A low-cost approach to monitoring the structural health of pedestrian bridges
Changes in dynamic properties of structures, such as damping ratios and natural frequencies can be detected by periodic monitoring (e.g. one time by year). These changes are often indications of structural damage thereby, the maintenance or demolition of the structure can be doing in due time. In th...
- Autores:
-
MURILLO, Michel J.
GAVIRIA, Carlos A.
CANTILLO, Yamith A.
ACOSTA, Carlos A.
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2019
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/7458
- Acceso en línea:
- https://hdl.handle.net/11323/7458
https://repositorio.cuc.edu.co/
- Palabra clave:
- Structural health monitoring
pedestrian bridges
dynamic response
vibrations
- Rights
- openAccess
- License
- Attribution-NonCommercial-NoDerivatives 4.0 International
id |
RCUC2_7a138cd1a39ff88b37df6f8cc3a61587 |
---|---|
oai_identifier_str |
oai:repositorio.cuc.edu.co:11323/7458 |
network_acronym_str |
RCUC2 |
network_name_str |
REDICUC - Repositorio CUC |
repository_id_str |
|
dc.title.spa.fl_str_mv |
A low-cost approach to monitoring the structural health of pedestrian bridges |
dc.title.translated.spa.fl_str_mv |
Un enfoque de bajo costo para monitorear la salud estructural de los puentes peatonales |
title |
A low-cost approach to monitoring the structural health of pedestrian bridges |
spellingShingle |
A low-cost approach to monitoring the structural health of pedestrian bridges Structural health monitoring pedestrian bridges dynamic response vibrations |
title_short |
A low-cost approach to monitoring the structural health of pedestrian bridges |
title_full |
A low-cost approach to monitoring the structural health of pedestrian bridges |
title_fullStr |
A low-cost approach to monitoring the structural health of pedestrian bridges |
title_full_unstemmed |
A low-cost approach to monitoring the structural health of pedestrian bridges |
title_sort |
A low-cost approach to monitoring the structural health of pedestrian bridges |
dc.creator.fl_str_mv |
MURILLO, Michel J. GAVIRIA, Carlos A. CANTILLO, Yamith A. ACOSTA, Carlos A. |
dc.contributor.author.spa.fl_str_mv |
MURILLO, Michel J. GAVIRIA, Carlos A. CANTILLO, Yamith A. ACOSTA, Carlos A. |
dc.subject.spa.fl_str_mv |
Structural health monitoring pedestrian bridges dynamic response vibrations |
topic |
Structural health monitoring pedestrian bridges dynamic response vibrations |
description |
Changes in dynamic properties of structures, such as damping ratios and natural frequencies can be detected by periodic monitoring (e.g. one time by year). These changes are often indications of structural damage thereby, the maintenance or demolition of the structure can be doing in due time. In the case of pedestrian bridges, people’s movements may produce a resonance state, which leads to excessive deflection that accelerates the deterioration of these structures. Typically, these dynamic properties are detected by using high-cost vibration measurement equipment to achieve high levels of precision (i.e. a very low noise levels). This article studies the measurement of dynamic properties in pedestrian bridges using a tri-axial accelerometer integrated into a mobile phone as a low-cost and alternative practice. Accelerations were recorded on a steel pedestrian bridge (flexible) and on a post-tensioned concrete pedestrian bridge (rigid) located in Barranquilla City (Colombia). Vibrations were induced by a person (e.g., by jumping). Previous studies based on traditional measuring techniques show that two dominant frequencies in both types of bridges can be identified. However, in this study a reliable damping ratio could only be established for the steel bridge that it is associated with the flexibility and the low amplitude of the induced vibrations by a single pedestrian user |
publishDate |
2019 |
dc.date.issued.none.fl_str_mv |
2019 |
dc.date.accessioned.none.fl_str_mv |
2020-11-24T16:25:59Z |
dc.date.available.none.fl_str_mv |
2020-11-24T16:25:59Z |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
acceptedVersion |
dc.identifier.uri.spa.fl_str_mv |
https://hdl.handle.net/11323/7458 |
dc.identifier.instname.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.identifier.reponame.spa.fl_str_mv |
REDICUC - Repositorio CUC |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.cuc.edu.co/ |
url |
https://hdl.handle.net/11323/7458 https://repositorio.cuc.edu.co/ |
identifier_str_mv |
Corporación Universidad de la Costa REDICUC - Repositorio CUC |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.references.spa.fl_str_mv |
Aguirre, D. A., Gaviria, C. A., & Montejo, L. A. (2013). Wavelet-based damage detection in reinforced concrete structures subjected to seismic excitations. Journal of Earthquake Engineering, 17(8), 1103-1125. Amick R. Z., Patterson J. A., Jorgensen M. J. (2013). Sensitivity of Tri-Axial Accelerometers within Mobile Consumer Electronic Devices: A Pilot Study. International Journal of Applied Science and Technology, Volume 3, No. 2. Bachmann H., Ammann W. (1987). Vibrations in Structures—Induced by Man and Machines, Structural Engineering Documents, Vol. 3e, International Association of Bridge and Structural Engineering (IABSE), Zurich. Castellanos S., Marulanda J., Preciado M., Cruza A., Thomson P. (2016). Identification of the operational frequencies of 300+ bridges using Smartphones. Proc. of SPIE Vol. 9804. doi: 10.1117/12.2222097. Eriksson J., Girod L., Hull B., Newton R., Madden S. and Balakrishnan H. (2008). The pothole patrol: using a mobile sensor network for road surface monitoring, in MobiSys’08: Proceeding of the 6th international conference on Mobile systems, applications, and services. Franco, J. M., Ortiz, R. A., Gómez D. &Thomson P. (2010). Evaluación de las vibraciones producidas por las personas en el puente peatonal del Club Noel en Cali, Colombia. 21va Jornadas Argentinas de Ingeniería Estructural, 6-8 Octubre, Buenos Aires, Argentina. Garita C. (2015). Enfoques de integración de información para sistemas de monitoreo de salud estructural de puentes. Tecnología en Marcha. Vol. 29, Nº 1, Enero-Marzo. Pág 96-107. Gaviria, C.A., & Montejo, L.A. (2018). Optimal Wavelet Parameters for System Identification of Civil Engineering Structures. Earthquake Spectra, 34(1), 197-216. Gaviria, C. A., & Montejo, L. A. (2016). Output-only identification of the modal and physical properties of structures using free vibration response. Earthquake Engineering and Engineering Vibration, 15(3), 575-589. Gaviria C., Murillo M., Cantillo Y., Acosta A. (2017). VIII Conferencia Nacional de Ingeniería Sísmica, 8, 2017, Barranquilla, Colombia. Gaviria, C. A., & Suarez L. (2015). Dynamic properties of a building with viscous dampers in non-proportional arrangement. Structural Engineering and Mechanics, Vol. 55 Iss. 6, p. 1241 – 1260, DOI: 10.12989/sem.2015.55.6.0000. Lockhart J., Weiss G., Xue J, Gallagher S., Grosner A., and Pulickal T. (2011). “Design Considerations for the WISDM Smart Phone-based Sensor Mining Architecture, 1-9. Millán D., Marulanda J. & Thomson P. (2017). Evaluación de la confiabilidad estructural de la Tribuna Sur del Estadio Pascual Guerrero, Cali. VIII Congreso Nacional de Ingeniería Sísmica organizado por la Universidad del Norte y la Asociación Colombiana de Ingeniería Sísmica. Ming L. (2013). “A Study of Mobile Sensing Using Smartphones”, International Journal of Distributed Sensor Networks, 2013: 1-11, http://dx.doi.org/10.1155/2013/2729161-11. Mohan P., Padmanabhan V., and Ramjee R. (2008). “Nericell - Using Mobile Smartphones forRich Monitoring of Road and Traffic Conditions,” Proceedings of the 6th International Conference on Embedded Networked Sensor Systems, DOI: 10.1145/1460412.1460444. Navarro-Henríquez F. (2014). Sensores de fibra óptica FBG para el monitoreo de la salud estructural de los puentes. Tecnología en Marcha. Vol. 27, Nº 4, Octubre-Diciembre. Pág 3- 13. Ortiz, R. A., Gómez D. & Thomson P. (2008). Efecto De La Interacción Humano-Estructura En El Estadio Pascual Guerrero. 20va Jornadas Argentinas de Ingeniería Estructural, 15-17 Octubre, Buenos Aires, Argentina. Ramírez-Castro, R. I., & Montejo, L. A. (2011). Transformada de Hilbert, descomposición modal empírica y sus aplicaciones en el análisis de vibraciones libres. Revista Internacional de Desastres Naturales, Accidentes e Infraestructura Civil, 11(2), 123-134. Rengifo J., Rincón J., Franco J., Marulanda J. & Thomson P. (2017). Caracterización dinámica de estructuras con teléfonos móviles inteligentes. VIII Congreso Nacional de Ingeniería Sísmica organizado por la Universidad del Norte y la Asociación Colombiana de Ingeniería Sísmica. Sánchez, J. A., Thomson, P., Gómez, D. & Ortiz A.R. (2010). Caracterización del efecto de la interacción humano-estructura en puentes peatonales de la ciudad de Cali. 21va Jornadas Argentinas de Ingeniería Estructural, 06-08 Octubre, Buenos Aires, Argentina. Sánchez, J. A., Gómez, D., & Thomson, P. (2013). Análisis de la interacción humanoestructura en puentes peatonales de Santiago de Cali. Dyna, 80(177), 86-94. Villamizar, S., Gómez, D., & Thomson, P. (2014). Efecto De Interacción Humano-Estructura En Losas. Dyna, 81(184), 129-137. Yu-chin Tai, Cheng-wei Chan and Yung-jen Hsu. (2010). Automatic Road Anomaly Detection Using Smart Mobile Device. Procedia in Social and Behavioral Sciences. |
dc.rights.spa.fl_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.source.spa.fl_str_mv |
Revista Espacios |
institution |
Corporación Universidad de la Costa |
dc.source.url.spa.fl_str_mv |
http://www.revistaespacios.com/a19v40n27/a19v40n27p14.pdf |
bitstream.url.fl_str_mv |
https://repositorio.cuc.edu.co/bitstreams/4df383e1-74cd-4a9e-9feb-9ed94e137089/download https://repositorio.cuc.edu.co/bitstreams/a1af05eb-1411-496e-80fd-a4baa5bdd5f9/download https://repositorio.cuc.edu.co/bitstreams/2d789b4d-98a2-4b4b-b0ff-d14d127491a6/download https://repositorio.cuc.edu.co/bitstreams/62057e13-6a8a-45f0-8978-4d0935f70a10/download https://repositorio.cuc.edu.co/bitstreams/2b5197cb-ff98-4ace-bed2-a261a0a0bbbb/download |
bitstream.checksum.fl_str_mv |
c356b97d3c2088b8a4e9db800ca58384 4460e5956bc1d1639be9ae6146a50347 e30e9215131d99561d40d6b0abbe9bad 8fe53afce1de789988bd09103c8017b4 3baef97a55fa06cf79649b2568d5597d |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad de la Costa CUC |
repository.mail.fl_str_mv |
repdigital@cuc.edu.co |
_version_ |
1811760785409441792 |
spelling |
MURILLO, Michel J.GAVIRIA, Carlos A.CANTILLO, Yamith A.ACOSTA, Carlos A.2020-11-24T16:25:59Z2020-11-24T16:25:59Z2019https://hdl.handle.net/11323/7458Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/Changes in dynamic properties of structures, such as damping ratios and natural frequencies can be detected by periodic monitoring (e.g. one time by year). These changes are often indications of structural damage thereby, the maintenance or demolition of the structure can be doing in due time. In the case of pedestrian bridges, people’s movements may produce a resonance state, which leads to excessive deflection that accelerates the deterioration of these structures. Typically, these dynamic properties are detected by using high-cost vibration measurement equipment to achieve high levels of precision (i.e. a very low noise levels). This article studies the measurement of dynamic properties in pedestrian bridges using a tri-axial accelerometer integrated into a mobile phone as a low-cost and alternative practice. Accelerations were recorded on a steel pedestrian bridge (flexible) and on a post-tensioned concrete pedestrian bridge (rigid) located in Barranquilla City (Colombia). Vibrations were induced by a person (e.g., by jumping). Previous studies based on traditional measuring techniques show that two dominant frequencies in both types of bridges can be identified. However, in this study a reliable damping ratio could only be established for the steel bridge that it is associated with the flexibility and the low amplitude of the induced vibrations by a single pedestrian userMURILLO, Michel J.GAVIRIA, Carlos A.CANTILLO, Yamith A.ACOSTA, Carlos A.application/pdfengCorporación Universidad de la CostaAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Revista Espacioshttp://www.revistaespacios.com/a19v40n27/a19v40n27p14.pdfStructural health monitoringpedestrian bridgesdynamic responsevibrationsA low-cost approach to monitoring the structural health of pedestrian bridgesUn enfoque de bajo costo para monitorear la salud estructural de los puentes peatonalesArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersionAguirre, D. A., Gaviria, C. A., & Montejo, L. A. (2013). Wavelet-based damage detection in reinforced concrete structures subjected to seismic excitations. Journal of Earthquake Engineering, 17(8), 1103-1125.Amick R. Z., Patterson J. A., Jorgensen M. J. (2013). Sensitivity of Tri-Axial Accelerometers within Mobile Consumer Electronic Devices: A Pilot Study. International Journal of Applied Science and Technology, Volume 3, No. 2.Bachmann H., Ammann W. (1987). Vibrations in Structures—Induced by Man and Machines, Structural Engineering Documents, Vol. 3e, International Association of Bridge and Structural Engineering (IABSE), Zurich.Castellanos S., Marulanda J., Preciado M., Cruza A., Thomson P. (2016). Identification of the operational frequencies of 300+ bridges using Smartphones. Proc. of SPIE Vol. 9804. doi: 10.1117/12.2222097.Eriksson J., Girod L., Hull B., Newton R., Madden S. and Balakrishnan H. (2008). The pothole patrol: using a mobile sensor network for road surface monitoring, in MobiSys’08: Proceeding of the 6th international conference on Mobile systems, applications, and services.Franco, J. M., Ortiz, R. A., Gómez D. &Thomson P. (2010). Evaluación de las vibraciones producidas por las personas en el puente peatonal del Club Noel en Cali, Colombia. 21va Jornadas Argentinas de Ingeniería Estructural, 6-8 Octubre, Buenos Aires, Argentina.Garita C. (2015). Enfoques de integración de información para sistemas de monitoreo de salud estructural de puentes. Tecnología en Marcha. Vol. 29, Nº 1, Enero-Marzo. Pág 96-107.Gaviria, C.A., & Montejo, L.A. (2018). Optimal Wavelet Parameters for System Identification of Civil Engineering Structures. Earthquake Spectra, 34(1), 197-216.Gaviria, C. A., & Montejo, L. A. (2016). Output-only identification of the modal and physical properties of structures using free vibration response. Earthquake Engineering and Engineering Vibration, 15(3), 575-589.Gaviria C., Murillo M., Cantillo Y., Acosta A. (2017). VIII Conferencia Nacional de Ingeniería Sísmica, 8, 2017, Barranquilla, Colombia.Gaviria, C. A., & Suarez L. (2015). Dynamic properties of a building with viscous dampers in non-proportional arrangement. Structural Engineering and Mechanics, Vol. 55 Iss. 6, p. 1241 – 1260, DOI: 10.12989/sem.2015.55.6.0000.Lockhart J., Weiss G., Xue J, Gallagher S., Grosner A., and Pulickal T. (2011). “Design Considerations for the WISDM Smart Phone-based Sensor Mining Architecture, 1-9.Millán D., Marulanda J. & Thomson P. (2017). Evaluación de la confiabilidad estructural de la Tribuna Sur del Estadio Pascual Guerrero, Cali. VIII Congreso Nacional de Ingeniería Sísmica organizado por la Universidad del Norte y la Asociación Colombiana de Ingeniería Sísmica.Ming L. (2013). “A Study of Mobile Sensing Using Smartphones”, International Journal of Distributed Sensor Networks, 2013: 1-11, http://dx.doi.org/10.1155/2013/2729161-11.Mohan P., Padmanabhan V., and Ramjee R. (2008). “Nericell - Using Mobile Smartphones forRich Monitoring of Road and Traffic Conditions,” Proceedings of the 6th International Conference on Embedded Networked Sensor Systems, DOI: 10.1145/1460412.1460444.Navarro-Henríquez F. (2014). Sensores de fibra óptica FBG para el monitoreo de la salud estructural de los puentes. Tecnología en Marcha. Vol. 27, Nº 4, Octubre-Diciembre. Pág 3- 13.Ortiz, R. A., Gómez D. & Thomson P. (2008). Efecto De La Interacción Humano-Estructura En El Estadio Pascual Guerrero. 20va Jornadas Argentinas de Ingeniería Estructural, 15-17 Octubre, Buenos Aires, Argentina.Ramírez-Castro, R. I., & Montejo, L. A. (2011). Transformada de Hilbert, descomposición modal empírica y sus aplicaciones en el análisis de vibraciones libres. Revista Internacional de Desastres Naturales, Accidentes e Infraestructura Civil, 11(2), 123-134.Rengifo J., Rincón J., Franco J., Marulanda J. & Thomson P. (2017). Caracterización dinámica de estructuras con teléfonos móviles inteligentes. VIII Congreso Nacional de Ingeniería Sísmica organizado por la Universidad del Norte y la Asociación Colombiana de Ingeniería Sísmica.Sánchez, J. A., Thomson, P., Gómez, D. & Ortiz A.R. (2010). Caracterización del efecto de la interacción humano-estructura en puentes peatonales de la ciudad de Cali. 21va Jornadas Argentinas de Ingeniería Estructural, 06-08 Octubre, Buenos Aires, Argentina.Sánchez, J. A., Gómez, D., & Thomson, P. (2013). Análisis de la interacción humanoestructura en puentes peatonales de Santiago de Cali. Dyna, 80(177), 86-94.Villamizar, S., Gómez, D., & Thomson, P. (2014). Efecto De Interacción Humano-Estructura En Losas. Dyna, 81(184), 129-137.Yu-chin Tai, Cheng-wei Chan and Yung-jen Hsu. (2010). Automatic Road Anomaly Detection Using Smart Mobile Device. Procedia in Social and Behavioral Sciences.PublicationORIGINALA low-cost approach to monitoring the.pdfA low-cost approach to monitoring the.pdfapplication/pdf877942https://repositorio.cuc.edu.co/bitstreams/4df383e1-74cd-4a9e-9feb-9ed94e137089/downloadc356b97d3c2088b8a4e9db800ca58384MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.cuc.edu.co/bitstreams/a1af05eb-1411-496e-80fd-a4baa5bdd5f9/download4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/2d789b4d-98a2-4b4b-b0ff-d14d127491a6/downloade30e9215131d99561d40d6b0abbe9badMD53THUMBNAILA low-cost approach to monitoring the.pdf.jpgA low-cost approach to monitoring the.pdf.jpgimage/jpeg100601https://repositorio.cuc.edu.co/bitstreams/62057e13-6a8a-45f0-8978-4d0935f70a10/download8fe53afce1de789988bd09103c8017b4MD54TEXTA low-cost approach to monitoring the.pdf.txtA low-cost approach to monitoring the.pdf.txttext/plain28022https://repositorio.cuc.edu.co/bitstreams/2b5197cb-ff98-4ace-bed2-a261a0a0bbbb/download3baef97a55fa06cf79649b2568d5597dMD5511323/7458oai:repositorio.cuc.edu.co:11323/74582024-09-17 11:08:42.427http://creativecommons.org/licenses/by-nc-nd/4.0/Attribution-NonCommercial-NoDerivatives 4.0 Internationalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA== |