Procedure to obtain the optimal distribution cooling capacity of an air-condensed chiller plant for a hotel facility conceptual design

The article presents a novel methodology for designing chiller plants for a hotel facility to determine the optimal distribution of the chillers cooling capacity that compose the plant. The methodology proposes three phases. In the first, the statistical analysis allowed to determine the cooling dem...

Full description

Autores:
diaz torres, yamile
Reyes Calvo, Roy
Hernández Herrera, Hernán
Álvarez Guerra, Mario A.
Gómez Sarduy, Julio Rafael
Silva Ortega, Jorge I
Tipo de recurso:
Article of journal
Fecha de publicación:
2021
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/8973
Acceso en línea:
https://hdl.handle.net/11323/8973
https://doi.org/10.1016/j.egyr.2021.07.090
https://repositorio.cuc.edu.co/
Palabra clave:
Genetic algorithm
Chiller plant
Cooling capacity
Optimal chiller loading and sequence
Hotel facilities
Rights
openAccess
License
CC0 1.0 Universal
id RCUC2_7cd52509d695d531dd7b43437479f9af
oai_identifier_str oai:repositorio.cuc.edu.co:11323/8973
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.spa.fl_str_mv Procedure to obtain the optimal distribution cooling capacity of an air-condensed chiller plant for a hotel facility conceptual design
title Procedure to obtain the optimal distribution cooling capacity of an air-condensed chiller plant for a hotel facility conceptual design
spellingShingle Procedure to obtain the optimal distribution cooling capacity of an air-condensed chiller plant for a hotel facility conceptual design
Genetic algorithm
Chiller plant
Cooling capacity
Optimal chiller loading and sequence
Hotel facilities
title_short Procedure to obtain the optimal distribution cooling capacity of an air-condensed chiller plant for a hotel facility conceptual design
title_full Procedure to obtain the optimal distribution cooling capacity of an air-condensed chiller plant for a hotel facility conceptual design
title_fullStr Procedure to obtain the optimal distribution cooling capacity of an air-condensed chiller plant for a hotel facility conceptual design
title_full_unstemmed Procedure to obtain the optimal distribution cooling capacity of an air-condensed chiller plant for a hotel facility conceptual design
title_sort Procedure to obtain the optimal distribution cooling capacity of an air-condensed chiller plant for a hotel facility conceptual design
dc.creator.fl_str_mv diaz torres, yamile
Reyes Calvo, Roy
Hernández Herrera, Hernán
Álvarez Guerra, Mario A.
Gómez Sarduy, Julio Rafael
Silva Ortega, Jorge I
dc.contributor.author.spa.fl_str_mv diaz torres, yamile
Reyes Calvo, Roy
Hernández Herrera, Hernán
Álvarez Guerra, Mario A.
Gómez Sarduy, Julio Rafael
Silva Ortega, Jorge I
dc.subject.spa.fl_str_mv Genetic algorithm
Chiller plant
Cooling capacity
Optimal chiller loading and sequence
Hotel facilities
topic Genetic algorithm
Chiller plant
Cooling capacity
Optimal chiller loading and sequence
Hotel facilities
description The article presents a novel methodology for designing chiller plants for a hotel facility to determine the optimal distribution of the chillers cooling capacity that compose the plant. The methodology proposes three phases. In the first, the statistical analysis allowed to determine the cooling demand required in the facility, where the constructed thermal demand profiles reflect future operating conditions, and to obtain the individual cooling capacities of the chillers. In the second phase, the black box models were built to simulate the chillers energy performance and, using a mathematical algorithm allows to obtain a combination of chiller plants. The third phase constitutes the energy evaluation through the solution of a mathematical optimization problem and using a genetic algorithm. This was carried out under the sequence approach and the optimal load of each machine against the working conditions. This analysis allows calculating the performance, the life cycle cost, and the indirect environmental impact. The paper proposes a case study to demonstrate the feasibility of applying the methodology to the initial design stage, achieving a saving of 14,4%. Finally, using statistical analysis, the method allows comparing the relationship between each chiller plant considering the design and operating parameters.
publishDate 2021
dc.date.issued.none.fl_str_mv 2021
dc.date.accessioned.none.fl_str_mv 2022-01-16T20:22:29Z
dc.date.available.none.fl_str_mv 2022-01-16T20:22:29Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_6501
status_str acceptedVersion
dc.identifier.issn.spa.fl_str_mv 2352-4847
dc.identifier.uri.spa.fl_str_mv https://hdl.handle.net/11323/8973
dc.identifier.doi.spa.fl_str_mv https://doi.org/10.1016/j.egyr.2021.07.090
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
identifier_str_mv 2352-4847
Corporación Universidad de la Costa
REDICUC - Repositorio CUC
url https://hdl.handle.net/11323/8973
https://doi.org/10.1016/j.egyr.2021.07.090
https://repositorio.cuc.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.references.spa.fl_str_mv [1] L.M. VegaB Castellanos, Yanez JP. Modeling and identification of the cooling dynamics of a tropical island hotel. Energy Build 2015;92:9–28.
[2] Ji-Hye R, Won-Hwa H, Youn-Kyu S. Characteristic analysis of peak load in electricity on large scale hotels considering the energy efficiency. Int J Smart Home 2014;8(3):207–22.
[3] Wang F, Lin H, Tu W, Wang Y, Huang Y. Energy modeling and chillers sizing of HVAC system for a hotel building. Procedia Eng 2015;121:1812–8.
[4] Gang W, Wang S, Augenbroe G, Xiao F. Robust optimal design of district cooling systems and the impacts of uncertainty and reliability. Energy Build 2016;122:11–22.
[5] Yu FW, Chan KT. Strategy for designing more energy efficient chiller plants serving air-conditioned buildings. Build Environ 2007;42(10):3737–46.
[6] Torres YD, Plasencia MÁG, Felipe PRV, Sánchez GC, González MD. Chiller plant design. Review of the aspects that involve its efficient design. Ing Energética 2020;41(1):7.
[7] ANSI/ASHRAE/IES Standard 901-2013. Energy Standard for buildings Except Low-Rise Residential Buildings. I-P edition.
[8] Chan RK, Lee EW, Yuen RK. An integrated model for the design of air-cooled chiller plants for commercial buildings. Build Environ 2011;46(1):196–209.
[9] Taylor S. Fundamentals of design and control of central chilled-water plans (IP). Atlanta ASHRAE; 2017, Capitulo 6. [consulted 20 2020].
[10] Bitondo M, Tosí J. Chiller control plant. Syracuse. New Cork. EUA: Carrier Corporation; 1999.
[11] Haviland JR. Central plant retrofit considerations. Energy Eng 2002;99(3):48–58.
[12] Mathew P, Greenberg S. Labs21 sustainable design programming checklist version 1.0. (No. LBNL-55506). Berkeley, CA (US): Ernest Orlando Lawrence Berkeley National Laboratory; 2005.
[13] Stanford III HW. HVAC water chillers and cooling towers: Fundamentals, application, and operation. CRC Press; 2011.
[14] Yu FW, Chan KT. Low-energy design for air-cooled chiller plants in air-conditioned buildings. Energy Build 2006;38(4):334–9.
[15] Gang W, Wang S, Xiao F, Gao DC. Robust optimal design of building cooling systems considering cooling load uncertainty and equipment reliability. Appl Energy 2015a;159:265–75.
[16] Gang W, Wang S, Yan C, Xiao F. Robust optimal design of building cooling systems concerning uncertainties using mini-max regret theory. Sci Technol Built Environ 2015b;21(6):789–99.
[17] Cheng Q, Yan C, Wang S. Robust optimal design of chiller plants based on cooling load distribution. Energy Procedia 2015;75:1354–9.
[18] Kang Y, Augenbroe G, Li Q, Wang Q. Effects of scenario uncertainty on chiller sizing method. Appl Therm Eng 2017;123:187–95.
[19] Cheng Q, Wang S, Yan C, Xiao F. Probabilistic approach for uncertainty-based optimal design of chiller plants in buildings. Appl Energy 2017;185:1613–24.
[20] Huang P, Huang G, Augenbroe G, Li S. Optimal configuration of multiple-chiller plants under cooling load uncertainty for different climate effects and building types. Energy Build 2018;158:684–97.
[21] Li H, Wang S, Xiao F. Probabilistic optimal design and on-site adaptive commissioning of building air-conditioning systems concerning uncertainties. Energy Procedia 2019;158:2725–30.
[22] Shiming D. Sizing replacement chiller plants2. ASHRAE J 2002;44(6):47.
[23] Zheng ZX, Li JQ. Optimal chiller loading by improved invasive weed optimization algorithm for reducing energy consumption. Energy Build 2018;161:80–8.
[24] Zheng ZX, Li JQ, Duan PY. Optimal chiller loading by improved artificial fish swarm algorithm for energy saving. Math Comput Simulation 2019;155:227–43.
[25] Handbook, ASHRAE. Fundamentals. In: Ventilating and air-conditioning engineers. ASHRAE–American Society of Heating; 2017.
[26] Torres YD, Herrera HH, Plasencia MAAG, Novo EP, Cabrera LP, et al. Heating ventilation and air-conditioned configurations for hotels an approach review for the design and exploitation. Energy Rep 2020a;6:487–97.
[27] Lapin L. Statistics: Meaning and method. 2nd ed.. Harcourt Brace Jovanovich; 1980.
[28] Correia R, Diaz Y. Análisis estadístico de perfiles de demanda térmica (Tesis de Grado), Cuba: Universidad de Cienfuegos.; 2020.
[29] Torres YD, Justiz MS, Francisco JL, Lazo DÁ, Torres YM, Guerra MA. Methodology for the preparation and selection of black box mathematical models for the energy simulation of screw type chillers. Ing Mec 2020b;23(3):1–6.
[30] Sun Y, Wang S, Xiao F. In situ performance comparison and evaluation of three chiller sequencing control strategies in a super high-rise building. Energy Build 2013;61:333–43.
[31] Huang S, Zuo W, Sohn MD. A new method for the optimal chiller sequencing control. In: Proceedings of the 14th conference of IBPSA. Hyderabad, India: 2015. p. 316–23.
[32] Chang YC, Lin FA, Lin CH. Optimal chiller sequencing by branch and bound method for saving energy. Energy Convers Manage 2005;46(13–14):2158–72.
[33] Tredinnick S. Inside insights-Benefits of economic analyses (part 2): Real-world examples. Dist Energy 2011;97(3):66.
[34] CIBSE A. Environmental design. The Chartered Institution of Building Services Engineers London; 2018.
[35] Montelier S. Reducción del consumo de energía en instalaciones con sistemas de climatización centralizada Todo Agua a Flujo constante (Tesis Doctoral), Cuba: Universidad de Cienfuegos; 2008.
[36] Cuza V. Estudio energético del Sistema de climatización del Hotel Jagua (Tesis de maestría), Cuba: Universidad de Cienfuegos; 2010.
[37] Díaz Y, Monteagudo JP, Bravo D. Análisis energético de un sistema híbrido de producción de frío. Ing Energética 2015;36(1):38–49.
[38] Díaz Y, Valdivia Y, Monteagudo JP, Miranda Y. Application of building energy simulation in the validation of operational strategies of HVAC systems on a tropical hotel. Ing Mec 2017;20(1):31–8.
[39] Valdivia Nodal Y, Díaz Torres Y, Lapido Rodríguez M. Alternativas de producción de agua caliente sanitaria en instalaciones hoteleras con climatización centralizada. Rev Univ Soc 2015;7(3):88–94.
[40] Udawatta L, Perera A, Witharana S. Analysis of sensory information for efficient operation of energy management systems in commercial hotels2. Electron J Struct Eng 2010;11:3–120.
[41] Yang Z, Ghahramani A, Becerik-Gerber B. Building occupancy diversity and HVAC (heating, ventilation, and air conditioning) system energy efficiency. Energy 2016;109:641–9.
[42] Shenzhen Hero-Tech Refrigeration Equipment Co, Ltd. 2020, https://hero-tech.en.made-in-china.com/product-group/LMQJDqIlsgkP/Air -cooled-screw-chiller-catalog-2.html.
[43] Cardoso AI, García DM, García JF. Evaluación de la factibilidad económico-financiera del proyecto de inversión. Centro Cultural Julio Antonio Mella. Cienfuegos. Univ Soc 2019;11(5):8–18.
[44] Meneses E, Roig A, Paz E, Alonso D, Alvarado J. Factores de emisión de CO, CO2, NOx y SO2 para instalaciones generadoras de electricidad en Cuba. Rev Cuba Meteorol 2018;24(1):1–9.
dc.rights.spa.fl_str_mv CC0 1.0 Universal
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/publicdomain/zero/1.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv CC0 1.0 Universal
http://creativecommons.org/publicdomain/zero/1.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Corporación Universidad de la Costa
dc.source.spa.fl_str_mv Energy Reports
institution Corporación Universidad de la Costa
dc.source.url.spa.fl_str_mv https://www.sciencedirect.com/science/article/pii/S2352484721005539
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/68fdcbb5-2d02-43dc-bdbf-a871f925afd7/download
https://repositorio.cuc.edu.co/bitstreams/34f7e207-c1dd-452d-bee2-a05a99bfa351/download
https://repositorio.cuc.edu.co/bitstreams/90a988f1-f82c-4bb6-9d4d-c75483db4e50/download
https://repositorio.cuc.edu.co/bitstreams/a27955bb-4166-4dee-9ad2-b25a03e63384/download
https://repositorio.cuc.edu.co/bitstreams/c8af43bf-a433-462d-b5fb-31f24f2c53c2/download
bitstream.checksum.fl_str_mv 8aa5092e2facd2b8bb36f7f6dbed8645
42fd4ad1e89814f5e4a476b409eb708c
e30e9215131d99561d40d6b0abbe9bad
8361b6d367ce20e3d4ec04675fcbd4a6
cf98b1e9d54cdf5644d566ed080503b4
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1811760831242698752
spelling diaz torres, yamileReyes Calvo, RoyHernández Herrera, HernánÁlvarez Guerra, Mario A.Gómez Sarduy, Julio RafaelSilva Ortega, Jorge I2022-01-16T20:22:29Z2022-01-16T20:22:29Z20212352-4847https://hdl.handle.net/11323/8973https://doi.org/10.1016/j.egyr.2021.07.090Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/The article presents a novel methodology for designing chiller plants for a hotel facility to determine the optimal distribution of the chillers cooling capacity that compose the plant. The methodology proposes three phases. In the first, the statistical analysis allowed to determine the cooling demand required in the facility, where the constructed thermal demand profiles reflect future operating conditions, and to obtain the individual cooling capacities of the chillers. In the second phase, the black box models were built to simulate the chillers energy performance and, using a mathematical algorithm allows to obtain a combination of chiller plants. The third phase constitutes the energy evaluation through the solution of a mathematical optimization problem and using a genetic algorithm. This was carried out under the sequence approach and the optimal load of each machine against the working conditions. This analysis allows calculating the performance, the life cycle cost, and the indirect environmental impact. The paper proposes a case study to demonstrate the feasibility of applying the methodology to the initial design stage, achieving a saving of 14,4%. Finally, using statistical analysis, the method allows comparing the relationship between each chiller plant considering the design and operating parameters.diaz torres, yamile-will be generated-orcid-0000-0002-8729-7032-600Reyes Calvo, Roy-will be generated-orcid-0000-0002-7382-9878-600Hernández Herrera, HernánÁlvarez Guerra, Mario A.Gómez Sarduy, Julio Rafael-will be generated-orcid-0000-0003-3313-6572-600Silva Ortega, Jorge I-will be generated-orcid-0000-0002-7813-0142-600application/pdfengCorporación Universidad de la CostaCC0 1.0 Universalhttp://creativecommons.org/publicdomain/zero/1.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Energy Reportshttps://www.sciencedirect.com/science/article/pii/S2352484721005539Genetic algorithmChiller plantCooling capacityOptimal chiller loading and sequenceHotel facilitiesProcedure to obtain the optimal distribution cooling capacity of an air-condensed chiller plant for a hotel facility conceptual designArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersion[1] L.M. VegaB Castellanos, Yanez JP. Modeling and identification of the cooling dynamics of a tropical island hotel. Energy Build 2015;92:9–28.[2] Ji-Hye R, Won-Hwa H, Youn-Kyu S. Characteristic analysis of peak load in electricity on large scale hotels considering the energy efficiency. Int J Smart Home 2014;8(3):207–22.[3] Wang F, Lin H, Tu W, Wang Y, Huang Y. Energy modeling and chillers sizing of HVAC system for a hotel building. Procedia Eng 2015;121:1812–8.[4] Gang W, Wang S, Augenbroe G, Xiao F. Robust optimal design of district cooling systems and the impacts of uncertainty and reliability. Energy Build 2016;122:11–22.[5] Yu FW, Chan KT. Strategy for designing more energy efficient chiller plants serving air-conditioned buildings. Build Environ 2007;42(10):3737–46.[6] Torres YD, Plasencia MÁG, Felipe PRV, Sánchez GC, González MD. Chiller plant design. Review of the aspects that involve its efficient design. Ing Energética 2020;41(1):7.[7] ANSI/ASHRAE/IES Standard 901-2013. Energy Standard for buildings Except Low-Rise Residential Buildings. I-P edition.[8] Chan RK, Lee EW, Yuen RK. An integrated model for the design of air-cooled chiller plants for commercial buildings. Build Environ 2011;46(1):196–209.[9] Taylor S. Fundamentals of design and control of central chilled-water plans (IP). Atlanta ASHRAE; 2017, Capitulo 6. [consulted 20 2020].[10] Bitondo M, Tosí J. Chiller control plant. Syracuse. New Cork. EUA: Carrier Corporation; 1999.[11] Haviland JR. Central plant retrofit considerations. Energy Eng 2002;99(3):48–58.[12] Mathew P, Greenberg S. Labs21 sustainable design programming checklist version 1.0. (No. LBNL-55506). Berkeley, CA (US): Ernest Orlando Lawrence Berkeley National Laboratory; 2005.[13] Stanford III HW. HVAC water chillers and cooling towers: Fundamentals, application, and operation. CRC Press; 2011.[14] Yu FW, Chan KT. Low-energy design for air-cooled chiller plants in air-conditioned buildings. Energy Build 2006;38(4):334–9.[15] Gang W, Wang S, Xiao F, Gao DC. Robust optimal design of building cooling systems considering cooling load uncertainty and equipment reliability. Appl Energy 2015a;159:265–75.[16] Gang W, Wang S, Yan C, Xiao F. Robust optimal design of building cooling systems concerning uncertainties using mini-max regret theory. Sci Technol Built Environ 2015b;21(6):789–99.[17] Cheng Q, Yan C, Wang S. Robust optimal design of chiller plants based on cooling load distribution. Energy Procedia 2015;75:1354–9.[18] Kang Y, Augenbroe G, Li Q, Wang Q. Effects of scenario uncertainty on chiller sizing method. Appl Therm Eng 2017;123:187–95.[19] Cheng Q, Wang S, Yan C, Xiao F. Probabilistic approach for uncertainty-based optimal design of chiller plants in buildings. Appl Energy 2017;185:1613–24.[20] Huang P, Huang G, Augenbroe G, Li S. Optimal configuration of multiple-chiller plants under cooling load uncertainty for different climate effects and building types. Energy Build 2018;158:684–97.[21] Li H, Wang S, Xiao F. Probabilistic optimal design and on-site adaptive commissioning of building air-conditioning systems concerning uncertainties. Energy Procedia 2019;158:2725–30.[22] Shiming D. Sizing replacement chiller plants2. ASHRAE J 2002;44(6):47.[23] Zheng ZX, Li JQ. Optimal chiller loading by improved invasive weed optimization algorithm for reducing energy consumption. Energy Build 2018;161:80–8.[24] Zheng ZX, Li JQ, Duan PY. Optimal chiller loading by improved artificial fish swarm algorithm for energy saving. Math Comput Simulation 2019;155:227–43.[25] Handbook, ASHRAE. Fundamentals. In: Ventilating and air-conditioning engineers. ASHRAE–American Society of Heating; 2017.[26] Torres YD, Herrera HH, Plasencia MAAG, Novo EP, Cabrera LP, et al. Heating ventilation and air-conditioned configurations for hotels an approach review for the design and exploitation. Energy Rep 2020a;6:487–97.[27] Lapin L. Statistics: Meaning and method. 2nd ed.. Harcourt Brace Jovanovich; 1980.[28] Correia R, Diaz Y. Análisis estadístico de perfiles de demanda térmica (Tesis de Grado), Cuba: Universidad de Cienfuegos.; 2020.[29] Torres YD, Justiz MS, Francisco JL, Lazo DÁ, Torres YM, Guerra MA. Methodology for the preparation and selection of black box mathematical models for the energy simulation of screw type chillers. Ing Mec 2020b;23(3):1–6.[30] Sun Y, Wang S, Xiao F. In situ performance comparison and evaluation of three chiller sequencing control strategies in a super high-rise building. Energy Build 2013;61:333–43.[31] Huang S, Zuo W, Sohn MD. A new method for the optimal chiller sequencing control. In: Proceedings of the 14th conference of IBPSA. Hyderabad, India: 2015. p. 316–23.[32] Chang YC, Lin FA, Lin CH. Optimal chiller sequencing by branch and bound method for saving energy. Energy Convers Manage 2005;46(13–14):2158–72.[33] Tredinnick S. Inside insights-Benefits of economic analyses (part 2): Real-world examples. Dist Energy 2011;97(3):66.[34] CIBSE A. Environmental design. The Chartered Institution of Building Services Engineers London; 2018.[35] Montelier S. Reducción del consumo de energía en instalaciones con sistemas de climatización centralizada Todo Agua a Flujo constante (Tesis Doctoral), Cuba: Universidad de Cienfuegos; 2008.[36] Cuza V. Estudio energético del Sistema de climatización del Hotel Jagua (Tesis de maestría), Cuba: Universidad de Cienfuegos; 2010.[37] Díaz Y, Monteagudo JP, Bravo D. Análisis energético de un sistema híbrido de producción de frío. Ing Energética 2015;36(1):38–49.[38] Díaz Y, Valdivia Y, Monteagudo JP, Miranda Y. Application of building energy simulation in the validation of operational strategies of HVAC systems on a tropical hotel. Ing Mec 2017;20(1):31–8.[39] Valdivia Nodal Y, Díaz Torres Y, Lapido Rodríguez M. Alternativas de producción de agua caliente sanitaria en instalaciones hoteleras con climatización centralizada. Rev Univ Soc 2015;7(3):88–94.[40] Udawatta L, Perera A, Witharana S. Analysis of sensory information for efficient operation of energy management systems in commercial hotels2. Electron J Struct Eng 2010;11:3–120.[41] Yang Z, Ghahramani A, Becerik-Gerber B. Building occupancy diversity and HVAC (heating, ventilation, and air conditioning) system energy efficiency. Energy 2016;109:641–9.[42] Shenzhen Hero-Tech Refrigeration Equipment Co, Ltd. 2020, https://hero-tech.en.made-in-china.com/product-group/LMQJDqIlsgkP/Air -cooled-screw-chiller-catalog-2.html.[43] Cardoso AI, García DM, García JF. Evaluación de la factibilidad económico-financiera del proyecto de inversión. Centro Cultural Julio Antonio Mella. Cienfuegos. Univ Soc 2019;11(5):8–18.[44] Meneses E, Roig A, Paz E, Alonso D, Alvarado J. Factores de emisión de CO, CO2, NOx y SO2 para instalaciones generadoras de electricidad en Cuba. Rev Cuba Meteorol 2018;24(1):1–9.PublicationORIGINALProcedure to obtain the optimal distribution cooling capacity of an air-condensed chiller plant for a hotel facility conceptual design.pdfProcedure to obtain the optimal distribution cooling capacity of an air-condensed chiller plant for a hotel facility conceptual design.pdfapplication/pdf1756535https://repositorio.cuc.edu.co/bitstreams/68fdcbb5-2d02-43dc-bdbf-a871f925afd7/download8aa5092e2facd2b8bb36f7f6dbed8645MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8701https://repositorio.cuc.edu.co/bitstreams/34f7e207-c1dd-452d-bee2-a05a99bfa351/download42fd4ad1e89814f5e4a476b409eb708cMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/90a988f1-f82c-4bb6-9d4d-c75483db4e50/downloade30e9215131d99561d40d6b0abbe9badMD53THUMBNAILProcedure to obtain the optimal distribution cooling capacity of an air-condensed chiller plant for a hotel facility conceptual design.pdf.jpgProcedure to obtain the optimal distribution cooling capacity of an air-condensed chiller plant for a hotel facility conceptual design.pdf.jpgimage/jpeg54236https://repositorio.cuc.edu.co/bitstreams/a27955bb-4166-4dee-9ad2-b25a03e63384/download8361b6d367ce20e3d4ec04675fcbd4a6MD54TEXTProcedure to obtain the optimal distribution cooling capacity of an air-condensed chiller plant for a hotel facility conceptual design.pdf.txtProcedure to obtain the optimal distribution cooling capacity of an air-condensed chiller plant for a hotel facility conceptual design.pdf.txttext/plain51304https://repositorio.cuc.edu.co/bitstreams/c8af43bf-a433-462d-b5fb-31f24f2c53c2/downloadcf98b1e9d54cdf5644d566ed080503b4MD5511323/8973oai:repositorio.cuc.edu.co:11323/89732024-09-17 14:07:06.557http://creativecommons.org/publicdomain/zero/1.0/CC0 1.0 Universalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA==