Demand forecasting method using artificial neural networks

Based on a forecast, the decision maker can determine the capacity required to meet a certain forecast demand, as well as carry out in advance the balance of capacities in order to avoid underusing or bottlenecks. This article proposes a procedure for forecasting demand through Artificial Neural Net...

Full description

Autores:
amelec, viloria
Arrieta Matos, Fernanda
Gaitán, Mercedes
Hernández Palma, Hugo
Flórez Guzman, Yasmin
CABAS VASQUEZ, LUIS CARLOS
Vargas Mercado, Carlos
Pineda Lezama, Omar Bonerge
Tipo de recurso:
http://purl.org/coar/resource_type/c_816b
Fecha de publicación:
2019
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/5869
Acceso en línea:
http://hdl.handle.net/11323/5869
https://repositorio.cuc.edu.co/
Palabra clave:
Forecast
Artificial Neural Networks
Big Data
Demand
Pronóstico
Redes neuronales artificiales
Big Data
Demanda
Rights
openAccess
License
http://creativecommons.org/publicdomain/zero/1.0/
id RCUC2_7cbbde8554472f2a66f6ac67fa91cb11
oai_identifier_str oai:repositorio.cuc.edu.co:11323/5869
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.spa.fl_str_mv Demand forecasting method using artificial neural networks
dc.title.translated.spa.fl_str_mv Método de pronóstico de la demanda utilizando redes neuronales artificiales
title Demand forecasting method using artificial neural networks
spellingShingle Demand forecasting method using artificial neural networks
Forecast
Artificial Neural Networks
Big Data
Demand
Pronóstico
Redes neuronales artificiales
Big Data
Demanda
title_short Demand forecasting method using artificial neural networks
title_full Demand forecasting method using artificial neural networks
title_fullStr Demand forecasting method using artificial neural networks
title_full_unstemmed Demand forecasting method using artificial neural networks
title_sort Demand forecasting method using artificial neural networks
dc.creator.fl_str_mv amelec, viloria
Arrieta Matos, Fernanda
Gaitán, Mercedes
Hernández Palma, Hugo
Flórez Guzman, Yasmin
CABAS VASQUEZ, LUIS CARLOS
Vargas Mercado, Carlos
Pineda Lezama, Omar Bonerge
dc.contributor.author.spa.fl_str_mv amelec, viloria
Arrieta Matos, Fernanda
Gaitán, Mercedes
Hernández Palma, Hugo
Flórez Guzman, Yasmin
CABAS VASQUEZ, LUIS CARLOS
Vargas Mercado, Carlos
Pineda Lezama, Omar Bonerge
dc.subject.spa.fl_str_mv Forecast
Artificial Neural Networks
Big Data
Demand
Pronóstico
Redes neuronales artificiales
Big Data
Demanda
topic Forecast
Artificial Neural Networks
Big Data
Demand
Pronóstico
Redes neuronales artificiales
Big Data
Demanda
description Based on a forecast, the decision maker can determine the capacity required to meet a certain forecast demand, as well as carry out in advance the balance of capacities in order to avoid underusing or bottlenecks. This article proposes a procedure for forecasting demand through Artificial Neural Networks. In order to carry out the validation, the procedure proposed was applied in a Soda Trading and Distribution Company where three types of products were selected
publishDate 2019
dc.date.issued.none.fl_str_mv 2019
dc.date.accessioned.none.fl_str_mv 2020-01-17T19:42:45Z
dc.date.available.none.fl_str_mv 2020-01-17T19:42:45Z
dc.type.spa.fl_str_mv Pre-Publicación
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_816b
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/preprint
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ARTOTR
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_816b
status_str acceptedVersion
dc.identifier.uri.spa.fl_str_mv http://hdl.handle.net/11323/5869
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
url http://hdl.handle.net/11323/5869
https://repositorio.cuc.edu.co/
identifier_str_mv Corporación Universidad de la Costa
REDICUC - Repositorio CUC
dc.language.iso.none.fl_str_mv eng
language eng
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/publicdomain/zero/1.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv http://creativecommons.org/publicdomain/zero/1.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.publisher.spa.fl_str_mv Universidad de la Costa
institution Corporación Universidad de la Costa
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/5c4b8016-61e4-4b8f-b61e-fd63000159f0/download
https://repositorio.cuc.edu.co/bitstreams/6405069f-19d9-4c3c-9ac9-ff82e3a9face/download
https://repositorio.cuc.edu.co/bitstreams/eb0beba6-8184-4977-84c8-f40f6e169e04/download
https://repositorio.cuc.edu.co/bitstreams/dc107021-d4d6-416f-a84a-ac730ede9a94/download
https://repositorio.cuc.edu.co/bitstreams/3304f297-825c-46f3-aebb-387224afabd1/download
bitstream.checksum.fl_str_mv 8a4605be74aa9ea9d79846c1fba20a33
42fd4ad1e89814f5e4a476b409eb708c
a13d6cca99a7d40a4fcca1592b036bf9
2def158c0be6a345d2760f2d32ce6adb
719d7248c2f281be51a62cd314b61fe4
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1811760669476782080
spelling amelec, viloriaArrieta Matos, FernandaGaitán, MercedesHernández Palma, HugoFlórez Guzman, YasminCABAS VASQUEZ, LUIS CARLOSVargas Mercado, CarlosPineda Lezama, Omar Bonerge2020-01-17T19:42:45Z2020-01-17T19:42:45Z2019http://hdl.handle.net/11323/5869Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/Based on a forecast, the decision maker can determine the capacity required to meet a certain forecast demand, as well as carry out in advance the balance of capacities in order to avoid underusing or bottlenecks. This article proposes a procedure for forecasting demand through Artificial Neural Networks. In order to carry out the validation, the procedure proposed was applied in a Soda Trading and Distribution Company where three types of products were selectedEn función de un pronóstico, el responsable de la toma de decisiones puede determinar la capacidad requerida para satisfacer una determinada demanda de pronóstico, así como llevar a cabo de antemano el equilibrio de capacidades para evitar subutilizaciones o cuellos de botella. Este artículo propone un procedimiento para pronosticar la demanda a través de redes neuronales artificiales. Para llevar a cabo la validación, el procedimiento propuesto se aplicó en una empresa de distribución y comercialización de refrescos donde se seleccionaron tres tipos de productos.Amelec, Viloria-will be generated-orcid-0000-0003-2673-6350-600Arrieta Matos, FernandaGaitán, MercedesHernández Palma, HugoFlórez Guzman, Yasmin-will be generated-orcid-0000-0002-1114-8356-600Cabas Vásquez, Luis Carlos-will be generated-orcid-0000-0003-0524-7945-600Vargas Mercado, Carlos-will be generated-orcid-0000-0002-5436-0568-600Pineda Lezama, Omar BonergeengUniversidad de la Costahttp://creativecommons.org/publicdomain/zero/1.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2ForecastArtificial Neural NetworksBig DataDemandPronósticoRedes neuronales artificialesBig DataDemandaDemand forecasting method using artificial neural networksMétodo de pronóstico de la demanda utilizando redes neuronales artificialesPre-Publicaciónhttp://purl.org/coar/resource_type/c_816bTextinfo:eu-repo/semantics/preprinthttp://purl.org/redcol/resource_type/ARTOTRinfo:eu-repo/semantics/acceptedVersionPublicationLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.cuc.edu.co/bitstreams/5c4b8016-61e4-4b8f-b61e-fd63000159f0/download8a4605be74aa9ea9d79846c1fba20a33MD55CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8701https://repositorio.cuc.edu.co/bitstreams/6405069f-19d9-4c3c-9ac9-ff82e3a9face/download42fd4ad1e89814f5e4a476b409eb708cMD52ORIGINALDEMAND FORECASTING METHOD USING ARTIFICIAL NEURAL NETWORKS.pdfDEMAND FORECASTING METHOD USING ARTIFICIAL NEURAL NETWORKS.pdfapplication/pdf5927https://repositorio.cuc.edu.co/bitstreams/eb0beba6-8184-4977-84c8-f40f6e169e04/downloada13d6cca99a7d40a4fcca1592b036bf9MD54THUMBNAILDEMAND FORECASTING METHOD USING ARTIFICIAL NEURAL NETWORKS.pdf.jpgDEMAND FORECASTING METHOD USING ARTIFICIAL NEURAL NETWORKS.pdf.jpgimage/jpeg32923https://repositorio.cuc.edu.co/bitstreams/dc107021-d4d6-416f-a84a-ac730ede9a94/download2def158c0be6a345d2760f2d32ce6adbMD57TEXTDEMAND FORECASTING METHOD USING ARTIFICIAL NEURAL NETWORKS.pdf.txtDEMAND FORECASTING METHOD USING ARTIFICIAL NEURAL NETWORKS.pdf.txttext/plain804https://repositorio.cuc.edu.co/bitstreams/3304f297-825c-46f3-aebb-387224afabd1/download719d7248c2f281be51a62cd314b61fe4MD5811323/5869oai:repositorio.cuc.edu.co:11323/58692024-09-16 16:40:38.175http://creativecommons.org/publicdomain/zero/1.0/open.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=