Application of classification technique of data mining for employee management system
This paper presents the application of classification technique of data mining used for the Employee Management System (EMS). This paper discusses the classification techniques of data mining and based on the data, the process of Knowledge Discovery in Databases (KDD) is reformed for classifying lar...
- Autores:
-
J. Kamatkar, Sadhana
Tayade, Amarapali
Viloria Silva, Amelec Jesus
Hernandez Chacin, Ana Emilia
- Tipo de recurso:
- http://purl.org/coar/resource_type/c_f744
- Fecha de publicación:
- 2018
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/1560
- Acceso en línea:
- https://hdl.handle.net/11323/1560
https://repositorio.cuc.edu.co/
- Palabra clave:
- Classification
Data mining
Data searching
Employee details
Employee Management System (EMS)
- Rights
- openAccess
- License
- Atribución – No comercial – Compartir igual
id |
RCUC2_7be11c01d4d9b9d2b656a26b6ac8703d |
---|---|
oai_identifier_str |
oai:repositorio.cuc.edu.co:11323/1560 |
network_acronym_str |
RCUC2 |
network_name_str |
REDICUC - Repositorio CUC |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Application of classification technique of data mining for employee management system |
title |
Application of classification technique of data mining for employee management system |
spellingShingle |
Application of classification technique of data mining for employee management system Classification Data mining Data searching Employee details Employee Management System (EMS) |
title_short |
Application of classification technique of data mining for employee management system |
title_full |
Application of classification technique of data mining for employee management system |
title_fullStr |
Application of classification technique of data mining for employee management system |
title_full_unstemmed |
Application of classification technique of data mining for employee management system |
title_sort |
Application of classification technique of data mining for employee management system |
dc.creator.fl_str_mv |
J. Kamatkar, Sadhana Tayade, Amarapali Viloria Silva, Amelec Jesus Hernandez Chacin, Ana Emilia |
dc.contributor.author.spa.fl_str_mv |
J. Kamatkar, Sadhana Tayade, Amarapali Viloria Silva, Amelec Jesus Hernandez Chacin, Ana Emilia |
dc.subject.eng.fl_str_mv |
Classification Data mining Data searching Employee details Employee Management System (EMS) |
topic |
Classification Data mining Data searching Employee details Employee Management System (EMS) |
description |
This paper presents the application of classification technique of data mining used for the Employee Management System (EMS). This paper discusses the classification techniques of data mining and based on the data, the process of Knowledge Discovery in Databases (KDD) is reformed for classifying large data into different categories such as Disability, Employee Performance, etc. This paper discusses, WEKA data mining toolkit classifier model to predict employee’s performance based on the employee’s age, date of joining and number of years of experience. This study helps to predict the employee’s work-cycle and helps the management to find the employee’s performance those who are disabled and enabled. The paper addresses the system to get the details of those employees who need special attention and guide the management to make policies to improve employees’ performance. We demonstrate the application in a real-life situation. © Springer International Publishing AG, part of Springer Nature 2018. |
publishDate |
2018 |
dc.date.accessioned.none.fl_str_mv |
2018-11-20T22:59:32Z |
dc.date.available.none.fl_str_mv |
2018-11-20T22:59:32Z |
dc.date.issued.none.fl_str_mv |
2018 |
dc.type.spa.fl_str_mv |
Documento de Conferencia |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_c94f |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_f744 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/conferenceObject |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/EC |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
format |
http://purl.org/coar/resource_type/c_f744 |
status_str |
acceptedVersion |
dc.identifier.issn.spa.fl_str_mv |
0302-9743 |
dc.identifier.uri.spa.fl_str_mv |
https://hdl.handle.net/11323/1560 |
dc.identifier.instname.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.identifier.reponame.spa.fl_str_mv |
REDICUC - Repositorio CUC |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.cuc.edu.co/ |
identifier_str_mv |
0302-9743 Corporación Universidad de la Costa REDICUC - Repositorio CUC |
url |
https://hdl.handle.net/11323/1560 https://repositorio.cuc.edu.co/ |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.rights.spa.fl_str_mv |
Atribución – No comercial – Compartir igual |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Atribución – No comercial – Compartir igual http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.publisher.spa.fl_str_mv |
Lecture Notes in Computer Science |
institution |
Corporación Universidad de la Costa |
bitstream.url.fl_str_mv |
https://repositorio.cuc.edu.co/bitstreams/0e90ae75-f3f9-4e3c-a316-0533000adcfb/download https://repositorio.cuc.edu.co/bitstreams/bae586b2-aa8b-4ea0-8ad6-7370ffc2147d/download https://repositorio.cuc.edu.co/bitstreams/9e1c1bbc-63a3-4bb9-b6df-f8095c44ec7e/download https://repositorio.cuc.edu.co/bitstreams/cca9d6cf-8ad9-46ed-9e72-7bf6e03acbbc/download |
bitstream.checksum.fl_str_mv |
ae60c4b3e0e60ea5fb3e580750110d3b 8a4605be74aa9ea9d79846c1fba20a33 a3ee020c2c4c045e4cc95a6de9b09a15 50eb060f704b72c817390f7abb5e8ef0 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad de la Costa CUC |
repository.mail.fl_str_mv |
repdigital@cuc.edu.co |
_version_ |
1828166818087305216 |
spelling |
J. Kamatkar, SadhanaTayade, AmarapaliViloria Silva, Amelec JesusHernandez Chacin, Ana Emilia2018-11-20T22:59:32Z2018-11-20T22:59:32Z20180302-9743https://hdl.handle.net/11323/1560Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/This paper presents the application of classification technique of data mining used for the Employee Management System (EMS). This paper discusses the classification techniques of data mining and based on the data, the process of Knowledge Discovery in Databases (KDD) is reformed for classifying large data into different categories such as Disability, Employee Performance, etc. This paper discusses, WEKA data mining toolkit classifier model to predict employee’s performance based on the employee’s age, date of joining and number of years of experience. This study helps to predict the employee’s work-cycle and helps the management to find the employee’s performance those who are disabled and enabled. The paper addresses the system to get the details of those employees who need special attention and guide the management to make policies to improve employees’ performance. We demonstrate the application in a real-life situation. © Springer International Publishing AG, part of Springer Nature 2018.J. Kamatkar, Sadhana-7b8aeae2-3221-45bf-91aa-ad52018af9e5-0Tayade, Amarapali-5df8cdf9-e247-4fac-937c-723c457e7cea-0Viloria Silva, Amelec Jesus-0000-0003-2673-6350-600Hernandez Chacin, Ana Emilia-a6c5bc45-6fc4-4c89-af69-db213d7c62d9-0engLecture Notes in Computer ScienceAtribución – No comercial – Compartir igualinfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2ClassificationData miningData searchingEmployee detailsEmployee Management System (EMS)Application of classification technique of data mining for employee management systemDocumento de Conferenciahttp://purl.org/coar/resource_type/c_f744http://purl.org/coar/resource_type/c_c94fTextinfo:eu-repo/semantics/conferenceObjecthttp://purl.org/redcol/resource_type/ECinfo:eu-repo/semantics/acceptedVersionPublicationORIGINALApplication of classification technique of data mining for employee management system .pdfApplication of classification technique of data mining for employee management system .pdfapplication/pdf180705https://repositorio.cuc.edu.co/bitstreams/0e90ae75-f3f9-4e3c-a316-0533000adcfb/downloadae60c4b3e0e60ea5fb3e580750110d3bMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.cuc.edu.co/bitstreams/bae586b2-aa8b-4ea0-8ad6-7370ffc2147d/download8a4605be74aa9ea9d79846c1fba20a33MD52THUMBNAILApplication of classification technique of data mining for employee management system .pdf.jpgApplication of classification technique of data mining for employee management system .pdf.jpgimage/jpeg38455https://repositorio.cuc.edu.co/bitstreams/9e1c1bbc-63a3-4bb9-b6df-f8095c44ec7e/downloada3ee020c2c4c045e4cc95a6de9b09a15MD54TEXTApplication of classification technique of data mining for employee management system .pdf.txtApplication of classification technique of data mining for employee management system .pdf.txttext/plain1341https://repositorio.cuc.edu.co/bitstreams/cca9d6cf-8ad9-46ed-9e72-7bf6e03acbbc/download50eb060f704b72c817390f7abb5e8ef0MD5511323/1560oai:repositorio.cuc.edu.co:11323/15602024-09-17 14:13:31.484open.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |