Low-cost smart indoor greenhouse for urban farming

Currently, people want to take control of what they consume as well as the local authorities pursue to implement measures to improve sustainability, food security, and living standards. Indoor urban farming initiatives provide an opportunity to grow their own and obtain fresher food with fewer trans...

Full description

Autores:
Acosta-Coll, Melisa
Anaya, Daniel
Ojeda-Field, Luis
Zamora-Musa, Ronald
Tipo de recurso:
Article of journal
Fecha de publicación:
2021
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/8846
Acceso en línea:
https://hdl.handle.net/11323/8846
https://repositorio.cuc.edu.co/
Palabra clave:
Indoor greenhouse
Smart greenhouse
Urban farming
Rights
embargoedAccess
License
CC0 1.0 Universal
id RCUC2_7c16c4e2c23a468180ad3decc0e755da
oai_identifier_str oai:repositorio.cuc.edu.co:11323/8846
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.spa.fl_str_mv Low-cost smart indoor greenhouse for urban farming
title Low-cost smart indoor greenhouse for urban farming
spellingShingle Low-cost smart indoor greenhouse for urban farming
Indoor greenhouse
Smart greenhouse
Urban farming
title_short Low-cost smart indoor greenhouse for urban farming
title_full Low-cost smart indoor greenhouse for urban farming
title_fullStr Low-cost smart indoor greenhouse for urban farming
title_full_unstemmed Low-cost smart indoor greenhouse for urban farming
title_sort Low-cost smart indoor greenhouse for urban farming
dc.creator.fl_str_mv Acosta-Coll, Melisa
Anaya, Daniel
Ojeda-Field, Luis
Zamora-Musa, Ronald
dc.contributor.author.spa.fl_str_mv Acosta-Coll, Melisa
Anaya, Daniel
Ojeda-Field, Luis
Zamora-Musa, Ronald
dc.subject.spa.fl_str_mv Indoor greenhouse
Smart greenhouse
Urban farming
topic Indoor greenhouse
Smart greenhouse
Urban farming
description Currently, people want to take control of what they consume as well as the local authorities pursue to implement measures to improve sustainability, food security, and living standards. Indoor urban farming initiatives provide an opportunity to grow their own and obtain fresher food with fewer transportation emissions, likewise, it is a strategy to lift people out of food poverty, reduce environmental impact since the use of herbicides and pesticides is minimal and helps to reduce food waste. However, factors such as the time dedicated to the cultivation of plants, and the adequate space inside their houses prevents them from carrying out this activity. This project presents the design of a low cost smart indoor greenhouse design to cultivate herbs and vegetables with minimum human intervention monitored by a web application. The prototype has three systems to control and monitor the main variables involved in the plant’s growth such as soil moisture, temperature, and solar light intensity. Likewise, it is suitable for a home with little space and it is easily installable, has low energy consumption, and is cost-efficient. © 2021, Springer Nature Switzerland AG.
publishDate 2021
dc.date.accessioned.none.fl_str_mv 2021-11-08T13:13:06Z
dc.date.available.none.fl_str_mv 2021-11-08T13:13:06Z
dc.date.issued.none.fl_str_mv 2021-09-13
dc.date.embargoEnd.none.fl_str_mv 2022-09-13
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_6501
status_str acceptedVersion
dc.identifier.issn.spa.fl_str_mv 978-303086972-4
dc.identifier.uri.spa.fl_str_mv https://hdl.handle.net/11323/8846
dc.identifier.doi.spa.fl_str_mv 10.1007/978-3-030-86973-1_9
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
identifier_str_mv 978-303086972-4
10.1007/978-3-030-86973-1_9
Corporación Universidad de la Costa
REDICUC - Repositorio CUC
url https://hdl.handle.net/11323/8846
https://repositorio.cuc.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.references.spa.fl_str_mv ANALYSIS-Urban farms to traffic bans: Cities prep for post-coronavirus future (2020) Thompson Reuters Foundation News, p. 21. April
De Bon, H., Parrot, L., Moustier, P. Sustainable urban agriculture in developing countries. A review (Open Access) (2010) Agronomy for Sustainable Development, 30 (1), pp. 21-32. Cited 179 times. doi: 10.1051/agro:2008062
Farhangi, M.H., Turvani, M.E., van der Valk, A., Carsjens, G.J. High-tech urban agriculture in Amsterdam: An actor network analysis (Open Access) (2020) Sustainability (Switzerland), 12 (10), art. no. 3955. Cited 6 times. http://www.mdpi.com/2071-1050/12/10/3955 doi: 10.3390/SU12103955
Khumalo, N.Z., Sibanda, M. Does urban and peri-urban agriculture contribute to household food security? An assessment of the food security status of households in Tongaat, eThekwini Municipality (Open Access) (2019) Sustainability (Switzerland), 11 (4), art. no. 1082. Cited 15 times. https://www.mdpi.com/2071-1050/11/4/1082/pdf doi: 10.3390/su11041082
Zasada, I. Multifunctional peri-urban agriculture-A review of societal demands and the provision of goods and services by farming (2011) Land Use Policy, 28 (4), pp. 639-648. Cited 373 times. doi: 10.1016/j.landusepol.2011.01.008
Orsini, F., Kahane, R., Nono-Womdim, R., Gianquinto, G. Urban agriculture in the developing world: A review (Open Access) (2013) Agronomy for Sustainable Development, 33 (4), pp. 695-720. Cited 252 times. doi: 10.1007/s13593-013-0143-z
Pearson, L.J., Pearson, L., Pearson, C.J. Sustainable urban agriculture: Stocktake and opportunities (2011) Urban Agriculture: Diverse Activities and Benefits for City Society, pp. 7-19. Cited 8 times. http://www.tandfebooks.com/doi/book/10.4324/9781849774857 ISBN: 978-113654314-2; 978-113898657-2 doi: 10.3763/ijas.2009.0468
Pinstrup-Andersen, P. Is it time to take vertical indoor farming seriously? (2018) Global Food Security, 17, pp. 233-235. Cited 26 times. http://ezproxy.cuc.edu.co:2147/global-food-security/ doi: 10.1016/j.gfs.2017.09.002
Kaburuan, E.R., Jayadi, R., Harisno A design of IoT-based monitoring system for intelligence indoor micro-climate horticulture farming in Indonesia (Open Access) (2019) Procedia Computer Science, 157, pp. 459-464. Cited 9 times. http://ezproxy.cuc.edu.co:2053/science/journal/18770509 doi: 10.1016/j.procs.2019.09.001
Goodman, W., Minner, J. Will the urban agricultural revolution be vertical and soilless? A case study of controlled environment agriculture in New York City (2019) Land Use Policy, 83, pp. 160-173. Cited 24 times. www.elsevier.com/inca/publications/store/3/0/4/5/1/ doi: 10.1016/j.landusepol.2018.12.038
Sammons, P.J., Furukawua, T., Bulgin, A. Autonomous pesticide spraying robot for use in a greenhouse (2005) ISBN 0–9587583–7–9
Benke, K., Tomkins, B. Future food-production systems: Vertical farming and controlled-environment agriculture (Open Access) (2017) Sustainability: Science, Practice, and Policy, 13 (1), pp. 13-26. Cited 139 times. https://ezproxy.cuc.edu.co:2191/doi/abs/10.1080/15487733.2017.1394054#aHR0cHM6Ly93d3cudGFuZGZvbmxpbmUuY29tL2RvaS9wZGYvMTAuMTA4MC8xNTQ4NzczMy4yMDE3LjEzOTQwNTRAQEAw doi: 10.1080/15487733.2017.1394054
Martin, M., Molin, E. Environmental assessment of an urban vertical hydroponic farming system in Sweden (Open Access) (2019) Sustainability (Switzerland), 11 (15), art. no. 4124. Cited 14 times. https://res.mdpi.com/sustainability/sustainability-11-04124/article_deploy/sustainability-11-04124.pdf?filename=&attachment=1 doi: 10.3390/su11154124
Pandit, A.A., Mancharkar, A.V. Green house environment monitoring and control system (2016) Int. J. Sci. Eng. Res., 7 (8).
Chitti, S., Samyu Ktha, L. Data acquisition of green house gases and energy monitoring system using GSM technology (Open Access) (2019) International Journal of Innovative Technology and Exploring Engineering, 8 (6 Special Issue 4), pp. 820-825. Cited 2 times. https://www.ijitee.org/wp-content/uploads/papers/v8i6s4/F11650486S419.pdf doi: 10.35940/ijitee.F1165.0486S419
Salazar-Aguilar, N. (2020) Diseño De Un Sistema Inteligente Para El Control Automa-Tizado De Inveranderos México, Maestría
Moliner, R., Marsh, H., Heinz, E. Del carbón activo al grafeno: Evolución de los materiales de carbono (2016) Grupo De Conversion De Combustibles. ICB-CSIC, pp. 2-5. Cited 2 times. , pp
Richard, M. El carbón activo ya se fabrica con una estructura diseñada a medida, MIT Technol. Rev (2015) 12 Junio
Omo-Okoro, P.N., Daso, A.P., Okonkwo, J.O. A review of the application of agricultural wastes as precursor materials for the adsorption of per- and polyfluoroalkyl substances: A focus on current approaches and methodologies (2018) Environmental Technology and Innovation, 9, pp. 100-114. Cited 42 times. http://ezproxy.cuc.edu.co:2147/environmental-technology-and-innovation/ doi: 10.1016/j.eti.2017.11.005
Palansooriya, K.N., et al.: Impacts of biochar application on upland agriculture: a review. J. Environ. Manage. 234(December 2018), 52–64 (2019). https://ezproxy.cuc.edu.co:2067/10.1016/j.jenvman. 2018.12.085
(2018) Green Power: Eco Friendly Technology. El Uso De carbón Vegetal Como Fertilizante, 27.
Jacobo Mendez Alzamora Consultor Eco-Agricultura, C. PGSJ): Carbón En Agricultura – Engormix, 11, p. 2017.
Yuan, C., Feng, S., Huo, Z., Ji, Q. Effects of deficit irrigation with saline water on soil water-salt distribution and water use efficiency of maize for seed production in arid Northwest China (2019) Agricultural Water Management, 212, pp. 424-432. Cited 30 times. http://ezproxy.cuc.edu.co:2147/agricultural-water-management/ doi: 10.1016/j.agwat.2018.09.019
Kamcev, J., Sujanani, R., Jang, E.-S., Yan, N., Moe, N., Paul, D.R., Freeman, B.D. Salt concentration dependence of ionic conductivity in ion exchange membranes (2018) Journal of Membrane Science, 547, pp. 123-133. Cited 67 times. www.elsevier.com/locate/memsci doi: 10.1016/j.memsci.2017.10.024
Sadiku, M.N.O., Alexander, C.K. Fundamentals of Electric Circuits, Third Ed. Vol. 91 (2017) Bookman
Cotching, W.E. Organic matter in the agricultural soils of Tasmania, Australia – A review (2018) Geoderma, 312, pp. 170-182. Cited 7 times. www.elsevier.com/inca/publications/store/5/0/3/3/3/2 doi: 10.1016/j.geoderma.2017.10.006
Frouz, J.: Effects of soil macro-and mesofauna on litter decomposition and soil organic matter stabilization. Geoderma 332(September 2017), 161–172 (2018). https://ezproxy.cuc.edu.co:2067/10. 1016/j.geoderma.2017.08.039
Rostami, S., Azhdarpoor, A.: The application of plant growth regulators to improve phytore-mediation of contaminated soils: a review. Chemosphere 220, 818–827 (2019). https://doi. org/10.1016/j.chemosphere.2018.12.203
dc.rights.spa.fl_str_mv CC0 1.0 Universal
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/publicdomain/zero/1.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/embargoedAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_f1cf
rights_invalid_str_mv CC0 1.0 Universal
http://creativecommons.org/publicdomain/zero/1.0/
http://purl.org/coar/access_right/c_f1cf
eu_rights_str_mv embargoedAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Springer International Publishing
dc.source.spa.fl_str_mv Lecture Notes in Computer Science
institution Corporación Universidad de la Costa
dc.source.url.spa.fl_str_mv https://www.springerprofessional.de/en/low-cost-smart-indoor-greenhouse-for-urban-farming/19653344
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstream/11323/8846/1/LOW.pdf
https://repositorio.cuc.edu.co/bitstream/11323/8846/2/license_rdf
https://repositorio.cuc.edu.co/bitstream/11323/8846/3/license.txt
https://repositorio.cuc.edu.co/bitstream/11323/8846/4/LOW.pdf.jpg
https://repositorio.cuc.edu.co/bitstream/11323/8846/5/LOW.pdf.txt
bitstream.checksum.fl_str_mv 233dd3a7efcaf1c33168c3f7cfd9b489
42fd4ad1e89814f5e4a476b409eb708c
e30e9215131d99561d40d6b0abbe9bad
7479b231814944eb06793e169cf3d640
f07191d17611b10d93485cc145b62946
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Universidad de La Costa
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1808400173242515456
spelling Acosta-Coll, Melisa2d3f71f9a5df5bbb04417bc9f0a62e97Anaya, Danield140edad4532b196053a78ba3d62b626Ojeda-Field, Luis1c828a8b429c008b53f35c71a29b321fZamora-Musa, Ronald555bf306ab5e4c15af82a7146021ef522021-11-08T13:13:06Z2021-11-08T13:13:06Z2021-09-132022-09-13978-303086972-4https://hdl.handle.net/11323/884610.1007/978-3-030-86973-1_9Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/Currently, people want to take control of what they consume as well as the local authorities pursue to implement measures to improve sustainability, food security, and living standards. Indoor urban farming initiatives provide an opportunity to grow their own and obtain fresher food with fewer transportation emissions, likewise, it is a strategy to lift people out of food poverty, reduce environmental impact since the use of herbicides and pesticides is minimal and helps to reduce food waste. However, factors such as the time dedicated to the cultivation of plants, and the adequate space inside their houses prevents them from carrying out this activity. This project presents the design of a low cost smart indoor greenhouse design to cultivate herbs and vegetables with minimum human intervention monitored by a web application. The prototype has three systems to control and monitor the main variables involved in the plant’s growth such as soil moisture, temperature, and solar light intensity. Likewise, it is suitable for a home with little space and it is easily installable, has low energy consumption, and is cost-efficient. © 2021, Springer Nature Switzerland AG.application/pdfengSpringer International PublishingCC0 1.0 Universalhttp://creativecommons.org/publicdomain/zero/1.0/info:eu-repo/semantics/embargoedAccesshttp://purl.org/coar/access_right/c_f1cfLecture Notes in Computer Sciencehttps://www.springerprofessional.de/en/low-cost-smart-indoor-greenhouse-for-urban-farming/19653344Indoor greenhouseSmart greenhouseUrban farmingLow-cost smart indoor greenhouse for urban farmingArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersionANALYSIS-Urban farms to traffic bans: Cities prep for post-coronavirus future (2020) Thompson Reuters Foundation News, p. 21. AprilDe Bon, H., Parrot, L., Moustier, P. Sustainable urban agriculture in developing countries. A review (Open Access) (2010) Agronomy for Sustainable Development, 30 (1), pp. 21-32. Cited 179 times. doi: 10.1051/agro:2008062Farhangi, M.H., Turvani, M.E., van der Valk, A., Carsjens, G.J. High-tech urban agriculture in Amsterdam: An actor network analysis (Open Access) (2020) Sustainability (Switzerland), 12 (10), art. no. 3955. Cited 6 times. http://www.mdpi.com/2071-1050/12/10/3955 doi: 10.3390/SU12103955Khumalo, N.Z., Sibanda, M. Does urban and peri-urban agriculture contribute to household food security? An assessment of the food security status of households in Tongaat, eThekwini Municipality (Open Access) (2019) Sustainability (Switzerland), 11 (4), art. no. 1082. Cited 15 times. https://www.mdpi.com/2071-1050/11/4/1082/pdf doi: 10.3390/su11041082Zasada, I. Multifunctional peri-urban agriculture-A review of societal demands and the provision of goods and services by farming (2011) Land Use Policy, 28 (4), pp. 639-648. Cited 373 times. doi: 10.1016/j.landusepol.2011.01.008Orsini, F., Kahane, R., Nono-Womdim, R., Gianquinto, G. Urban agriculture in the developing world: A review (Open Access) (2013) Agronomy for Sustainable Development, 33 (4), pp. 695-720. Cited 252 times. doi: 10.1007/s13593-013-0143-zPearson, L.J., Pearson, L., Pearson, C.J. Sustainable urban agriculture: Stocktake and opportunities (2011) Urban Agriculture: Diverse Activities and Benefits for City Society, pp. 7-19. Cited 8 times. http://www.tandfebooks.com/doi/book/10.4324/9781849774857 ISBN: 978-113654314-2; 978-113898657-2 doi: 10.3763/ijas.2009.0468Pinstrup-Andersen, P. Is it time to take vertical indoor farming seriously? (2018) Global Food Security, 17, pp. 233-235. Cited 26 times. http://ezproxy.cuc.edu.co:2147/global-food-security/ doi: 10.1016/j.gfs.2017.09.002Kaburuan, E.R., Jayadi, R., Harisno A design of IoT-based monitoring system for intelligence indoor micro-climate horticulture farming in Indonesia (Open Access) (2019) Procedia Computer Science, 157, pp. 459-464. Cited 9 times. http://ezproxy.cuc.edu.co:2053/science/journal/18770509 doi: 10.1016/j.procs.2019.09.001Goodman, W., Minner, J. Will the urban agricultural revolution be vertical and soilless? A case study of controlled environment agriculture in New York City (2019) Land Use Policy, 83, pp. 160-173. Cited 24 times. www.elsevier.com/inca/publications/store/3/0/4/5/1/ doi: 10.1016/j.landusepol.2018.12.038Sammons, P.J., Furukawua, T., Bulgin, A. Autonomous pesticide spraying robot for use in a greenhouse (2005) ISBN 0–9587583–7–9Benke, K., Tomkins, B. Future food-production systems: Vertical farming and controlled-environment agriculture (Open Access) (2017) Sustainability: Science, Practice, and Policy, 13 (1), pp. 13-26. Cited 139 times. https://ezproxy.cuc.edu.co:2191/doi/abs/10.1080/15487733.2017.1394054#aHR0cHM6Ly93d3cudGFuZGZvbmxpbmUuY29tL2RvaS9wZGYvMTAuMTA4MC8xNTQ4NzczMy4yMDE3LjEzOTQwNTRAQEAw doi: 10.1080/15487733.2017.1394054Martin, M., Molin, E. Environmental assessment of an urban vertical hydroponic farming system in Sweden (Open Access) (2019) Sustainability (Switzerland), 11 (15), art. no. 4124. Cited 14 times. https://res.mdpi.com/sustainability/sustainability-11-04124/article_deploy/sustainability-11-04124.pdf?filename=&attachment=1 doi: 10.3390/su11154124Pandit, A.A., Mancharkar, A.V. Green house environment monitoring and control system (2016) Int. J. Sci. Eng. Res., 7 (8).Chitti, S., Samyu Ktha, L. Data acquisition of green house gases and energy monitoring system using GSM technology (Open Access) (2019) International Journal of Innovative Technology and Exploring Engineering, 8 (6 Special Issue 4), pp. 820-825. Cited 2 times. https://www.ijitee.org/wp-content/uploads/papers/v8i6s4/F11650486S419.pdf doi: 10.35940/ijitee.F1165.0486S419Salazar-Aguilar, N. (2020) Diseño De Un Sistema Inteligente Para El Control Automa-Tizado De Inveranderos México, MaestríaMoliner, R., Marsh, H., Heinz, E. Del carbón activo al grafeno: Evolución de los materiales de carbono (2016) Grupo De Conversion De Combustibles. ICB-CSIC, pp. 2-5. Cited 2 times. , ppRichard, M. El carbón activo ya se fabrica con una estructura diseñada a medida, MIT Technol. Rev (2015) 12 JunioOmo-Okoro, P.N., Daso, A.P., Okonkwo, J.O. A review of the application of agricultural wastes as precursor materials for the adsorption of per- and polyfluoroalkyl substances: A focus on current approaches and methodologies (2018) Environmental Technology and Innovation, 9, pp. 100-114. Cited 42 times. http://ezproxy.cuc.edu.co:2147/environmental-technology-and-innovation/ doi: 10.1016/j.eti.2017.11.005Palansooriya, K.N., et al.: Impacts of biochar application on upland agriculture: a review. J. Environ. Manage. 234(December 2018), 52–64 (2019). https://ezproxy.cuc.edu.co:2067/10.1016/j.jenvman. 2018.12.085(2018) Green Power: Eco Friendly Technology. El Uso De carbón Vegetal Como Fertilizante, 27.Jacobo Mendez Alzamora Consultor Eco-Agricultura, C. PGSJ): Carbón En Agricultura – Engormix, 11, p. 2017.Yuan, C., Feng, S., Huo, Z., Ji, Q. Effects of deficit irrigation with saline water on soil water-salt distribution and water use efficiency of maize for seed production in arid Northwest China (2019) Agricultural Water Management, 212, pp. 424-432. Cited 30 times. http://ezproxy.cuc.edu.co:2147/agricultural-water-management/ doi: 10.1016/j.agwat.2018.09.019Kamcev, J., Sujanani, R., Jang, E.-S., Yan, N., Moe, N., Paul, D.R., Freeman, B.D. Salt concentration dependence of ionic conductivity in ion exchange membranes (2018) Journal of Membrane Science, 547, pp. 123-133. Cited 67 times. www.elsevier.com/locate/memsci doi: 10.1016/j.memsci.2017.10.024Sadiku, M.N.O., Alexander, C.K. Fundamentals of Electric Circuits, Third Ed. Vol. 91 (2017) BookmanCotching, W.E. Organic matter in the agricultural soils of Tasmania, Australia – A review (2018) Geoderma, 312, pp. 170-182. Cited 7 times. www.elsevier.com/inca/publications/store/5/0/3/3/3/2 doi: 10.1016/j.geoderma.2017.10.006Frouz, J.: Effects of soil macro-and mesofauna on litter decomposition and soil organic matter stabilization. Geoderma 332(September 2017), 161–172 (2018). https://ezproxy.cuc.edu.co:2067/10. 1016/j.geoderma.2017.08.039Rostami, S., Azhdarpoor, A.: The application of plant growth regulators to improve phytore-mediation of contaminated soils: a review. Chemosphere 220, 818–827 (2019). https://doi. org/10.1016/j.chemosphere.2018.12.203ORIGINALLOW.pdfLOW.pdfapplication/pdf73878https://repositorio.cuc.edu.co/bitstream/11323/8846/1/LOW.pdf233dd3a7efcaf1c33168c3f7cfd9b489MD51open accessCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8701https://repositorio.cuc.edu.co/bitstream/11323/8846/2/license_rdf42fd4ad1e89814f5e4a476b409eb708cMD52open accessLICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstream/11323/8846/3/license.txte30e9215131d99561d40d6b0abbe9badMD53open accessTHUMBNAILLOW.pdf.jpgLOW.pdf.jpgimage/jpeg43949https://repositorio.cuc.edu.co/bitstream/11323/8846/4/LOW.pdf.jpg7479b231814944eb06793e169cf3d640MD54open accessTEXTLOW.pdf.txtLOW.pdf.txttext/plain1405https://repositorio.cuc.edu.co/bitstream/11323/8846/5/LOW.pdf.txtf07191d17611b10d93485cc145b62946MD55open access11323/8846oai:repositorio.cuc.edu.co:11323/88462023-12-14 15:54:23.377CC0 1.0 Universal|||http://creativecommons.org/publicdomain/zero/1.0/open accessRepositorio Universidad de La Costabdigital@metabiblioteca.comQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA==