyon.2020.e03952.
[39] R. Paul, S. Kenway, P. Mukheibir, How scale and technology influence the energy intensity of water recycling systems-An analytical review, J. Clean. Prod. 215 (2019) 1457–1480, https://doi.org/10.1016/j.jclepro.2018.12.148.
[40] M. Sarmadi, M. Foroughi, H. Najafi Saleh, D. Sanaei, A.A. Zarei, M. Ghahrchi, E. Bazrafshan, Efficient technologies for carwash wastewater treatment: a systematic review, Environ. Sci. Pollut. Res. 27 (2020) 34823–34839, https://doi.org/10.1007/s11356-020-09741-w.
[41] S. Khatavkar, D. Prajapat, A. Nishad, M. Rane, Water regulation system for automatic car wash – a review, Int. J. Sci. Technol. Eng. 4 (2017) 50–52.
[42] A.K. Bayable, F.D. Adey, A. Fassil, Evaluating the efficacy of household filters used for the removal of bacterial contaminants from drinking water, Afr. J. Microbiol. Res. 14 (2020) 273–279, https://doi.org/10.5897/AJMR2020.9344.
[43] H.A. Maddah, Adsorption isotherm of NaCl from aqueous solutions onto activated carbon cloth to enhance membrane filtration, J. Appl. Sci. Eng. 23 (2020) 69–78, https://doi.org/10.6180/jase.202003_23(1).0009.
[44] R. Mulhern, M. Stallard, H. Zanib, J. Stewart, E. Sozzi, J. Macdonald, Are carbon water filters safe for private wells ? Evaluating the occurrence of microbial indicator organisms in private well water treated by point-of-use activated carbon block filters, Int. J. Hyg Environ. Health 238 (2021) 113852, https://doi.org/10.1016/j.ijheh.2021.113852.
[45] S. Kataki, S. Chatterjee, M.G. Vairale, S. Sharma, S.K. Dwivedi, Concerns and strategies for wastewater treatment during COVID-19 pandemic to stop plausible transmission, Resour. Conserv. Recycl. 164 (2021) 105156, https://doi.org/10.1016/j.resconrec.2020.105156.
[46] J. Altmann, A.S. Ruhl, F. Zietzschmann, M. Jekel, Direct comparison of ozonation and adsorption onto powdered activated carbon for micropollutant removal in advanced wastewater treatment, Water Res. 55 (2014) 185–193, https://doi.org/10.1016/j.watres.2014.02.025.
[47] L.A. Fernandez, ´ E. V´eliz, M. Bataller, A. Amador, C. Hernandez, C. Mora, C. P´erez, C. Alvarez, ´ C. Baluja, E. Sanchez, ´ Development and evaluation of domestic ozonators for water treatment, in: Proceedings of the 16th International Ozone Association World Congress 2003, International Ozone Association, Las Vegas, NV, 2003, pp. 436–447.
[48] R. Zaneti, R. Etchepare, J. Rubio, Car wash wastewater reclamation. Full-scale application and upcoming features, Resour. Conserv. Recycl. 55 (2011) 953–959, https://doi.org/10.1016/j.resconrec.2011.05.002.
[49] R. Etchepare, R. Zaneti, A. Azevedo, J. Rubio, Application of flocculation–flotation followed by ozonation in vehicle wash wastewater treatment/disinfection and water reclamation, Desalin. Water Treat. 56 (2015) 1728–1736, https://doi.org/10.1080/19443994.2014.951971.
[50] H. Rubí-Juarez, ´ C. Barrera-Díaz, I. Linares-Hernandez, ´ C. Fall, B. Bilyeu, A combined electrocoagulation-electrooxidation process for carwash wastewater reclamation, Int. J. Electrochem. Sci. 10 (2015) 6754–6767.
[51] S. Carrasquero, K. Terán, M. Mas y Rubi, G. Colina, A. Díaz, Evaluacion ´ de un tratamiento fisicoquímico en efluentes provenientes del lavado de vehículos para su reutilizacion, ´ Impacto científico 10 (2015) 122–139.
[52] E.L. Subtil, R. Rodrigues, I. Hespanhol, J.C. Mierzwa, Water reuse potential at heavy-duty vehicles washing facilities – the mass balance approach for conservative contaminants, J. Clean. Prod. 166 (2017) 1226–1234, https://doi.org/10.1016/j.jclepro.2017.08.162.
[53] H. Janik, A. Kupiec, Trends in modern car washing, Pol. J. Environ. Stud. 16 (2007) 927–931.
[54] United States Environmental Protection Agency, Guidelines for Water Reuse, U.S. EPA, Washington, D.C, 2012.
[55] American Public Health Association, American Water Works Association, Water Environment Federation, Standard Methods for the Examination of Water and Wastewater, 23rd Ed., American Public Health Association, Washington, D.C, 2017.
[56] G.L. Alvarez ´ Pinzon, ´ El reúso de aguas residuales en Colombia, in: M. del P. García Pachon ´ (Ed.), Derecho de Aguas. Tomo VII, Universidad Externado de Colombia, Bogota, ´ 2017, pp. 189–232.
[57] L. Cantillo Lastre, Lavadero de carros, sin controles para el consumo de agua - El Heraldo, 2016.
[58] ICONTEC, NTC 3903 - Procedimiento para el m´etodo de jarras en la coagulacion-floculaci ´ on ´ del agua, Norma Tecnica Colombiana, Colombia, 1996.
[59] A.F. Abu Bakar, A.A. Halim, Treatment of automotive wastewater by coagulation-flocculation using poly-aluminum chloride (PAC), ferric chloride (FeCl3) and aluminum sulfate (alum), AIP Conf. Proc. 1571 (2013) 524–529, https://doi.org/10.1063/1.4858708.
[60] S. Mahmood, C. Gallagher, D.L. Engelberg, Atmospheric corrosion of aluminum alloy 6063 beneath ferric chloride corrosion product droplets, Corrosion 76 (2020) 985–994, https://doi.org/10.5006/3558.
[61] J. Reungoat, B.I. Escher, M. Macova, F.X. Argaud, W. Gernjak, J. Keller, Ozonation and biological activated carbon filtration of wastewater treatment plant effluents, Water Res. 46 (2012) 863–872, https://doi.org/10.1016/j.watres.2011.11.064.
[62] F. Zietzschmann, R.-L. Mitchell, M. Jekel, Impacts of ozonation on the competition between organic micro-pollutants and effluent organic matter in powdered activated carbon adsorption, Water Res. 84 (2015) 153–160, https://doi.org/10.1016/j.watres.2015.07.031.
[63] Metcalf & Eddy Inc, Wastewater Engineering: Treatment and Reuse, fourth ed., McGraw-Hill, New York, NY, 2003.
[64] X. Xu, S. Liu, K. Smith, Y. Cui, Z. Wang, An overview on corrosion of iron and steel components in reclaimed water supply systems and the mechanisms involved, J. Clean. Prod. 276 (2020) 124079, https://doi.org/10.1016/j.jclepro.2020.124079.
[65] S. Lyu, W. Chen, W. Zhang, Y. Fan, W. Jiao, Wastewater reclamation and reuse in China: opportunities and challenges, J. Environ. Sci. 39 (2016) 86–96, https://doi.org/10.1016/j.jes.2015.11.012.
[66] Z.A. Bhatti, Q. Mahmood, I.A. Raja, A.H. Malik, M.S. Khan, D. Wu, Chemical oxidation of carwash industry wastewater as an effort to decrease water pollution, Phys. Chem. Earth, Parts A/B/C 36 (2011) 465–469, https://doi.org/10.1016/j.pce.2010.03.022.
[67] M. Henze, M.C.M. van Loosdrecht, G.A. Ekama, D. Brdjanovic (Eds.), Biological Wastewater Treatment. Principles, Modelling and Design, IWA Publishing, London, 2008.
[68] Z. Cha, C.-F. Lin, C.-J. Cheng, P.K. Andy Hong, Removal of oil and oil sheen from produced water by pressure-assisted ozonation and sand filtration, Chemosphere 78 (2010) 583–590, https://doi.org/10.1016/j.chemosphere.2009.10.051.
[69] P.K.A. Hong, T. Xiao, Treatment of oil spill water by ozonation and sand filtration, Chemosphere 91 (2013) 641–647, https://doi.org/10.1016/j.chemosphere.2013.01.010.
[70] World Health Organization, in: Guidelines for Drinking-Water Quality, fourth ed., World Health Organization, Geneva, 2017.
[71] J.D. Rhoades, A. Kandiah, A.M. Mashali, The Use of Saline Waters for Crop Production - FAO Irrigation and Drainage Paper 48, Food and Agriculture Organization of the United Nations, Rome, 1992.
[72] A.F. Rusydi, Correlation between conductivity and total dissolved solid in various type of water: a review, IOP Conf. Ser. Earth Environ. Sci. 118 (2018), https://doi.org/10.1088/1755-1315/118/1/012019.
[73] P. Jeffrey, B. Jefferson, Public receptivity regarding “in-house” water recycling: results from a UK survey, Water Sci. Technol. Water Supply 3 (2003) 109–116, https://doi.org/10.2166/ws.2003.0015.
[74] T. Zhang, Y.Z. Tao, H.W. Yang, Z. Chen, X.M. Wang, Y.F. Xie, Study on the removal of aesthetic indicators by ozone during advanced treatment of water reuse, J. Water Process Eng. 36 (2020) 101381, https://doi.org/10.1016/j.jwpe.2020.101381.
[75] Ministerio de Ambiente y Desarrollo Sostenible, Diario Oficial, Colombia, 2014. Resolucion ´ 1207/2014.
[76] Ministerio de la Proteccion ´ Social, Ministerio de Ambiente Vivienda y Desarrollo Territorial, Diario Oficial, Colombia, 2007. Resolucion ´ 2115/2007.
[77] Ministerio de Ambiente y Desarrollo Sostenible, Diario Oficial, Colombia, 2015. Resolucion ´ 631/2015.
[78] L.P. Leonel, A.L. Tonetti, Wastewater reuse for crop irrigation: crop yield, soil and human health implications based on giardiasis epidemiology, Sci. Total Environ. 775 (2021) 145833, https://doi.org/10.1016/j.scitotenv.2021.145833.
[79] M.E. Patino, ˜ Suspendidos 63 lavaderos de carros por infringir el Codigo ´ de Policía - El Heraldo, 2017.
dc.relation.citationendpage.spa.fl_str_mv 10
dc.relation.citationstartpage.spa.fl_str_mv 1
dc.relation.citationvolume.spa.fl_str_mv 26
dc.rights.spa.fl_str_mv © 2021 The Authors. Published by Elsevier B.V
Atribución 4.0 Internacional (CC BY 4.0)
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv © 2021 The Authors. Published by Elsevier B.V
Atribución 4.0 Internacional (CC BY 4.0)
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 10 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Elsevier BV
dc.publisher.place.spa.fl_str_mv Netherlands
institution Corporación Universidad de la Costa
dc.source.url.spa.fl_str_mv https://www.sciencedirect.com/science/article/pii/S2212371721000275?via%3Dihub
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/98b8812d-2565-49bc-a47b-091ecc5f437b/download
https://repositorio.cuc.edu.co/bitstreams/472548fd-61d5-423d-8dec-653104f92c18/download
https://repositorio.cuc.edu.co/bitstreams/d177da04-5191-4900-aba3-ca1de28030b9/download
https://repositorio.cuc.edu.co/bitstreams/3ff495bc-9b19-4428-95bd-4d2314bd1332/download
bitstream.checksum.fl_str_mv b49c441108b98ddc75017fd00527591e
e30e9215131d99561d40d6b0abbe9bad
6f9a638ac056683f1cc445da44de7863
4676d92abfa6d103010284666c55f0d0
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1811760752460038144
spelling Canales, FaustoPlata-Solano, DiegoCantero Rodelo, Ruben DarioÁvila Pereira, YoleimyDíaz-Martínez, KarinaCarpintero Durango, Javier AndrésKaźmierczak, BartoszTavera-Quiroz, Humberto2022-03-10T19:27:52Z2022-03-10T19:27:52Z2021https://hdl.handle.net/11323/9068https://doi.org/10.1016/j.wri.2021.10016410.1016/j.wri.2021.1001642212-3717Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/This paper assesses a bench-scale carwash wastewater treatment system's removal efficiency based on coagulation-flocculation and a household-type activated carbon filter and water ozonator. For the experiment, the wastewater that went through an oil/water separator (OWS) from a medium-sized carwash facility located in a dense commercial area in Barranquilla, Colombia, was collected. The study evaluates the following parameters: water quality indicators recommended by the U.S. Environmental Protection Agency and literature related to carwash water reclamation. The treatment results are compared to related regional studies in Latin America and Colombian legislation in force. Experimental results evidence that reclaimed water's characteristics are similar to those of a groundwater source for most analyzed variables, and the system was able to reduce organic matter concentrations considerably. Regarding the organoleptic characteristics, the system eliminated foaming and generated a transparent and odorless product. The coliform test showed that reclaimed water has an average total coliform count of around 5800 MPN/100 ml, which is above the proposed health risk limit per most international standards for water reuse; but as it complies with industrial wastewater and non-food irrigation purposes in Colombia, additional disinfection is recommended depending on the reuse purpose. The results from this research may assist future carwash wastewater reclamation regulations in Colombia and the Latin American region.10 páginasapplication/pdfengElsevier BVNetherlands© 2021 The Authors. Published by Elsevier B.VAtribución 4.0 Internacional (CC BY 4.0)info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Assessment of carwash wastewater reclamation potential based on household water treatment technologiesArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersionhttps://www.sciencedirect.com/science/article/pii/S2212371721000275?via%3Dihub[1] C. Schaum, D. Lensch, P. Cornel, Water reuse and reclamation: a contribution to energy efficiency in the water cycle, J. Water Reuse Desalin 5 (2015) 83–94, https://doi.org/10.2166/wrd.2014.159.[2] G. Lozano Sandoval, E.A. Monsalve Durango, P.L. García Reinoso, C.A. Rodríguez Mejía, J.P. Gomez ´ Ospina, H.J. Trivino ˜ Loaiza, Environmental flow estimation using hydrological and hydraulic methods for the Quindío river basin: WEAP as a support tool, Inge CUC 11 (2015) 34–48, https://doi.org/10.17981/ingecuc.11.2.2015.04.[3] J. Struk-Sokołowska, J. Gwo´zdziej-Mazur, P. Jadwiszczak, A. Butarewicz, P. Ofman, M. Wdowikowski, B. Ka´zmierczak, The quality of stored rainwater for washing purposes, Water 12 (2020) 252, https://doi.org/10.3390/w12010252.[4] R. Zaneti, R. Etchepare, J. Rubio, More environmentally friendly vehicle washes: water reclamation, J. Clean. Prod. 37 (2012) 115–124, https://doi.org/10.1016/j.jclepro.2012.06.017.[5] WWAP (United Nations World Water Assessment Programme), The United Nations World Water Development Report 2017. Wastewater: the Untapped Resource, the United Nations World Water Development Report. Wastewater. The Untapped Resource, UNESCO, Paris, 2017.[6] The World Bank, Making the Most of Scarcity, Making the Most of Scarcity: Accountability for Better Water Management Results in the Middle East and North Africa, The World Bank, Washington, D.C, 2007, https://doi.org/10.1596/978-0-8213-6925-8.[7] D. Saurí, A. Arahuetes, Water reuse: a review of recent international contributions and an agenda for future research, Doc. d’Analisi Geogr. 65 (2019) 399–417, https://doi.org/10.5565/rev/dag.534.[8] N. Saporiti, E. Robins, Scaling up water reuse: why recycling our wastewater makes sense [WWW Document], World Bank Blogs (2021). https://blogs. worldbank.org/climatechange/scaling-water-reuse-why-recycling-our-wastewater-makes-sense.[9] C. Leong, L. Lebel, Can conformity overcome the yuck factor? Explaining the choice for recycled drinking water, J. Clean. Prod. 242 (2020) 118196, https://doi.org/10.1016/j.jclepro.2019.118196.[10] R. Saliba, R. Callieris, D. D’Agostino, R. Roma, A. Scardigno, Stakeholders’ attitude towards the reuse of treated wastewater for irrigation in Mediterranean agriculture, Agric. Water Manag. 204 (2018) 60–68, https://doi.org/10.1016/j.agwat.2018.03.036.[11] T.W. Hartley, Public perception and participation in water reuse, Desalination 187 (2006) 115–126, https://doi.org/10.1016/j.desal.2005.04.072.[12] G. Deviller, L. Lundy, D. Fatta-Kassinos, Recommendations to derive quality standards for chemical pollutants in reclaimed water intended for reuse in agricultural irrigation, Chemosphere 240 (2020), https://doi.org/10.1016/j.chemosphere.2019.124911.[13] A. Jurga, A. Pacak, D. Pandelidis, B. Ka´zmierczak, A long-term analysis of the possibility of water recovery for hydroponic lettuce irrigation in an indoor vertical farm. Part 2: rainwater harvesting, Appl. Sci. 11 (2021) 310, https://doi.org/10.3390/app11010310.[14] A. Jurga, K. Janiak, K. Ratkiewicz, D. Podstawczyk, An overview of blackwater data collection from space life support systems and its comparison to a terrestrial wastewater dataset, J. Environ. Manag. 241 (2019) 198–210, https://doi.org/10.1016/j.jenvman.2019.03.135.[15] A. Pacak, A. Jurga, P. Drąg, D. Pandelidis, B. Ka´zmierczak, A long-term analysis of the possibility of water recovery for hydroponic lettuce irrigation in indoor vertical farm. Part 1: water recovery from exhaust air, Appl. Sci. 10 (2020) 8907, https://doi.org/10.3390/app10248907.[16] F.A. Canales, J. Gwo´zdziej-Mazur, P. Jadwiszczak, J. Struk-Sokołowska, K. Wartalska, M. Wdowikowski, B. Ka´zmierczak, Long-term trends in 20-day cumulative precipitation for residential rainwater harvesting in Poland, Water 12 (2020), https://doi.org/10.3390/w12071932, 1932.[17] H. Jeong, O.A. Broesicke, B. Drew, J.C. Crittenden, Life cycle assessment of small-scale greywater reclamation systems combined with conventional centralized water systems for the City of Atlanta, Georgia, J. Clean. Prod. 174 (2018) 333–342, https://doi.org/10.1016/j.jclepro.2017.10.193.[18] H. Yoonus, S.G. Al-Ghamdi, Environmental performance of building integrated grey water reuse systems based on Life-Cycle Assessment: a systematic and bibliographic analysis, Sci. Total Environ. 712 (2020) 136535, https://doi.org/10.1016/j.scitotenv.2020.136535.[19] J.L. Bowen, C.J. Baillie, J.H. Grabowski, A.R. Hughes, S.B. Scyphers, K.R. Gilbert, S.G. Gorney, J. Slevin, K.A. Geigley, Boston Harbor, Boston, Massachusetts, USA: transformation from ‘the harbor of shame’ to a vibrant coastal resource, Reg. Stud. Mar. Sci. 25 (2019) 100482, https://doi.org/10.1016/j.rsma.2018.100482.[20] Z. Chen, Q. Wu, G. Wu, H.Y. Hu, Centralized water reuse system with multiple applications in urban areas: lessons from China’s experience, Resour. Conserv. Recycl. 117 (2017) 125–136, https://doi.org/10.1016/j.resconrec.2016.11.008.[21] M. Ernst, A. Sperlich, X. Zheng, Y. Gan, J. Hu, X. Zhao, J. Wang, M. Jekel, An integrated wastewater treatment and reuse concept for the Olympic Park 2008, Beijing, Desalination 202 (2007) 293–301, https://doi.org/10.1016/j.desal.2005.12.067.[22] M.H. Plumlee, C.J. Gurr, M. Reinhard, Recycled water for stream flow augmentation: benefits, challenges, and the presence of wastewater-derived organic compounds, Sci. Total Environ. 438 (2012) 541–548, https://doi.org/10.1016/j.scitotenv.2012.08.062.[23] N. Voulvoulis, The potential of water reuse as a management option for water security under the ecosystem services approach, Desalin. Water Treat. 53 (2015) 3263–3271, https://doi.org/10.1080/19443994.2014.934106.[24] M. Donn, D. Reed, J. Vanderzalm, D. Page, Assessment of E. coli attenuation during infiltration of treated wastewater: a pathway to future managed aquifer recharge, Water 12 (2020) 173, https://doi.org/10.3390/w12010173[25] J. Yuan, M.I. Van Dyke, P.M. Huck, Selection and evaluation of water pretreatment technologies for managed aquifer recharge (MAR) with reclaimed water, Chemosphere 236 (2019) 124886, https://doi.org/10.1016/j.chemosphere.2019.124886.[26] M.P. Alderson, A.B. dos Santos, C.R. Mota Filho, Reliability analysis of low-cost, full-scale domestic wastewater treatment plants for reuse in aquaculture and agriculture, Ecol. Eng. 82 (2015) 6–14, https://doi.org/10.1016/j.ecoleng.2015.04.081.[27] L.Y. Ng, C.Y. Ng, E. Mahmoudi, C.B. Ong, A.W. Mohammad, A review of the management of inflow water, wastewater and water reuse by membrane technology for a sustainable production in shrimp farming, J. Water Process Eng. 23 (2018) 27–44, https://doi.org/10.1016/j.jwpe.2018.02.020.[28] S. Redman, K.J. Ormerod, S. Kelley, Reclaiming suburbia: differences in local identity and public perceptions of potable water reuse, Sustain. 11 (2019) 1–18, https://doi.org/10.3390/su11030564.[29] B. Maryam, H. Büyükgüngor, ¨ Wastewater reclamation and reuse trends in Turkey: opportunities and challenges, J. Water Process Eng. 30 (2019) 100501, https://doi.org/10.1016/j.jwpe.2017.10.001.[30] N. Sasi Kumar, M.S. Chauhan, Treatment of car washing unit wastewater—a review, in: V.P. Singh, S. Yadav, R.N. Yadava (Eds.), Water Quality Management, Springer Nature, 2018, pp. 247–255, https://doi.org/10.1007/978-981-10-5795-3_21.[31] S. Vajnhandl, J.V. Valh, The status of water reuse in European textile sector, J. Environ. Manag. 141 (2014) 29–35, https://doi.org/10.1016/j.jenvman.2014.03.014.[32] N. Diaz-Elsayed, N. Rezaei, T. Guo, S. Mohebbi, Q. Zhang, Wastewater-based resource recovery technologies across scale: a review, Resour. Conserv. Recycl. 145 (2019) 94–112, https://doi.org/10.1016/j.resconrec.2018.12.035.[33] IANAS The Inter-American Network of Academies of Sciences, Urban Water Challenges in the Americas. A Perspective from the Academies of Sciences, IANAS & UNESCO, M´exico D.F, 2015.[34] V. Jegatheesan, L. Shu, L. Jegatheesan, Producing fit-for-purpose water and recovering resources from various sources: an overview, Environ. Qual. Manag. (2021) 1–20, https://doi.org/10.1002/tqem.21780.[35] A. Al-Odwani, M. Ahmed, S. Bou-Hamad, Carwash water reclamation in Kuwait, Desalination 206 (2007) 17–28, https://doi.org/10.1016/j.desal.2006.03.560.[36] A.E. Ghaly, N.S. Mahmoud, M.M. Ibrahim, E.A. Mostafa, E.N. Abdelrahman, R.H. Emam, M.A. Kassem, M.H. Hatem, Water use, wastewater characteristics, best management practices and reclaimed water criteria in the carwash industry: a review, Int. J. Biopro Biotechnol. Adv. 7 (1) (2021) 240–261.[37] M. Panizza, G. Cerisola, Applicability of electrochemical methods to carwash wastewaters for reuse. Part 1: anodic oxidation with diamond and lead dioxide anodes, J. Electroanal. Chem. 638 (2010) 28–32, https://doi.org/10.1016/j.jelechem.2009.10.025.[38] I. Monney, E.A. Donkor, R. Buamah, Clean vehicles, polluted waters: empirical estimates of water consumption and pollution loads of the carwash industry, Heliyon 6 (2020), e03952, https://doi.org/10.1016/j.heliyon.2020.e03952.[39] R. Paul, S. Kenway, P. Mukheibir, How scale and technology influence the energy intensity of water recycling systems-An analytical review, J. Clean. Prod. 215 (2019) 1457–1480, https://doi.org/10.1016/j.jclepro.2018.12.148.[40] M. Sarmadi, M. Foroughi, H. Najafi Saleh, D. Sanaei, A.A. Zarei, M. Ghahrchi, E. Bazrafshan, Efficient technologies for carwash wastewater treatment: a systematic review, Environ. Sci. Pollut. Res. 27 (2020) 34823–34839, https://doi.org/10.1007/s11356-020-09741-w.[41] S. Khatavkar, D. Prajapat, A. Nishad, M. Rane, Water regulation system for automatic car wash – a review, Int. J. Sci. Technol. Eng. 4 (2017) 50–52.[42] A.K. Bayable, F.D. Adey, A. Fassil, Evaluating the efficacy of household filters used for the removal of bacterial contaminants from drinking water, Afr. J. Microbiol. Res. 14 (2020) 273–279, https://doi.org/10.5897/AJMR2020.9344.[43] H.A. Maddah, Adsorption isotherm of NaCl from aqueous solutions onto activated carbon cloth to enhance membrane filtration, J. Appl. Sci. Eng. 23 (2020) 69–78, https://doi.org/10.6180/jase.202003_23(1).0009.[44] R. Mulhern, M. Stallard, H. Zanib, J. Stewart, E. Sozzi, J. Macdonald, Are carbon water filters safe for private wells ? Evaluating the occurrence of microbial indicator organisms in private well water treated by point-of-use activated carbon block filters, Int. J. Hyg Environ. Health 238 (2021) 113852, https://doi.org/10.1016/j.ijheh.2021.113852.[45] S. Kataki, S. Chatterjee, M.G. Vairale, S. Sharma, S.K. Dwivedi, Concerns and strategies for wastewater treatment during COVID-19 pandemic to stop plausible transmission, Resour. Conserv. Recycl. 164 (2021) 105156, https://doi.org/10.1016/j.resconrec.2020.105156.[46] J. Altmann, A.S. Ruhl, F. Zietzschmann, M. Jekel, Direct comparison of ozonation and adsorption onto powdered activated carbon for micropollutant removal in advanced wastewater treatment, Water Res. 55 (2014) 185–193, https://doi.org/10.1016/j.watres.2014.02.025.[47] L.A. Fernandez, ´ E. V´eliz, M. Bataller, A. Amador, C. Hernandez, C. Mora, C. P´erez, C. Alvarez, ´ C. Baluja, E. Sanchez, ´ Development and evaluation of domestic ozonators for water treatment, in: Proceedings of the 16th International Ozone Association World Congress 2003, International Ozone Association, Las Vegas, NV, 2003, pp. 436–447.[48] R. Zaneti, R. Etchepare, J. Rubio, Car wash wastewater reclamation. Full-scale application and upcoming features, Resour. Conserv. Recycl. 55 (2011) 953–959, https://doi.org/10.1016/j.resconrec.2011.05.002.[49] R. Etchepare, R. Zaneti, A. Azevedo, J. Rubio, Application of flocculation–flotation followed by ozonation in vehicle wash wastewater treatment/disinfection and water reclamation, Desalin. Water Treat. 56 (2015) 1728–1736, https://doi.org/10.1080/19443994.2014.951971.[50] H. Rubí-Juarez, ´ C. Barrera-Díaz, I. Linares-Hernandez, ´ C. Fall, B. Bilyeu, A combined electrocoagulation-electrooxidation process for carwash wastewater reclamation, Int. J. Electrochem. Sci. 10 (2015) 6754–6767.[51] S. Carrasquero, K. Terán, M. Mas y Rubi, G. Colina, A. Díaz, Evaluacion ´ de un tratamiento fisicoquímico en efluentes provenientes del lavado de vehículos para su reutilizacion, ´ Impacto científico 10 (2015) 122–139.[52] E.L. Subtil, R. Rodrigues, I. Hespanhol, J.C. Mierzwa, Water reuse potential at heavy-duty vehicles washing facilities – the mass balance approach for conservative contaminants, J. Clean. Prod. 166 (2017) 1226–1234, https://doi.org/10.1016/j.jclepro.2017.08.162.[53] H. Janik, A. Kupiec, Trends in modern car washing, Pol. J. Environ. Stud. 16 (2007) 927–931.[54] United States Environmental Protection Agency, Guidelines for Water Reuse, U.S. EPA, Washington, D.C, 2012.[55] American Public Health Association, American Water Works Association, Water Environment Federation, Standard Methods for the Examination of Water and Wastewater, 23rd Ed., American Public Health Association, Washington, D.C, 2017.[56] G.L. Alvarez ´ Pinzon, ´ El reúso de aguas residuales en Colombia, in: M. del P. García Pachon ´ (Ed.), Derecho de Aguas. Tomo VII, Universidad Externado de Colombia, Bogota, ´ 2017, pp. 189–232.[57] L. Cantillo Lastre, Lavadero de carros, sin controles para el consumo de agua - El Heraldo, 2016.[58] ICONTEC, NTC 3903 - Procedimiento para el m´etodo de jarras en la coagulacion-floculaci ´ on ´ del agua, Norma Tecnica Colombiana, Colombia, 1996.[59] A.F. Abu Bakar, A.A. Halim, Treatment of automotive wastewater by coagulation-flocculation using poly-aluminum chloride (PAC), ferric chloride (FeCl3) and aluminum sulfate (alum), AIP Conf. Proc. 1571 (2013) 524–529, https://doi.org/10.1063/1.4858708.[60] S. Mahmood, C. Gallagher, D.L. Engelberg, Atmospheric corrosion of aluminum alloy 6063 beneath ferric chloride corrosion product droplets, Corrosion 76 (2020) 985–994, https://doi.org/10.5006/3558.[61] J. Reungoat, B.I. Escher, M. Macova, F.X. Argaud, W. Gernjak, J. Keller, Ozonation and biological activated carbon filtration of wastewater treatment plant effluents, Water Res. 46 (2012) 863–872, https://doi.org/10.1016/j.watres.2011.11.064.[62] F. Zietzschmann, R.-L. Mitchell, M. Jekel, Impacts of ozonation on the competition between organic micro-pollutants and effluent organic matter in powdered activated carbon adsorption, Water Res. 84 (2015) 153–160, https://doi.org/10.1016/j.watres.2015.07.031.[63] Metcalf & Eddy Inc, Wastewater Engineering: Treatment and Reuse, fourth ed., McGraw-Hill, New York, NY, 2003.[64] X. Xu, S. Liu, K. Smith, Y. Cui, Z. Wang, An overview on corrosion of iron and steel components in reclaimed water supply systems and the mechanisms involved, J. Clean. Prod. 276 (2020) 124079, https://doi.org/10.1016/j.jclepro.2020.124079.[65] S. Lyu, W. Chen, W. Zhang, Y. Fan, W. Jiao, Wastewater reclamation and reuse in China: opportunities and challenges, J. Environ. Sci. 39 (2016) 86–96, https://doi.org/10.1016/j.jes.2015.11.012.[66] Z.A. Bhatti, Q. Mahmood, I.A. Raja, A.H. Malik, M.S. Khan, D. Wu, Chemical oxidation of carwash industry wastewater as an effort to decrease water pollution, Phys. Chem. Earth, Parts A/B/C 36 (2011) 465–469, https://doi.org/10.1016/j.pce.2010.03.022.[67] M. Henze, M.C.M. van Loosdrecht, G.A. Ekama, D. Brdjanovic (Eds.), Biological Wastewater Treatment. Principles, Modelling and Design, IWA Publishing, London, 2008.[68] Z. Cha, C.-F. Lin, C.-J. Cheng, P.K. Andy Hong, Removal of oil and oil sheen from produced water by pressure-assisted ozonation and sand filtration, Chemosphere 78 (2010) 583–590, https://doi.org/10.1016/j.chemosphere.2009.10.051.[69] P.K.A. Hong, T. Xiao, Treatment of oil spill water by ozonation and sand filtration, Chemosphere 91 (2013) 641–647, https://doi.org/10.1016/j.chemosphere.2013.01.010.[70] World Health Organization, in: Guidelines for Drinking-Water Quality, fourth ed., World Health Organization, Geneva, 2017.[71] J.D. Rhoades, A. Kandiah, A.M. Mashali, The Use of Saline Waters for Crop Production - FAO Irrigation and Drainage Paper 48, Food and Agriculture Organization of the United Nations, Rome, 1992.[72] A.F. Rusydi, Correlation between conductivity and total dissolved solid in various type of water: a review, IOP Conf. Ser. Earth Environ. Sci. 118 (2018), https://doi.org/10.1088/1755-1315/118/1/012019.[73] P. Jeffrey, B. Jefferson, Public receptivity regarding “in-house” water recycling: results from a UK survey, Water Sci. Technol. Water Supply 3 (2003) 109–116, https://doi.org/10.2166/ws.2003.0015.[74] T. Zhang, Y.Z. Tao, H.W. Yang, Z. Chen, X.M. Wang, Y.F. Xie, Study on the removal of aesthetic indicators by ozone during advanced treatment of water reuse, J. Water Process Eng. 36 (2020) 101381, https://doi.org/10.1016/j.jwpe.2020.101381.[75] Ministerio de Ambiente y Desarrollo Sostenible, Diario Oficial, Colombia, 2014. Resolucion ´ 1207/2014.[76] Ministerio de la Proteccion ´ Social, Ministerio de Ambiente Vivienda y Desarrollo Territorial, Diario Oficial, Colombia, 2007. Resolucion ´ 2115/2007.[77] Ministerio de Ambiente y Desarrollo Sostenible, Diario Oficial, Colombia, 2015. Resolucion ´ 631/2015.[78] L.P. Leonel, A.L. Tonetti, Wastewater reuse for crop irrigation: crop yield, soil and human health implications based on giardiasis epidemiology, Sci. Total Environ. 775 (2021) 145833, https://doi.org/10.1016/j.scitotenv.2021.145833.[79] M.E. Patino, ˜ Suspendidos 63 lavaderos de carros por infringir el Codigo ´ de Policía - El Heraldo, 2017.10126Water reclamationWastewater reuseCarwashOzonationActivated carbonPublicationORIGINALAssessment of carwash wastewater reclamation potential based on.pdfAssessment of carwash wastewater reclamation potential based on.pdfapplication/pdf2178199https://repositorio.cuc.edu.co/bitstreams/98b8812d-2565-49bc-a47b-091ecc5f437b/downloadb49c441108b98ddc75017fd00527591eMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/472548fd-61d5-423d-8dec-653104f92c18/downloade30e9215131d99561d40d6b0abbe9badMD52TEXTAssessment of carwash wastewater reclamation potential based on.pdf.txtAssessment of carwash wastewater reclamation potential based on.pdf.txttext/plain55060https://repositorio.cuc.edu.co/bitstreams/d177da04-5191-4900-aba3-ca1de28030b9/download6f9a638ac056683f1cc445da44de7863MD53THUMBNAILAssessment of carwash wastewater reclamation potential based on.pdf.jpgAssessment of carwash wastewater reclamation potential based on.pdf.jpgimage/jpeg12942https://repositorio.cuc.edu.co/bitstreams/3ff495bc-9b19-4428-95bd-4d2314bd1332/download4676d92abfa6d103010284666c55f0d0MD5411323/9068oai:repositorio.cuc.edu.co:11323/90682024-09-17 10:58:41.0open.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA==