A low-cost approach to monitoring the structural health of pedestrian bridges

Changes in dynamic properties of structures, such as damping ratios and natural frequencies can be detected by periodic monitoring (e.g. one time by year). These changes are often indications of structural damage thereby, the maintenance or demolition of the structure can be doing in due time. In th...

Full description

Autores:
MURILLO, Michel J.
GAVIRIA, Carlos A.
CANTILLO, Yamith A.
ACOSTA, Carlos A.
Tipo de recurso:
Article of journal
Fecha de publicación:
2019
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/7458
Acceso en línea:
https://hdl.handle.net/11323/7458
https://repositorio.cuc.edu.co/
Palabra clave:
Structural health monitoring
pedestrian bridges
dynamic response
vibrations
Rights
openAccess
License
Attribution-NonCommercial-NoDerivatives 4.0 International
id RCUC2_7a138cd1a39ff88b37df6f8cc3a61587
oai_identifier_str oai:repositorio.cuc.edu.co:11323/7458
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.spa.fl_str_mv A low-cost approach to monitoring the structural health of pedestrian bridges
dc.title.translated.spa.fl_str_mv Un enfoque de bajo costo para monitorear la salud estructural de los puentes peatonales
title A low-cost approach to monitoring the structural health of pedestrian bridges
spellingShingle A low-cost approach to monitoring the structural health of pedestrian bridges
Structural health monitoring
pedestrian bridges
dynamic response
vibrations
title_short A low-cost approach to monitoring the structural health of pedestrian bridges
title_full A low-cost approach to monitoring the structural health of pedestrian bridges
title_fullStr A low-cost approach to monitoring the structural health of pedestrian bridges
title_full_unstemmed A low-cost approach to monitoring the structural health of pedestrian bridges
title_sort A low-cost approach to monitoring the structural health of pedestrian bridges
dc.creator.fl_str_mv MURILLO, Michel J.
GAVIRIA, Carlos A.
CANTILLO, Yamith A.
ACOSTA, Carlos A.
dc.contributor.author.spa.fl_str_mv MURILLO, Michel J.
GAVIRIA, Carlos A.
CANTILLO, Yamith A.
ACOSTA, Carlos A.
dc.subject.spa.fl_str_mv Structural health monitoring
pedestrian bridges
dynamic response
vibrations
topic Structural health monitoring
pedestrian bridges
dynamic response
vibrations
description Changes in dynamic properties of structures, such as damping ratios and natural frequencies can be detected by periodic monitoring (e.g. one time by year). These changes are often indications of structural damage thereby, the maintenance or demolition of the structure can be doing in due time. In the case of pedestrian bridges, people’s movements may produce a resonance state, which leads to excessive deflection that accelerates the deterioration of these structures. Typically, these dynamic properties are detected by using high-cost vibration measurement equipment to achieve high levels of precision (i.e. a very low noise levels). This article studies the measurement of dynamic properties in pedestrian bridges using a tri-axial accelerometer integrated into a mobile phone as a low-cost and alternative practice. Accelerations were recorded on a steel pedestrian bridge (flexible) and on a post-tensioned concrete pedestrian bridge (rigid) located in Barranquilla City (Colombia). Vibrations were induced by a person (e.g., by jumping). Previous studies based on traditional measuring techniques show that two dominant frequencies in both types of bridges can be identified. However, in this study a reliable damping ratio could only be established for the steel bridge that it is associated with the flexibility and the low amplitude of the induced vibrations by a single pedestrian user
publishDate 2019
dc.date.issued.none.fl_str_mv 2019
dc.date.accessioned.none.fl_str_mv 2020-11-24T16:25:59Z
dc.date.available.none.fl_str_mv 2020-11-24T16:25:59Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_6501
status_str acceptedVersion
dc.identifier.uri.spa.fl_str_mv https://hdl.handle.net/11323/7458
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
url https://hdl.handle.net/11323/7458
https://repositorio.cuc.edu.co/
identifier_str_mv Corporación Universidad de la Costa
REDICUC - Repositorio CUC
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.references.spa.fl_str_mv Aguirre, D. A., Gaviria, C. A., & Montejo, L. A. (2013). Wavelet-based damage detection in reinforced concrete structures subjected to seismic excitations. Journal of Earthquake Engineering, 17(8), 1103-1125.
