Application of classification technique of data mining for employee management system

This paper presents the application of classification technique of data mining used for the Employee Management System (EMS). This paper discusses the classification techniques of data mining and based on the data, the process of Knowledge Discovery in Databases (KDD) is reformed for classifying lar...

Full description

Autores:
J. Kamatkar, Sadhana
Tayade, Amarapali
Viloria Silva, Amelec Jesus
Hernandez Chacin, Ana Emilia
Tipo de recurso:
http://purl.org/coar/resource_type/c_f744
Fecha de publicación:
2018
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/1560
Acceso en línea:
https://hdl.handle.net/11323/1560
https://repositorio.cuc.edu.co/
Palabra clave:
Classification
Data mining
Data searching
Employee details
Employee Management System (EMS)
Rights
openAccess
License
Atribución – No comercial – Compartir igual
id RCUC2_7be11c01d4d9b9d2b656a26b6ac8703d
oai_identifier_str oai:repositorio.cuc.edu.co:11323/1560
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.eng.fl_str_mv Application of classification technique of data mining for employee management system
title Application of classification technique of data mining for employee management system
spellingShingle Application of classification technique of data mining for employee management system
Classification
Data mining
Data searching
Employee details
Employee Management System (EMS)
title_short Application of classification technique of data mining for employee management system
title_full Application of classification technique of data mining for employee management system
title_fullStr Application of classification technique of data mining for employee management system
title_full_unstemmed Application of classification technique of data mining for employee management system
title_sort Application of classification technique of data mining for employee management system
dc.creator.fl_str_mv J. Kamatkar, Sadhana
Tayade, Amarapali
Viloria Silva, Amelec Jesus
Hernandez Chacin, Ana Emilia
dc.contributor.author.spa.fl_str_mv J. Kamatkar, Sadhana
Tayade, Amarapali
Viloria Silva, Amelec Jesus
Hernandez Chacin, Ana Emilia
dc.subject.eng.fl_str_mv Classification
Data mining
Data searching
Employee details
Employee Management System (EMS)
topic Classification
Data mining
Data searching
Employee details
Employee Management System (EMS)
description This paper presents the application of classification technique of data mining used for the Employee Management System (EMS). This paper discusses the classification techniques of data mining and based on the data, the process of Knowledge Discovery in Databases (KDD) is reformed for classifying large data into different categories such as Disability, Employee Performance, etc. This paper discusses, WEKA data mining toolkit classifier model to predict employee’s performance based on the employee’s age, date of joining and number of years of experience. This study helps to predict the employee’s work-cycle and helps the management to find the employee’s performance those who are disabled and enabled. The paper addresses the system to get the details of those employees who need special attention and guide the management to make policies to improve employees’ performance. We demonstrate the application in a real-life situation. © Springer International Publishing AG, part of Springer Nature 2018.
publishDate 2018
dc.date.accessioned.none.fl_str_mv 2018-11-20T22:59:32Z
dc.date.available.none.fl_str_mv 2018-11-20T22:59:32Z
dc.date.issued.none.fl_str_mv 2018
dc.type.spa.fl_str_mv Documento de Conferencia
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_c94f
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_f744
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/conferenceObject
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/EC
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_f744
status_str acceptedVersion
dc.identifier.issn.spa.fl_str_mv 0302-9743
dc.identifier.uri.spa.fl_str_mv https://hdl.handle.net/11323/1560
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
identifier_str_mv 0302-9743
Corporación Universidad de la Costa
REDICUC - Repositorio CUC
url https://hdl.handle.net/11323/1560
https://repositorio.cuc.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.rights.spa.fl_str_mv Atribución – No comercial – Compartir igual
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Atribución – No comercial – Compartir igual
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.publisher.spa.fl_str_mv Lecture Notes in Computer Science
institution Corporación Universidad de la Costa
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/0e90ae75-f3f9-4e3c-a316-0533000adcfb/download
https://repositorio.cuc.edu.co/bitstreams/bae586b2-aa8b-4ea0-8ad6-7370ffc2147d/download
https://repositorio.cuc.edu.co/bitstreams/9e1c1bbc-63a3-4bb9-b6df-f8095c44ec7e/download
https://repositorio.cuc.edu.co/bitstreams/cca9d6cf-8ad9-46ed-9e72-7bf6e03acbbc/download
bitstream.checksum.fl_str_mv ae60c4b3e0e60ea5fb3e580750110d3b
8a4605be74aa9ea9d79846c1fba20a33
a3ee020c2c4c045e4cc95a6de9b09a15
50eb060f704b72c817390f7abb5e8ef0
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1828166818087305216
spelling J. Kamatkar, SadhanaTayade, AmarapaliViloria Silva, Amelec JesusHernandez Chacin, Ana Emilia2018-11-20T22:59:32Z2018-11-20T22:59:32Z20180302-9743https://hdl.handle.net/11323/1560Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/This paper presents the application of classification technique of data mining used for the Employee Management System (EMS). This paper discusses the classification techniques of data mining and based on the data, the process of Knowledge Discovery in Databases (KDD) is reformed for classifying large data into different categories such as Disability, Employee Performance, etc. This paper discusses, WEKA data mining toolkit classifier model to predict employee’s performance based on the employee’s age, date of joining and number of years of experience. This study helps to predict the employee’s work-cycle and helps the management to find the employee’s performance those who are disabled and enabled. The paper addresses the system to get the details of those employees who need special attention and guide the management to make policies to improve employees’ performance. We demonstrate the application in a real-life situation. © Springer International Publishing AG, part of Springer Nature 2018.J. Kamatkar, Sadhana-7b8aeae2-3221-45bf-91aa-ad52018af9e5-0Tayade, Amarapali-5df8cdf9-e247-4fac-937c-723c457e7cea-0Viloria Silva, Amelec Jesus-0000-0003-2673-6350-600Hernandez Chacin, Ana Emilia-a6c5bc45-6fc4-4c89-af69-db213d7c62d9-0engLecture Notes in Computer ScienceAtribución – No comercial – Compartir igualinfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2ClassificationData miningData searchingEmployee detailsEmployee Management System (EMS)Application of classification technique of data mining for employee management systemDocumento de Conferenciahttp://purl.org/coar/resource_type/c_f744http://purl.org/coar/resource_type/c_c94fTextinfo:eu-repo/semantics/conferenceObjecthttp://purl.org/redcol/resource_type/ECinfo:eu-repo/semantics/acceptedVersionPublicationORIGINALApplication of classification technique of data mining for employee management system .pdfApplication of classification technique of data mining for employee management system .pdfapplication/pdf180705https://repositorio.cuc.edu.co/bitstreams/0e90ae75-f3f9-4e3c-a316-0533000adcfb/downloadae60c4b3e0e60ea5fb3e580750110d3bMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.cuc.edu.co/bitstreams/bae586b2-aa8b-4ea0-8ad6-7370ffc2147d/download8a4605be74aa9ea9d79846c1fba20a33MD52THUMBNAILApplication of classification technique of data mining for employee management system .pdf.jpgApplication of classification technique of data mining for employee management system .pdf.jpgimage/jpeg38455https://repositorio.cuc.edu.co/bitstreams/9e1c1bbc-63a3-4bb9-b6df-f8095c44ec7e/downloada3ee020c2c4c045e4cc95a6de9b09a15MD54TEXTApplication of classification technique of data mining for employee management system .pdf.txtApplication of classification technique of data mining for employee management system .pdf.txttext/plain1341https://repositorio.cuc.edu.co/bitstreams/cca9d6cf-8ad9-46ed-9e72-7bf6e03acbbc/download50eb060f704b72c817390f7abb5e8ef0MD5511323/1560oai:repositorio.cuc.edu.co:11323/15602024-09-17 14:13:31.484open.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=