Semi-supervised adaptive method for human activities recognition (HAR)
Using sensors and mobile devices integrated with hardware and software tools for Human Recognition Activities (HAR), is a growing scientific field, the analysis based on this information have promising benefits to detect regular and irregular behaviors in individuals during their daily activities. I...
- Autores:
-
Mendoza Palechor, Fabio
Vicario, Enrico
PATARA, FULVIO
De la Hoz Manotas, Alexis Kevin
Molina Estren, Diego
- Tipo de recurso:
- Part of book
- Fecha de publicación:
- 2022
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/9522
- Acceso en línea:
- https://hdl.handle.net/11323/9522
https://doi.org/10.1007/978-3-031-10539-5_1
https://repositorio.cuc.edu.co/
- Palabra clave:
- HAR
Data mining
Cluster
Evaluation metric
Dataset
Van Karesten
- Rights
- embargoedAccess
- License
- © 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
id |
RCUC2_7c9669a0a2ea0361f6b8eaa18f0188dc |
---|---|
oai_identifier_str |
oai:repositorio.cuc.edu.co:11323/9522 |
network_acronym_str |
RCUC2 |
network_name_str |
REDICUC - Repositorio CUC |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Semi-supervised adaptive method for human activities recognition (HAR) |
title |
Semi-supervised adaptive method for human activities recognition (HAR) |
spellingShingle |
Semi-supervised adaptive method for human activities recognition (HAR) HAR Data mining Cluster Evaluation metric Dataset Van Karesten |
title_short |
Semi-supervised adaptive method for human activities recognition (HAR) |
title_full |
Semi-supervised adaptive method for human activities recognition (HAR) |
title_fullStr |
Semi-supervised adaptive method for human activities recognition (HAR) |
title_full_unstemmed |
Semi-supervised adaptive method for human activities recognition (HAR) |
title_sort |
Semi-supervised adaptive method for human activities recognition (HAR) |
dc.creator.fl_str_mv |
Mendoza Palechor, Fabio Vicario, Enrico PATARA, FULVIO De la Hoz Manotas, Alexis Kevin Molina Estren, Diego |
dc.contributor.author.spa.fl_str_mv |
Mendoza Palechor, Fabio Vicario, Enrico PATARA, FULVIO De la Hoz Manotas, Alexis Kevin Molina Estren, Diego |
dc.subject.proposal.eng.fl_str_mv |
HAR Data mining Cluster Evaluation metric Dataset Van Karesten |
topic |
HAR Data mining Cluster Evaluation metric Dataset Van Karesten |
description |
Using sensors and mobile devices integrated with hardware and software tools for Human Recognition Activities (HAR), is a growing scientific field, the analysis based on this information have promising benefits to detect regular and irregular behaviors in individuals during their daily activities. In this study, the Van Kasteren dataset was used for the experimental stage, and it all data was processed using the data mining classification methods: Decision Trees (DT), Support Vector Machines (SVM) and Naïve Bayes (NB). These methods were applied during the training and validation processes with the proposed methodology, and the results obtained showed that all these three methods were successful to identify the cluster associated to the activities contained in the Van Kasteren dataset. The Support Vector Machines (SVM) method showed the best results with the evaluation metrics: True Positive Rate (TPR) 99.2%, False Positive Rate (FPR) 0.6%, precision (99.2%), coverage (99.2%) and F-Measure (98.8%). |
publishDate |
2022 |
dc.date.accessioned.none.fl_str_mv |
2022-09-19T13:57:25Z |
dc.date.available.none.fl_str_mv |
2022-09-19T13:57:25Z |
dc.date.issued.none.fl_str_mv |
2022 |
dc.type.spa.fl_str_mv |
Capítulo - Parte de Libro |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_3248 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/bookPart |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/CAP_LIB |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/draft |
dc.type.coarversion.spa.fl_str_mv |
http://purl.org/coar/version/c_b1a7d7d4d402bcce |
format |
http://purl.org/coar/resource_type/c_3248 |
status_str |
draft |
dc.identifier.citation.spa.fl_str_mv |
Palechor, F.M., Vicario, E., Patara, F., De la Hoz Manotas, A., Estren, D.M. (2022). Semi-supervised Adaptive Method for Human Activities Recognition (HAR). In: Saeed, K., Dvorský, J. (eds) Computer Information Systems and Industrial Management. CISIM 2022. Lecture Notes in Computer Science, vol 13293. Springer, Cham. https://doi.org/10.1007/978-3-031-10539-5_1 |
dc.identifier.isbn.spa.fl_str_mv |
978-3-031-10538-8 |
dc.identifier.uri.spa.fl_str_mv |
https://hdl.handle.net/11323/9522 |
dc.identifier.url.spa.fl_str_mv |
https://doi.org/10.1007/978-3-031-10539-5_1 |
dc.identifier.doi.spa.fl_str_mv |
10.1007/978-3-031-10539-5_1 |
dc.identifier.instname.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.identifier.reponame.spa.fl_str_mv |
REDICUC - Repositorio CUC |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.cuc.edu.co/ |
dc.identifier.eisbn.spa.fl_str_mv |
978-3-031-10539-5 |
identifier_str_mv |
Palechor, F.M., Vicario, E., Patara, F., De la Hoz Manotas, A., Estren, D.M. (2022). Semi-supervised Adaptive Method for Human Activities Recognition (HAR). In: Saeed, K., Dvorský, J. (eds) Computer Information Systems and Industrial Management. CISIM 2022. Lecture Notes in Computer Science, vol 13293. Springer, Cham. https://doi.org/10.1007/978-3-031-10539-5_1 978-3-031-10538-8 10.1007/978-3-031-10539-5_1 Corporación Universidad de la Costa REDICUC - Repositorio CUC 978-3-031-10539-5 |
url |
https://hdl.handle.net/11323/9522 https://doi.org/10.1007/978-3-031-10539-5_1 https://repositorio.cuc.edu.co/ |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartofseries.spa.fl_str_mv |
Computer Information Systems and Industrial Management. CISIM 2022.; |
dc.relation.ispartofbook.spa.fl_str_mv |
Lecture Notes in Computer Science |
dc.relation.references.spa.fl_str_mv |
Ladjailia, A., Bouchrika, I., Merouani, H.F., Harrati, N., Mahfouf, Z.: Human activity recognition via optical flow: decomposing activities into basic actions. Neural Comput. Appl. 32(21), 16387–16400 (2019). https://doi.org/10.1007/s00521-018-3951-x Banos, O., Damas, M., Pomares, H., Prieto, A., Rojas, I.: Daily living activity recognition based on statistical feature quality group selection. Expert Syst. Appl. 39(9), 8013–8021 (2012) Casale, P., Pujol, O., Radeva, P.: Human activity recognition from accelerometer data using a wearable device. In: Vitrià, J., Sanches, J.M., Hernández, M. (eds.) IbPRIA 2011. LNCS, vol. 6669, pp. 289–296. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21257-4_36 Calabria-Sarmiento, J.C., et al.: (2018). Software applications to health sector: a systematic review of literature (2018) Chen, L., Hoey, J., Nugent, C.D., Cook, D.J., Yu, Z.: Sensor-based activity recognition. IEEE Trans. Syst. Man Cybern. Part C (Appl. Rev.) 42(6), 790–808 (2012) Arifoglu, D., Bouchachia, A.: Activity recognition and abnormal behaviour detection with recurrent neural networks. Proc. Comput. Sci. 110, 86–93 (2017) Fergani, B.: Comparing HMM, LDA, SVM and Smote-SVM algorithms in classifying human activities. In: El Oualkadi, A., Choubani, F., El Moussati, A. (eds.) Proceedings of the Mediterranean Conference on Information & Communication Technologies 2015. Lecture Notes in Electrical Engineering, vol. 381, pp. 639–644. Springer, Cham (2016) Paul, P., George, T.: An effective approach for human activity recognition on smartphone. In: 2015 IEEE International Conference on Engineering and Technology (Icetech), pp. 1–3. IEEE, March 2015 Dao, M.S., Nguyen-Gia, T.A., Mai, V.C.: Daily human activities recognition using heterogeneous sensors from smartphones. Proc. Comput. Sci. 111, 323–328 (2017) Liu, Y., Nie, L., Liu, L., Rosenblum, D.S.: From action to activity: sensor-based activity recognition. Neurocomputing 181, 108–115 (2016) Concone, F., Gaglio, S., Lo Re, G., Morana, M.: Smartphone data analysis for human activity recognition. In: Esposito, F., Basili, R., Ferilli, S., Lisi, F. (eds.) AI*IA 2017. LNCS, vol. 10640, pp. 58–71. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70169-1_5 Fahad, L.G., Khan, A., Rajarajan, M.: Activity recognition in smart homes with self verification of assignments. Neurocomputing 149, 1286–1298 (2015) Manzi, A., Dario, P., Cavallo, F.: A human activity recognition system based on dynamic clustering of skeleton data. Sensors 17(5), 1100 (2017) Tran, D., Sorokin, A.: Human activity recognition with metric learning. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008. LNCS, vol. 5302, pp. 548–561. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-88682-2_42 Robertson, N., Reid, I.: A general method for human activity recognition in video. Comput. Vis. Image Underst. 104(2–3), 232–248 (2006). ISSN 1077-3142. https://doi.org/10.1016/j.cviu.2006.07.006 Balli, S., Sağbaş, E.A., Peker, M.: Human activity recognition from smart watch sensor data using a hybrid of principal component analysis and random forest algorithm. Meas. Control 52(1–2), 37–45 (2019) Ronao, C.A., Cho, S.B.: Human activity recognition with smartphone sensors using deep learning neural networks. Expert Syst. Appl. 59, 235–244 (2016) Tan, Y.E., Lo, C.C., Shieh, C.S., Miu, D., Horng, M.F.: Adaptive confidence evaluation scheme for periodic activity recognition in smart home environments. In: 2019 IEEE International Conference on Dependable, Autonomic and Secure Computing, International Conference on Pervasive Intelligence and Computing, International Conference on Cloud and Big Data Computing, Intl Conf on Cyber Science and Technology Congress (DASC/PiCom/CBDCom/CyberSciTech), pp. 1077–1081. IEEE, August 2019 Tahir, S.F., Fahad, L.G., Kifayat, K.: Key feature identification for recognition of activities performed by a smart-home resident. J. Ambient. Intell. Humaniz. Comput. 11(5), 2105–2115 (2019). https://doi.org/10.1007/s12652-019-01236-y van Kasteren, T.L.M., Englebienne, G., Kröse, B.J.A.: Activity recognition using semi-Markov models on real world smart home datasets. J. Ambient Intell. Smart Environ. 2(3), 311–325 (2010). https://doi.org/10.3233/AIS-2010-0070 Cook, D.J., Crandall, A.S., Thomas, B.L., Krishnan, N.C.: Casas: a smart home in a box. Computer 46(7), 62–69 (2013). https://doi.org/10.1109/MC.2012.328 Cook, D.J.: Learning setting-generalized activity mdoels for smart spaces. IEEE Intell. Syst. 99(1) (2011). https://doi.org/10.1109/MIS.2010.112 Singla, G., Cook, D.J., Schmitter-Edgecombe, M.: Recognizing independent and joint activities among multiple residents in smart environments. J. Ambient. Intell. Humaniz. Comput. 1(1), 57–63 (2010). https://doi.org/10.1007/s12652-009-0007-1 Chavarriaga, R., et al.: The Opportunity challenge: a benchmark database for on-body sensor-based activity recognition. Pattern Recogn. Lett. 34(15), 2033–2042 (2013). https://doi.org/10.1016/j.patrec.2012.12.014 Roggen, D., et al.: Collecting complex activity data sets in highly rich networked sensor environments. In: Seventh International Conference on Networked Sensing Systems (2010). https://doi.org/10.1109/INSS.2010.5573462 Lukowicz, P., et al.: Recording a complex, multi modal activity data set for context recognition. In: 23th International Conference on Architecture of Computing Systems (2010). http://www.opportunity-project.eu/challengeDataset. Accessed 3 July 2018 Anguita, D., et al.: A public domain dataset for Human Activity Recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning. ESANN 2013, Bruges, Belgium, pp. 437–442, April 2013 Ronao, C.A., Cho, S.: Human activity recognition using smartphone sensors with two-stage continuous hidden Markov models. In: 2014 10th International Conference on Natural Computation, pp. 681–686 (2014). https://doi.org/10.1109/ICNC.2014.6975918 Banos, O., et al.: mHealthDroid: a novel framework for agile development of mobile health applications. In: Pecchia, L., Chen, L.L., Nugent, C., Bravo, J. (eds.) IWAAL 2014. LNCS, vol. 8868, pp. 91–98. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-13105-4_14 Banos, O., et al.: Design, implementation and validation of a novel open framework for agile development of mobile health applications. BioMed. Eng. OnLine 14(S2:S6), 1–20 (2015) Chetty, G., White, M., Akther, F.: Smart phone based data mining for human activity recognition. Proc. Comput. Sci. 46, 1181–1187 (2015) Keyvanpour, M.R., Zolfaghari, S.: Augmented feature-state sensors in human activity recognition. In: 2017 9th International Conference on Information and Knowledge Technology (IKT), pp. 71–75). IEEE, October 2017 Yamada, N., Sakamoto, K., Kunito, G., Yamazaki, K., Tanaka, S.: Human activity recognition based on surrounding things. In: Tomoya Enokido, L., Yan, B.X., Kim, D., Dai, Y., Yang, L.T. (eds.) EUC 2005. LNCS, vol. 3823, pp. 1–10. Springer, Heidelberg (2005). https://doi.org/10.1007/11596042_1 Choi, J., Shin, D., Shin, D.: Ubiquitous Intelligent Sensing System for a Smart Home. In: Yeung, D.Y., Kwok, J.T., Fred, A., Roli, F., de Ridder, D. (eds.) SSPR/SPR 2006. LNCS, vol. 4109, pp. 322–330. Springer, Heidelberg (2006). https://doi.org/10.1007/11815921_35 Ravi, D., Wong, C., Lo, B., Yang, G.Z.: Deep learning for human activity recognition: A resource efficient implementation on low-power devices. In: 2016 IEEE 13th International Conference on Wearable and Implantable Body Sensor Networks (BSN), pp. 71–76. IEEE, June 2016 Gilbert, A., Illingworth, J., Bowden, R.: Scale invariant action recognition using compound features mined from dense spatio-temporal corners. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008. LNCS, vol. 5302, pp. 222–233. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-88682-2_18 Okkonen, M.A., Kellokumpu, V., Pietikäinen, M., Heikkilä, J.: A visual system for hand gesture recognition in human-computer interaction. In: Ersbøll, B.K., Pedersen, K.S. (eds.) SCIA 2007. LNCS, vol. 4522, pp. 709–718. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73040-8_72 Ozer, B., Wolf, W., Akansu, A.N.: Human activity detection in MPEG sequences. In: Proceedings Workshop on Human Motion, Austin, Texas, USA, pp. 61–66 (2000). https://doi.org/10.1109/HUMO.2000.897372 Zheng, H., Wang, H., Black, N.: Human activity detection in smart home environment with self-adaptive neural networks. In: 2008 IEEE International Conference on Networking, Sensing and Control, Sanya, pp1505–1510 (2008). https://doi.org/10.1109/ICNSC.2008.4525459 Kaur, S.: Survey of different data clustering algorithms. Int. J. Comput. Sci. Mob. Comput. 5(5), 584–588 (2016) Virdi, G., Madan, N.: Review on various enhancements in K means clustering algorithm (2018) Du, W , Lin, H., Sun, J., Yu, B., Yang, H.: A new projection-based K-means initialization algorithm. In: Proceedings of 2016 IEEE Chinese Guidance, Navigation and Control Conference, China (2016) Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: An efficient k-means clustering algorithm: analysis and implementation. IEEE Trans. Pattern Anal. Mach. Intell. 7, 881–892 (2002) Friedl, M.A., Brodley, C.E.: Decision tree classification of land cover from remotely sensed data. Remote Sens. Environ. 61(3), 399–409 (1997) Dai, W., Ji, W.: A mapreduce implementation of C4. 5 decision tree algorithm. Int. J. Database Theory Appl. 7(1), 49–60 (2014) Lausch, A., Schmidt, A., Tischendorf, L.: Data mining and linked open data—new perspectives for data analysis in environmental research. Ecol. Model. 295, 5–17 (2015) Daszykowski, M., Korzen, M., Krakowska, B., Fabianczyk, K.: Expert system for monitoring the tributyltin content in inland water samples. Chemom. Intell. Lab. Syst. 149, 123–131 (2015) Magerman, D.M.: Statistical decision-tree models for parsing. In: Proceedings of the 33rd Annual Meeting on Association for Computational Linguistics, pp. 276–283. Association for Computational Linguistics, June 1995 Zhao, Y., Zhang, Y.: Comparison of decision tree methods for finding active objects. Adv. Space Res. 41(12), 1955–1959 (2008) Suresh, K., Dillibabu, R.: Designing a machine learning based software risk assessment model using Naïve Bayes algorithm. TAGA J. 14, 3141–3147 (2018) Naik, D.L., Kiran, R.: Naïve Bayes classifier, multivariate linear regression and experimental testing for classification and characterization of wheat straw based on mechanical properties. Ind. Crops Prod. 112, 434–448 (2018) Picard, R.W., et al.: Affective learning—a manifesto. BT Technol. J. 22(4), 253–269 (2004) Patil, T.R., Sherekar, S.S.: Performance analysis of Naive Bayes and J48 classification algorithm for data classification. Int. J. Comput. Sci. Appl. 6(2), 256–261 (2013) O’Reilly, K.M.A., Mclaughlin, A.M., Beckett, W.S., Sime, P.J.: Asbestos-related lung disease. Am. Family Phys. 75(5), 683–688 (2007) James, A., Abu-Mostafa, Y., Qiao, X.: Nowcasting recessions using the SVM machine learning algorithm. Available at SSRN 3316917 (2018) Vapnik, V.: Statistical Learning Theory. Wiley, Hoboken (1998) Papageorgiou, C., Oren, M., Poggio, T.: A general framework for object detection. In: Proceedings of the International Conference on Computer Vision (1998) Joachims, T.: Text categorization with support vector machines: learning with many relevant features. In: Nédellec, C., Rouveirol, C. (eds.) ECML 1998. LNCS, vol. 1398, pp. 137–142. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0026683 Kim, Y., Ling, H.: Human activity classification based on micro-Doppler signatures using a support vector machine. IEEE Trans. Geosci. Remote Sens. 47(5), 1328–1337 (2009) Da Silva, F., Niedermeyer, E.: Electroencephalography: Basic Principles. Clinical Applications, and Related Fields. William & Wikins, Baltimore (1993) Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: SMOTE: synthetic minority over-sampling technique. J. Artif. Intell. Res. 16, 321–357 (2002) Palechor, F.M., de la Hoz Manotas, A.: Dataset for estimation of obesity levels based on eating habits and physical condition in individuals from Colombia, Peru and Mexico. Data in brief 25, 104344 (2019) Ng, A.: Clustering with the k-means algorithm. Mach. Learn. (2012) Kodinariya, T.M., Makwana, P.R.: Review on determining number of cluster in K-means clustering. Int. J. 1(6), 90–95 (2013) |
dc.rights.spa.fl_str_mv |
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) |
dc.rights.uri.spa.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/embargoedAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_f1cf |
rights_invalid_str_mv |
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) https://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_f1cf |
eu_rights_str_mv |
embargoedAccess |
dc.format.extent.spa.fl_str_mv |
1 página |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Springer, Cham |
dc.publisher.place.spa.fl_str_mv |
Switzerland |
institution |
Corporación Universidad de la Costa |
dc.source.url.spa.fl_str_mv |
https://link.springer.com/chapter/10.1007/978-3-031-10539-5_1 |
bitstream.url.fl_str_mv |
https://repositorio.cuc.edu.co/bitstreams/d56f8640-f771-4f0f-b2f4-37007fec438e/download https://repositorio.cuc.edu.co/bitstreams/c18eb630-0abd-42c0-86e2-b83e7f78ce8a/download https://repositorio.cuc.edu.co/bitstreams/857b02a5-c311-4f83-8dbc-7d7259c5b1f4/download https://repositorio.cuc.edu.co/bitstreams/9efcfb0d-41f5-4e4e-9206-1f5d4ff94c51/download |
bitstream.checksum.fl_str_mv |
2cee7c424edaf0695b82c3164d342a0c e30e9215131d99561d40d6b0abbe9bad e416b2a5976102b4a291693a1b706fa6 36fbd2aba8cd258135c68602a87a470f |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad de la Costa CUC |
repository.mail.fl_str_mv |
repdigital@cuc.edu.co |
_version_ |
1811760786732744704 |
spelling |
Mendoza Palechor, FabioVicario, EnricoPATARA, FULVIODe la Hoz Manotas, Alexis KevinMolina Estren, Diego2022-09-19T13:57:25Z2022-09-19T13:57:25Z2022Palechor, F.M., Vicario, E., Patara, F., De la Hoz Manotas, A., Estren, D.M. (2022). Semi-supervised Adaptive Method for Human Activities Recognition (HAR). In: Saeed, K., Dvorský, J. (eds) Computer Information Systems and Industrial Management. CISIM 2022. Lecture Notes in Computer Science, vol 13293. Springer, Cham. https://doi.org/10.1007/978-3-031-10539-5_1978-3-031-10538-8https://hdl.handle.net/11323/9522https://doi.org/10.1007/978-3-031-10539-5_110.1007/978-3-031-10539-5_1Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/978-3-031-10539-5Using sensors and mobile devices integrated with hardware and software tools for Human Recognition Activities (HAR), is a growing scientific field, the analysis based on this information have promising benefits to detect regular and irregular behaviors in individuals during their daily activities. In this study, the Van Kasteren dataset was used for the experimental stage, and it all data was processed using the data mining classification methods: Decision Trees (DT), Support Vector Machines (SVM) and Naïve Bayes (NB). These methods were applied during the training and validation processes with the proposed methodology, and the results obtained showed that all these three methods were successful to identify the cluster associated to the activities contained in the Van Kasteren dataset. The Support Vector Machines (SVM) method showed the best results with the evaluation metrics: True Positive Rate (TPR) 99.2%, False Positive Rate (FPR) 0.6%, precision (99.2%), coverage (99.2%) and F-Measure (98.8%).1 páginaapplication/pdfengSpringer, ChamSwitzerlandComputer Information Systems and Industrial Management. CISIM 2022.;Lecture Notes in Computer ScienceLadjailia, A., Bouchrika, I., Merouani, H.F., Harrati, N., Mahfouf, Z.: Human activity recognition via optical flow: decomposing activities into basic actions. Neural Comput. Appl. 32(21), 16387–16400 (2019). https://doi.org/10.1007/s00521-018-3951-xBanos, O., Damas, M., Pomares, H., Prieto, A., Rojas, I.: Daily living activity recognition based on statistical feature quality group selection. Expert Syst. Appl. 39(9), 8013–8021 (2012)Casale, P., Pujol, O., Radeva, P.: Human activity recognition from accelerometer data using a wearable device. In: Vitrià, J., Sanches, J.M., Hernández, M. (eds.) IbPRIA 2011. LNCS, vol. 6669, pp. 289–296. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21257-4_36Calabria-Sarmiento, J.C., et al.: (2018). Software applications to health sector: a systematic review of literature (2018)Chen, L., Hoey, J., Nugent, C.D., Cook, D.J., Yu, Z.: Sensor-based activity recognition. IEEE Trans. Syst. Man Cybern. Part C (Appl. Rev.) 42(6), 790–808 (2012)Arifoglu, D., Bouchachia, A.: Activity recognition and abnormal behaviour detection with recurrent neural networks. Proc. Comput. Sci. 110, 86–93 (2017)Fergani, B.: Comparing HMM, LDA, SVM and Smote-SVM algorithms in classifying human activities. In: El Oualkadi, A., Choubani, F., El Moussati, A. (eds.) Proceedings of the Mediterranean Conference on Information & Communication Technologies 2015. Lecture Notes in Electrical Engineering, vol. 381, pp. 639–644. Springer, Cham (2016)Paul, P., George, T.: An effective approach for human activity recognition on smartphone. In: 2015 IEEE International Conference on Engineering and Technology (Icetech), pp. 1–3. IEEE, March 2015Dao, M.S., Nguyen-Gia, T.A., Mai, V.C.: Daily human activities recognition using heterogeneous sensors from smartphones. Proc. Comput. Sci. 111, 323–328 (2017)Liu, Y., Nie, L., Liu, L., Rosenblum, D.S.: From action to activity: sensor-based activity recognition. Neurocomputing 181, 108–115 (2016) Concone, F., Gaglio, S., Lo Re, G., Morana, M.: Smartphone data analysis for human activity recognition. In: Esposito, F., Basili, R., Ferilli, S., Lisi, F. (eds.) AI*IA 2017. LNCS, vol. 10640, pp. 58–71. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70169-1_5 Fahad, L.G., Khan, A., Rajarajan, M.: Activity recognition in smart homes with self verification of assignments. Neurocomputing 149, 1286–1298 (2015)Manzi, A., Dario, P., Cavallo, F.: A human activity recognition system based on dynamic clustering of skeleton data. Sensors 17(5), 1100 (2017)Tran, D., Sorokin, A.: Human activity recognition with metric learning. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008. LNCS, vol. 5302, pp. 548–561. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-88682-2_42Robertson, N., Reid, I.: A general method for human activity recognition in video. Comput. Vis. Image Underst. 104(2–3), 232–248 (2006). ISSN 1077-3142. https://doi.org/10.1016/j.cviu.2006.07.006Balli, S., Sağbaş, E.A., Peker, M.: Human activity recognition from smart watch sensor data using a hybrid of principal component analysis and random forest algorithm. Meas. Control 52(1–2), 37–45 (2019)Ronao, C.A., Cho, S.B.: Human activity recognition with smartphone sensors using deep learning neural networks. Expert Syst. Appl. 59, 235–244 (2016)Tan, Y.E., Lo, C.C., Shieh, C.S., Miu, D., Horng, M.F.: Adaptive confidence evaluation scheme for periodic activity recognition in smart home environments. In: 2019 IEEE International Conference on Dependable, Autonomic and Secure Computing, International Conference on Pervasive Intelligence and Computing, International Conference on Cloud and Big Data Computing, Intl Conf on Cyber Science and Technology Congress (DASC/PiCom/CBDCom/CyberSciTech), pp. 1077–1081. IEEE, August 2019Tahir, S.F., Fahad, L.G., Kifayat, K.: Key feature identification for recognition of activities performed by a smart-home resident. J. Ambient. Intell. Humaniz. Comput. 11(5), 2105–2115 (2019). https://doi.org/10.1007/s12652-019-01236-yvan Kasteren, T.L.M., Englebienne, G., Kröse, B.J.A.: Activity recognition using semi-Markov models on real world smart home datasets. J. Ambient Intell. Smart Environ. 2(3), 311–325 (2010). https://doi.org/10.3233/AIS-2010-0070Cook, D.J., Crandall, A.S., Thomas, B.L., Krishnan, N.C.: Casas: a smart home in a box. Computer 46(7), 62–69 (2013). https://doi.org/10.1109/MC.2012.328Cook, D.J.: Learning setting-generalized activity mdoels for smart spaces. IEEE Intell. Syst. 99(1) (2011). https://doi.org/10.1109/MIS.2010.112Singla, G., Cook, D.J., Schmitter-Edgecombe, M.: Recognizing independent and joint activities among multiple residents in smart environments. J. Ambient. Intell. Humaniz. Comput. 1(1), 57–63 (2010). https://doi.org/10.1007/s12652-009-0007-1Chavarriaga, R., et al.: The Opportunity challenge: a benchmark database for on-body sensor-based activity recognition. Pattern Recogn. Lett. 34(15), 2033–2042 (2013). https://doi.org/10.1016/j.patrec.2012.12.014Roggen, D., et al.: Collecting complex activity data sets in highly rich networked sensor environments. In: Seventh International Conference on Networked Sensing Systems (2010). https://doi.org/10.1109/INSS.2010.5573462Lukowicz, P., et al.: Recording a complex, multi modal activity data set for context recognition. In: 23th International Conference on Architecture of Computing Systems (2010). http://www.opportunity-project.eu/challengeDataset. Accessed 3 July 2018Anguita, D., et al.: A public domain dataset for Human Activity Recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning. ESANN 2013, Bruges, Belgium, pp. 437–442, April 2013Ronao, C.A., Cho, S.: Human activity recognition using smartphone sensors with two-stage continuous hidden Markov models. In: 2014 10th International Conference on Natural Computation, pp. 681–686 (2014). https://doi.org/10.1109/ICNC.2014.6975918Banos, O., et al.: mHealthDroid: a novel framework for agile development of mobile health applications. In: Pecchia, L., Chen, L.L., Nugent, C., Bravo, J. (eds.) IWAAL 2014. LNCS, vol. 8868, pp. 91–98. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-13105-4_14Banos, O., et al.: Design, implementation and validation of a novel open framework for agile development of mobile health applications. BioMed. Eng. OnLine 14(S2:S6), 1–20 (2015)Chetty, G., White, M., Akther, F.: Smart phone based data mining for human activity recognition. Proc. Comput. Sci. 46, 1181–1187 (2015)Keyvanpour, M.R., Zolfaghari, S.: Augmented feature-state sensors in human activity recognition. In: 2017 9th International Conference on Information and Knowledge Technology (IKT), pp. 71–75). IEEE, October 2017Yamada, N., Sakamoto, K., Kunito, G., Yamazaki, K., Tanaka, S.: Human activity recognition based on surrounding things. In: Tomoya Enokido, L., Yan, B.X., Kim, D., Dai, Y., Yang, L.T. (eds.) EUC 2005. LNCS, vol. 3823, pp. 1–10. Springer, Heidelberg (2005). https://doi.org/10.1007/11596042_1Choi, J., Shin, D., Shin, D.: Ubiquitous Intelligent Sensing System for a Smart Home. In: Yeung, D.Y., Kwok, J.T., Fred, A., Roli, F., de Ridder, D. (eds.) SSPR/SPR 2006. LNCS, vol. 4109, pp. 322–330. Springer, Heidelberg (2006). https://doi.org/10.1007/11815921_35Ravi, D., Wong, C., Lo, B., Yang, G.Z.: Deep learning for human activity recognition: A resource efficient implementation on low-power devices. In: 2016 IEEE 13th International Conference on Wearable and Implantable Body Sensor Networks (BSN), pp. 71–76. IEEE, June 2016Gilbert, A., Illingworth, J., Bowden, R.: Scale invariant action recognition using compound features mined from dense spatio-temporal corners. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008. LNCS, vol. 5302, pp. 222–233. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-88682-2_18Okkonen, M.A., Kellokumpu, V., Pietikäinen, M., Heikkilä, J.: A visual system for hand gesture recognition in human-computer interaction. In: Ersbøll, B.K., Pedersen, K.S. (eds.) SCIA 2007. LNCS, vol. 4522, pp. 709–718. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73040-8_72 Ozer, B., Wolf, W., Akansu, A.N.: Human activity detection in MPEG sequences. In: Proceedings Workshop on Human Motion, Austin, Texas, USA, pp. 61–66 (2000). https://doi.org/10.1109/HUMO.2000.897372Zheng, H., Wang, H., Black, N.: Human activity detection in smart home environment with self-adaptive neural networks. In: 2008 IEEE International Conference on Networking, Sensing and Control, Sanya, pp1505–1510 (2008). https://doi.org/10.1109/ICNSC.2008.4525459Kaur, S.: Survey of different data clustering algorithms. Int. J. Comput. Sci. Mob. Comput. 5(5), 584–588 (2016)Virdi, G., Madan, N.: Review on various enhancements in K means clustering algorithm (2018)Du, W , Lin, H., Sun, J., Yu, B., Yang, H.: A new projection-based K-means initialization algorithm. In: Proceedings of 2016 IEEE Chinese Guidance, Navigation and Control Conference, China (2016)Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: An efficient k-means clustering algorithm: analysis and implementation. IEEE Trans. Pattern Anal. Mach. Intell. 7, 881–892 (2002)Friedl, M.A., Brodley, C.E.: Decision tree classification of land cover from remotely sensed data. Remote Sens. Environ. 61(3), 399–409 (1997)Dai, W., Ji, W.: A mapreduce implementation of C4. 5 decision tree algorithm. Int. J. Database Theory Appl. 7(1), 49–60 (2014)Lausch, A., Schmidt, A., Tischendorf, L.: Data mining and linked open data—new perspectives for data analysis in environmental research. Ecol. Model. 295, 5–17 (2015)Daszykowski, M., Korzen, M., Krakowska, B., Fabianczyk, K.: Expert system for monitoring the tributyltin content in inland water samples. Chemom. Intell. Lab. Syst. 149, 123–131 (2015)Magerman, D.M.: Statistical decision-tree models for parsing. In: Proceedings of the 33rd Annual Meeting on Association for Computational Linguistics, pp. 276–283. Association for Computational Linguistics, June 1995Zhao, Y., Zhang, Y.: Comparison of decision tree methods for finding active objects. Adv. Space Res. 41(12), 1955–1959 (2008)Suresh, K., Dillibabu, R.: Designing a machine learning based software risk assessment model using Naïve Bayes algorithm. TAGA J. 14, 3141–3147 (2018)Naik, D.L., Kiran, R.: Naïve Bayes classifier, multivariate linear regression and experimental testing for classification and characterization of wheat straw based on mechanical properties. Ind. Crops Prod. 112, 434–448 (2018)Picard, R.W., et al.: Affective learning—a manifesto. BT Technol. J. 22(4), 253–269 (2004)Patil, T.R., Sherekar, S.S.: Performance analysis of Naive Bayes and J48 classification algorithm for data classification. Int. J. Comput. Sci. Appl. 6(2), 256–261 (2013)O’Reilly, K.M.A., Mclaughlin, A.M., Beckett, W.S., Sime, P.J.: Asbestos-related lung disease. Am. Family Phys. 75(5), 683–688 (2007)James, A., Abu-Mostafa, Y., Qiao, X.: Nowcasting recessions using the SVM machine learning algorithm. Available at SSRN 3316917 (2018)Vapnik, V.: Statistical Learning Theory. Wiley, Hoboken (1998)Papageorgiou, C., Oren, M., Poggio, T.: A general framework for object detection. In: Proceedings of the International Conference on Computer Vision (1998)Joachims, T.: Text categorization with support vector machines: learning with many relevant features. In: Nédellec, C., Rouveirol, C. (eds.) ECML 1998. LNCS, vol. 1398, pp. 137–142. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0026683Kim, Y., Ling, H.: Human activity classification based on micro-Doppler signatures using a support vector machine. IEEE Trans. Geosci. Remote Sens. 47(5), 1328–1337 (2009)Da Silva, F., Niedermeyer, E.: Electroencephalography: Basic Principles. Clinical Applications, and Related Fields. William & Wikins, Baltimore (1993)Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: SMOTE: synthetic minority over-sampling technique. J. Artif. Intell. Res. 16, 321–357 (2002)Palechor, F.M., de la Hoz Manotas, A.: Dataset for estimation of obesity levels based on eating habits and physical condition in individuals from Colombia, Peru and Mexico. Data in brief 25, 104344 (2019)Ng, A.: Clustering with the k-means algorithm. Mach. Learn. (2012)Kodinariya, T.M., Makwana, P.R.: Review on determining number of cluster in K-means clustering. Int. J. 1(6), 90–95 (2013)© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AGAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)https://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/embargoedAccesshttp://purl.org/coar/access_right/c_f1cfSemi-supervised adaptive method for human activities recognition (HAR)Capítulo - Parte de Librohttp://purl.org/coar/resource_type/c_3248Textinfo:eu-repo/semantics/bookParthttp://purl.org/redcol/resource_type/CAP_LIBinfo:eu-repo/semantics/drafthttp://purl.org/coar/version/c_b1a7d7d4d402bccehttps://link.springer.com/chapter/10.1007/978-3-031-10539-5_1HARData miningClusterEvaluation metricDatasetVan KarestenPublicationORIGINALSemi-supervised adaptive method for human activities recognition (HAR).pdfSemi-supervised adaptive method for human activities recognition (HAR).pdfapplication/pdf119805https://repositorio.cuc.edu.co/bitstreams/d56f8640-f771-4f0f-b2f4-37007fec438e/download2cee7c424edaf0695b82c3164d342a0cMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/c18eb630-0abd-42c0-86e2-b83e7f78ce8a/downloade30e9215131d99561d40d6b0abbe9badMD52TEXTSemi-supervised adaptive method for human activities recognition (HAR).pdf.txtSemi-supervised adaptive method for human activities recognition (HAR).pdf.txttext/plain1491https://repositorio.cuc.edu.co/bitstreams/857b02a5-c311-4f83-8dbc-7d7259c5b1f4/downloade416b2a5976102b4a291693a1b706fa6MD53THUMBNAILSemi-supervised adaptive method for human activities recognition (HAR).pdf.jpgSemi-supervised adaptive method for human activities recognition (HAR).pdf.jpgimage/jpeg12452https://repositorio.cuc.edu.co/bitstreams/9efcfb0d-41f5-4e4e-9206-1f5d4ff94c51/download36fbd2aba8cd258135c68602a87a470fMD5411323/9522oai:repositorio.cuc.edu.co:11323/95222024-09-17 11:09:11.002https://creativecommons.org/licenses/by-nc-nd/4.0/© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AGopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA== |