Amick R. Z., Patterson J. A., Jorgensen M. J. (2013). Sensitivity of Tri-Axial Accelerometers within Mobile Consumer Electronic Devices: A Pilot Study. International Journal of Applied Science and Technology, Volume 3, No. 2.
Bachmann H., Ammann W. (1987). Vibrations in Structures—Induced by Man and Machines, Structural Engineering Documents, Vol. 3e, International Association of Bridge and Structural Engineering (IABSE), Zurich.
Castellanos S., Marulanda J., Preciado M., Cruza A., Thomson P. (2016). Identification of the operational frequencies of 300+ bridges using Smartphones. Proc. of SPIE Vol. 9804. doi: 10.1117/12.2222097.
Eriksson J., Girod L., Hull B., Newton R., Madden S. and Balakrishnan H. (2008). The pothole patrol: using a mobile sensor network for road surface monitoring, in MobiSys’08: Proceeding of the 6th international conference on Mobile systems, applications, and services.
Franco, J. M., Ortiz, R. A., Gómez D. &Thomson P. (2010). Evaluación de las vibraciones producidas por las personas en el puente peatonal del Club Noel en Cali, Colombia. 21va Jornadas Argentinas de Ingeniería Estructural, 6-8 Octubre, Buenos Aires, Argentina.
Garita C. (2015). Enfoques de integración de información para sistemas de monitoreo de salud estructural de puentes. Tecnología en Marcha. Vol. 29, Nº 1, Enero-Marzo. Pág 96-107.
Gaviria, C.A., & Montejo, L.A. (2018). Optimal Wavelet Parameters for System Identification of Civil Engineering Structures. Earthquake Spectra, 34(1), 197-216.
Gaviria, C. A., & Montejo, L. A. (2016). Output-only identification of the modal and physical properties of structures using free vibration response. Earthquake Engineering and Engineering Vibration, 15(3), 575-589.
Gaviria C., Murillo M., Cantillo Y., Acosta A. (2017). VIII Conferencia Nacional de Ingeniería Sísmica, 8, 2017, Barranquilla, Colombia.
Gaviria, C. A., & Suarez L. (2015). Dynamic properties of a building with viscous dampers in non-proportional arrangement. Structural Engineering and Mechanics, Vol. 55 Iss. 6, p. 1241 – 1260, DOI: 10.12989/sem.2015.55.6.0000.
Lockhart J., Weiss G., Xue J, Gallagher S., Grosner A., and Pulickal T. (2011). “Design Considerations for the WISDM Smart Phone-based Sensor Mining Architecture, 1-9.
Millán D., Marulanda J. & Thomson P. (2017). Evaluación de la confiabilidad estructural de la Tribuna Sur del Estadio Pascual Guerrero, Cali. VIII Congreso Nacional de Ingeniería Sísmica organizado por la Universidad del Norte y la Asociación Colombiana de Ingeniería Sísmica.
Ming L. (2013). “A Study of Mobile Sensing Using Smartphones”, International Journal of Distributed Sensor Networks, 2013: 1-11, http://dx.doi.org/10.1155/2013/2729161-11.
Mohan P., Padmanabhan V., and Ramjee R. (2008). “Nericell - Using Mobile Smartphones forRich Monitoring of Road and Traffic Conditions,” Proceedings of the 6th International Conference on Embedded Networked Sensor Systems, DOI: 10.1145/1460412.1460444.
Navarro-Henríquez F. (2014). Sensores de fibra óptica FBG para el monitoreo de la salud estructural de los puentes. Tecnología en Marcha. Vol. 27, Nº 4, Octubre-Diciembre. Pág 3- 13.
Ortiz, R. A., Gómez D. & Thomson P. (2008). Efecto De La Interacción Humano-Estructura En El Estadio Pascual Guerrero. 20va Jornadas Argentinas de Ingeniería Estructural, 15-17 Octubre, Buenos Aires, Argentina.
Ramírez-Castro, R. I., & Montejo, L. A. (2011). Transformada de Hilbert, descomposición modal empírica y sus aplicaciones en el análisis de vibraciones libres. Revista Internacional de Desastres Naturales, Accidentes e Infraestructura Civil, 11(2), 123-134.
Rengifo J., Rincón J., Franco J., Marulanda J. & Thomson P. (2017). Caracterización dinámica de estructuras con teléfonos móviles inteligentes. VIII Congreso Nacional de Ingeniería Sísmica organizado por la Universidad del Norte y la Asociación Colombiana de Ingeniería Sísmica.
Sánchez, J. A., Thomson, P., Gómez, D. & Ortiz A.R. (2010). Caracterización del efecto de la interacción humano-estructura en puentes peatonales de la ciudad de Cali. 21va Jornadas Argentinas de Ingeniería Estructural, 06-08 Octubre, Buenos Aires, Argentina.
Sánchez, J. A., Gómez, D., & Thomson, P. (2013). Análisis de la interacción humanoestructura en puentes peatonales de Santiago de Cali. Dyna, 80(177), 86-94.
Villamizar, S., Gómez, D., & Thomson, P. (2014). Efecto De Interacción Humano-Estructura En Losas. Dyna, 81(184), 129-137.
Yu-chin Tai, Cheng-wei Chan and Yung-jen Hsu. (2010). Automatic Road Anomaly Detection Using Smart Mobile Device. Procedia in Social and Behavioral Sciences.
dc.rights.spa.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Corporación Universidad de la Costa
dc.source.spa.fl_str_mv Revista Espacios
institution Corporación Universidad de la Costa
dc.source.url.spa.fl_str_mv http://www.revistaespacios.com/a19v40n27/a19v40n27p14.pdf
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstream/11323/7458/1/A%20low-cost%20approach%20to%20monitoring%20the.pdf
https://repositorio.cuc.edu.co/bitstream/11323/7458/2/license_rdf
https://repositorio.cuc.edu.co/bitstream/11323/7458/3/license.txt
https://repositorio.cuc.edu.co/bitstream/11323/7458/4/A%20low-cost%20approach%20to%20monitoring%20the.pdf.jpg
https://repositorio.cuc.edu.co/bitstream/11323/7458/5/A%20low-cost%20approach%20to%20monitoring%20the.pdf.txt
bitstream.checksum.fl_str_mv c356b97d3c2088b8a4e9db800ca58384
4460e5956bc1d1639be9ae6146a50347
e30e9215131d99561d40d6b0abbe9bad
8fe53afce1de789988bd09103c8017b4
3baef97a55fa06cf79649b2568d5597d
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Universidad de La Costa
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1808400115994460160
spelling MURILLO, Michel J.4436e898d2daf21ea02e14555482a564GAVIRIA, Carlos A.f71c609fe43f1a5d192f80048dd2b098CANTILLO, Yamith A.0e0dd8f9c3c51e9d179acbdfc082e9baACOSTA, Carlos A.4b51ab9b2ec8c83d49a4d132ff73d2252020-11-24T16:25:59Z2020-11-24T16:25:59Z2019https://hdl.handle.net/11323/7458Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/Changes in dynamic properties of structures, such as damping ratios and natural frequencies can be detected by periodic monitoring (e.g. one time by year). These changes are often indications of structural damage thereby, the maintenance or demolition of the structure can be doing in due time. In the case of pedestrian bridges, people’s movements may produce a resonance state, which leads to excessive deflection that accelerates the deterioration of these structures. Typically, these dynamic properties are detected by using high-cost vibration measurement equipment to achieve high levels of precision (i.e. a very low noise levels). This article studies the measurement of dynamic properties in pedestrian bridges using a tri-axial accelerometer integrated into a mobile phone as a low-cost and alternative practice. Accelerations were recorded on a steel pedestrian bridge (flexible) and on a post-tensioned concrete pedestrian bridge (rigid) located in Barranquilla City (Colombia). Vibrations were induced by a person (e.g., by jumping). Previous studies based on traditional measuring techniques show that two dominant frequencies in both types of bridges can be identified. However, in this study a reliable damping ratio could only be established for the steel bridge that it is associated with the flexibility and the low amplitude of the induced vibrations by a single pedestrian userapplication/pdfengCorporación Universidad de la CostaAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Revista Espacioshttp://www.revistaespacios.com/a19v40n27/a19v40n27p14.pdfStructural health monitoringpedestrian bridgesdynamic responsevibrationsA low-cost approach to monitoring the structural health of pedestrian bridgesUn enfoque de bajo costo para monitorear la salud estructural de los puentes peatonalesArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersionAguirre, D. A., Gaviria, C. A., & Montejo, L. A. (2013). Wavelet-based damage detection in reinforced concrete structures subjected to seismic excitations. Journal of Earthquake Engineering, 17(8), 1103-1125.Amick R. Z., Patterson J. A., Jorgensen M. J. (2013). Sensitivity of Tri-Axial Accelerometers within Mobile Consumer Electronic Devices: A Pilot Study. International Journal of Applied Science and Technology, Volume 3, No. 2.Bachmann H., Ammann W. (1987). Vibrations in Structures—Induced by Man and Machines, Structural Engineering Documents, Vol. 3e, International Association of Bridge and Structural Engineering (IABSE), Zurich.Castellanos S., Marulanda J., Preciado M., Cruza A., Thomson P. (2016). Identification of the operational frequencies of 300+ bridges using Smartphones. Proc. of SPIE Vol. 9804. doi: 10.1117/12.2222097.Eriksson J., Girod L., Hull B., Newton R., Madden S. and Balakrishnan H. (2008). The pothole patrol: using a mobile sensor network for road surface monitoring, in MobiSys’08: Proceeding of the 6th international conference on Mobile systems, applications, and services.Franco, J. M., Ortiz, R. A., Gómez D. &Thomson P. (2010). Evaluación de las vibraciones producidas por las personas en el puente peatonal del Club Noel en Cali, Colombia. 21va Jornadas Argentinas de Ingeniería Estructural, 6-8 Octubre, Buenos Aires, Argentina.Garita C. (2015). Enfoques de integración de información para sistemas de monitoreo de salud estructural de puentes. Tecnología en Marcha. Vol. 29, Nº 1, Enero-Marzo. Pág 96-107.Gaviria, C.A., & Montejo, L.A. (2018). Optimal Wavelet Parameters for System Identification of Civil Engineering Structures. Earthquake Spectra, 34(1), 197-216.Gaviria, C. A., & Montejo, L. A. (2016). Output-only identification of the modal and physical properties of structures using free vibration response. Earthquake Engineering and Engineering Vibration, 15(3), 575-589.Gaviria C., Murillo M., Cantillo Y., Acosta A. (2017). VIII Conferencia Nacional de Ingeniería Sísmica, 8, 2017, Barranquilla, Colombia.Gaviria, C. A., & Suarez L. (2015). Dynamic properties of a building with viscous dampers in non-proportional arrangement. Structural Engineering and Mechanics, Vol. 55 Iss. 6, p. 1241 – 1260, DOI: 10.12989/sem.2015.55.6.0000.Lockhart J., Weiss G., Xue J, Gallagher S., Grosner A., and Pulickal T. (2011). “Design Considerations for the WISDM Smart Phone-based Sensor Mining Architecture, 1-9.Millán D., Marulanda J. & Thomson P. (2017). Evaluación de la confiabilidad estructural de la Tribuna Sur del Estadio Pascual Guerrero, Cali. VIII Congreso Nacional de Ingeniería Sísmica organizado por la Universidad del Norte y la Asociación Colombiana de Ingeniería Sísmica.Ming L. (2013). “A Study of Mobile Sensing Using Smartphones”, International Journal of Distributed Sensor Networks, 2013: 1-11, http://dx.doi.org/10.1155/2013/2729161-11.Mohan P., Padmanabhan V., and Ramjee R. (2008). “Nericell - Using Mobile Smartphones forRich Monitoring of Road and Traffic Conditions,” Proceedings of the 6th International Conference on Embedded Networked Sensor Systems, DOI: 10.1145/1460412.1460444.Navarro-Henríquez F. (2014). Sensores de fibra óptica FBG para el monitoreo de la salud estructural de los puentes. Tecnología en Marcha. Vol. 27, Nº 4, Octubre-Diciembre. Pág 3- 13.Ortiz, R. A., Gómez D. & Thomson P. (2008). Efecto De La Interacción Humano-Estructura En El Estadio Pascual Guerrero. 20va Jornadas Argentinas de Ingeniería Estructural, 15-17 Octubre, Buenos Aires, Argentina.Ramírez-Castro, R. I., & Montejo, L. A. (2011). Transformada de Hilbert, descomposición modal empírica y sus aplicaciones en el análisis de vibraciones libres. Revista Internacional de Desastres Naturales, Accidentes e Infraestructura Civil, 11(2), 123-134.Rengifo J., Rincón J., Franco J., Marulanda J. & Thomson P. (2017). Caracterización dinámica de estructuras con teléfonos móviles inteligentes. VIII Congreso Nacional de Ingeniería Sísmica organizado por la Universidad del Norte y la Asociación Colombiana de Ingeniería Sísmica.Sánchez, J. A., Thomson, P., Gómez, D. & Ortiz A.R. (2010). Caracterización del efecto de la interacción humano-estructura en puentes peatonales de la ciudad de Cali. 21va Jornadas Argentinas de Ingeniería Estructural, 06-08 Octubre, Buenos Aires, Argentina.Sánchez, J. A., Gómez, D., & Thomson, P. (2013). Análisis de la interacción humanoestructura en puentes peatonales de Santiago de Cali. Dyna, 80(177), 86-94.Villamizar, S., Gómez, D., & Thomson, P. (2014). Efecto De Interacción Humano-Estructura En Losas. Dyna, 81(184), 129-137.Yu-chin Tai, Cheng-wei Chan and Yung-jen Hsu. (2010). Automatic Road Anomaly Detection Using Smart Mobile Device. Procedia in Social and Behavioral Sciences.ORIGINALA low-cost approach to monitoring the.pdfA low-cost approach to monitoring the.pdfapplication/pdf877942https://repositorio.cuc.edu.co/bitstream/11323/7458/1/A%20low-cost%20approach%20to%20monitoring%20the.pdfc356b97d3c2088b8a4e9db800ca58384MD51open accessCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.cuc.edu.co/bitstream/11323/7458/2/license_rdf4460e5956bc1d1639be9ae6146a50347MD52open accessLICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstream/11323/7458/3/license.txte30e9215131d99561d40d6b0abbe9badMD53open accessTHUMBNAILA low-cost approach to monitoring the.pdf.jpgA low-cost approach to monitoring the.pdf.jpgimage/jpeg100601https://repositorio.cuc.edu.co/bitstream/11323/7458/4/A%20low-cost%20approach%20to%20monitoring%20the.pdf.jpg8fe53afce1de789988bd09103c8017b4MD54open accessTEXTA low-cost approach to monitoring the.pdf.txtA low-cost approach to monitoring the.pdf.txttext/plain28022https://repositorio.cuc.edu.co/bitstream/11323/7458/5/A%20low-cost%20approach%20to%20monitoring%20the.pdf.txt3baef97a55fa06cf79649b2568d5597dMD55open access11323/7458oai:repositorio.cuc.edu.co:11323/74582023-12-14 14:27:40.574Attribution-NonCommercial-NoDerivatives 4.0 International|||http://creativecommons.org/licenses/by-nc-nd/4.0/open accessRepositorio Universidad de La Costabdigital@metabiblioteca.comQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA==