Determinación del aporte de quemas de biomasa en la concentración de pm2.5 en dos municipios del área metropolitana de Barranquilla a través del uso de herramientas de sensoramiento remoto
The disruption of air quality due to the increase in atmospheric emissions, especially due to the burning of biomass, constitutes one of the greatest environmental concerns worldwide. In this study, through the use of remote sensing tools and dispersion models, the contributions of the burns in the...
- Autores:
-
Bolaño Truyol, Jehison Rafael
- Tipo de recurso:
- Fecha de publicación:
- 2020
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/7078
- Acceso en línea:
- https://hdl.handle.net/11323/7078
https://repositorio.cuc.edu.co/
- Palabra clave:
- Biomass burning
Particulate matter
Remote sensing
Dispersion model,
Hysplit
Quemas de biomasa
Material particulado
Sensoramiento remoto
Modelo de dispersión
- Rights
- openAccess
- License
- Attribution-NonCommercial-ShareAlike 4.0 International
id |
RCUC2_79c26cef70e0309bd74d7f539ac11b75 |
---|---|
oai_identifier_str |
oai:repositorio.cuc.edu.co:11323/7078 |
network_acronym_str |
RCUC2 |
network_name_str |
REDICUC - Repositorio CUC |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Determinación del aporte de quemas de biomasa en la concentración de pm2.5 en dos municipios del área metropolitana de Barranquilla a través del uso de herramientas de sensoramiento remoto |
title |
Determinación del aporte de quemas de biomasa en la concentración de pm2.5 en dos municipios del área metropolitana de Barranquilla a través del uso de herramientas de sensoramiento remoto |
spellingShingle |
Determinación del aporte de quemas de biomasa en la concentración de pm2.5 en dos municipios del área metropolitana de Barranquilla a través del uso de herramientas de sensoramiento remoto Biomass burning Particulate matter Remote sensing Dispersion model, Hysplit Quemas de biomasa Material particulado Sensoramiento remoto Modelo de dispersión |
title_short |
Determinación del aporte de quemas de biomasa en la concentración de pm2.5 en dos municipios del área metropolitana de Barranquilla a través del uso de herramientas de sensoramiento remoto |
title_full |
Determinación del aporte de quemas de biomasa en la concentración de pm2.5 en dos municipios del área metropolitana de Barranquilla a través del uso de herramientas de sensoramiento remoto |
title_fullStr |
Determinación del aporte de quemas de biomasa en la concentración de pm2.5 en dos municipios del área metropolitana de Barranquilla a través del uso de herramientas de sensoramiento remoto |
title_full_unstemmed |
Determinación del aporte de quemas de biomasa en la concentración de pm2.5 en dos municipios del área metropolitana de Barranquilla a través del uso de herramientas de sensoramiento remoto |
title_sort |
Determinación del aporte de quemas de biomasa en la concentración de pm2.5 en dos municipios del área metropolitana de Barranquilla a través del uso de herramientas de sensoramiento remoto |
dc.creator.fl_str_mv |
Bolaño Truyol, Jehison Rafael |
dc.contributor.advisor.spa.fl_str_mv |
Schneider, Ismael Luis Cano Cuadro, Heidis Patricia |
dc.contributor.author.spa.fl_str_mv |
Bolaño Truyol, Jehison Rafael |
dc.subject.spa.fl_str_mv |
Biomass burning Particulate matter Remote sensing Dispersion model, Hysplit Quemas de biomasa Material particulado Sensoramiento remoto Modelo de dispersión |
topic |
Biomass burning Particulate matter Remote sensing Dispersion model, Hysplit Quemas de biomasa Material particulado Sensoramiento remoto Modelo de dispersión |
description |
The disruption of air quality due to the increase in atmospheric emissions, especially due to the burning of biomass, constitutes one of the greatest environmental concerns worldwide. In this study, through the use of remote sensing tools and dispersion models, the contributions of the burns in the alterations of PM2.5 in two municipalities of the Barranquilla Metropolitan Area were estimated. Initially, the variations of PM2.5 between January 2017 and June 2018 were analyzed and validated for the municipalities of Soledad (Hipódromo and EDUMAS stations) and Malambo (Tránsito y Transporte station). Subsequently, using the parameters AOD and AAE, the aircraft are classified according to their origin. The biomass burning report is estimated for the period between February 24 and March 30, 2018, when the main burning periods are observed. The burn points and their intensity were obtained from satellite images and the Hysplit model used to estimate emissions. From the dispersion model, which used forward trajectories, it obtained the burns that contribute, on average, with 26.93% for EDUMAS and 22.82% at Hipódromo (Soledad), while for Transit and Transportation with 28.78% (Malambo) of PM2.5 proteins. These results indicate a significant contribution of regional burns, with the contributions coming from La Guajira being recorded. This information is essential so that they can implement more effective mitigation measures and lessen the impact on the population's health. |
publishDate |
2020 |
dc.date.accessioned.none.fl_str_mv |
2020-09-08T23:30:23Z |
dc.date.available.none.fl_str_mv |
2020-09-08T23:30:23Z |
dc.date.issued.none.fl_str_mv |
2020 |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
status_str |
acceptedVersion |
dc.identifier.citation.spa.fl_str_mv |
Bolaño, J. (2020). Determinación del aporte de quemas de biomasa en la concentración de pm2.5 en dos municipios del área metropolitana de barranquilla a través del uso de herramientas de sensoramiento remoto. Trabajo de Maestría. Recuperado de https://hdl.handle.net/11323/7078 |
dc.identifier.uri.spa.fl_str_mv |
https://hdl.handle.net/11323/7078 |
dc.identifier.instname.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.identifier.reponame.spa.fl_str_mv |
REDICUC - Repositorio CUC |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.cuc.edu.co/ |
identifier_str_mv |
Bolaño, J. (2020). Determinación del aporte de quemas de biomasa en la concentración de pm2.5 en dos municipios del área metropolitana de barranquilla a través del uso de herramientas de sensoramiento remoto. Trabajo de Maestría. Recuperado de https://hdl.handle.net/11323/7078 Corporación Universidad de la Costa REDICUC - Repositorio CUC |
url |
https://hdl.handle.net/11323/7078 https://repositorio.cuc.edu.co/ |
dc.language.iso.none.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
Abdelhady, S., Borello, D., Shaban, A., & Rispoli, F. (2014). Viability study of biomass power plant fired with rice straw in Egypt. Energy Procedia, 61, 211–215. https://doi.org/10.1016/j.egypro.2014.11.1072 Adamiec, E., Dajda, J., Gruszecka-Kosowska, A., Helios-Rybicka, E., Kisiel-Dorohinicki, M., Klimek, R., Pałka, D., & Wąs, J. (2019). Using Medium-Cost Sensors to Estimate Air Quality in Remote Locations. Case Study of Niedzica, Southern Poland. Atmosphere, 10(7), 393. https://doi.org/10.3390/atmos10070393 Akagi, S. K., Yokelson, R. J., Wiedinmyer, C., Alvarado, M. J., Reid, J. S., Karl, T., Crounse, J. D., & Wennberg, P. O. (2011). Emission factors for open and domestic biomass burning for use in atmospheric models. Atmospheric Chemistry and Physics, 11(9), 4039–4072. https://doi.org/10.5194/acp-11-4039-2011 Albar, I., Amissah, L., Bowman, D., Charlton, V., Cochrane, M., Groot, B. De, Ellison, D., Field, R., Flannigan, M., Goldammer, J., Kant, P., Khan, M. N., Kornexl, W. L., Krasovskii, A., McCaffrey, S., Mitchell, A. M., Mohanty, A. K., Moore, P., Murdiyarso, D., … Vikram, E. (2018). Global Fire Challenges in a warming world: Summary Note of a Global Expert Workshop on Fire and Climate Change. Occasional Paper No. 32, 32(January), 61. Alcaldía de Barranquilla. (2013). Gaceta distrital N° 390-6. Gaceta Distrial, 429, 100. Aldeghi, Carn, Escobar-Wolf, & Groppelli. (2019). Volcano Monitoring from Space Using High-Cadence Planet CubeSat Images Applied to Fuego Volcano, Guatemala. Remote Sensing, 11(18), 2151. https://doi.org/10.3390/rs11182151 AMB. (2005). Area Metropolitana De Barranquilla Plan De Gestion Integral De Diagnóstico Capitulo V . Diagnostico Institucional: Vol. I. Armenteras-Pascual, D., Retana-Alumbreros, J., Molowny-Horas, R., Roman-Cuesta, R. M., Gonzalez-Alonso, F., & Morales-Rivas, M. (2011). Characterising fire spatial pattern interactions with climate and vegetation in Colombia. Agricultural and Forest Meteorology, 151(3), 279–289. https://doi.org/10.1016/j.agrformet.2010.11.002 Asif, Z., Chen, Z., & Han, Y. (2018). Air quality modeling for effective environmental management in the mining region. Journal of the Air and Waste Management Association, 68(9), 1001–1014. https://doi.org/10.1080/10962247.2018.1463301 Bae, M., Kim, B. U., Kim, H. C., & Kim, S. (2020). A multiscale tiered approach to quantify contributions: A case study of PM2.5 in South Korea during 2010-2017. Atmosphere, 11(2), 5–15. https://doi.org/10.3390/atmos11020141 Ballesteros-González, K., Sullivan, A. P., & Morales-Betancourt, R. (2020). Estimating the air quality and health impacts of biomass burning in northern South America using a chemical transport model. Science of The Total Environment, 139755. https://doi.org/10.1016/j.scitotenv.2020.139755 Barranquilla, A. de. (2016). Plan de Ordenamiento Territorial. Bibi, H., Alam, K., & Bibi, S. (2016). In-depth discrimination of aerosol types using multiple clustering techniques over four locations in Indo-Gangetic plains. Atmospheric Research, 181, 106–114. https://doi.org/10.1016/j.atmosres.2016.06.017 Bitta, J., Pavlíková, I., Svozilík, V., & Jančík, P. (2018). Air pollution dispersion modelling using spatial analyses. ISPRS International Journal of Geo-Information, 7(12), 7–9. https://doi.org/10.3390/ijgi7120489 Chang, C. H., Hsiao, Y. L., & Hwang, C. (2015). Evaluating spatial and temporal variations of aerosol optical depth and biomass burning over southeast asia based on satellite data products. Aerosol and Air Quality Research, 15(7), 2625–2640. https://doi.org/10.4209/aaqr.2015.10.0589 Chuesaard, T., Chetiyanukornkul, T., Kameda, T., Hayakawa, K., & Toriba, A. (2014). Influence of biomass burning on the levels of atmospheric polycyclic aromatic hydrocarbons and their nitro derivatives in Chiang Mai, Thailand. Aerosol and Air Quality Research, 14(4), 1247– 1257. https://doi.org/10.4209/aaqr.2013.05.0161 CIOH. (2020). Centro de Investigaciones Oceanográficas e Hidrográficas. Epocas Climaticas En El Litoral Caribe Colombiano. https://www.cioh.org.co/meteorologia/Climatologia/ClimatologiaCaribe7.php CONAMA. (2016). Teledetección y sensores Medioambientales. Respuesta Verde CONAMA 2016, 17. http://www.conama.org/conama/download/files/conama2016//GTs 2016/14_final.pdf Contraloría Distrital. (2018). Informe del estado de los recursos naturales y del Ambiente de Barranquilla 2018. Dawson, J. P., Adams, P. J., & Pandis, S. N. (2007). Sensitivity of PM2.5 to climate in the Eastern US: A modeling case study. Atmospheric Chemistry and Physics, 7(16), 4295– 4309. https://doi.org/10.5194/acp-7-4295-2007 Departamento Nacional de Planeación de Colombia. (2018). Valoración económica de la degradación ambiental en Colombia 2015. https://colaboracion.dnp.gov.co/CDT/Prensa/Valoración económica de la degradación ambiental.pdf Devara, P. C. S., & Manoj, M. G. (2013). Aerosol-cloud-precipitation interactions: A challenging problem in regional environment and climate research. Particuology, 11(1), 25– 33. https://doi.org/10.1016/j.partic.2012.07.006 Ding, A., Yang, Y., Zhao, Z., Hüls, A., Vierkötter, A., Yuan, Z., Cai, J., Zhang, J., Gao, W., Li, J., Zhang, M., Matsui, M., Krutmann, J., Kan, H., Schikowski, T., Jin, L., & Wang, S. (2017). Indoor PM2.5 exposure affects skin aging manifestation in a Chinese population. Scientific Reports. https://doi.org/10.1038/s41598-017-15295-8 EPA. (2017). Quality Assurance Handbook for Air Pollution Measurement Systems: Vol. II. Fan, Q., Lan, J., Liu, Y., Wang, X., Chan, P., Hong, Y., Feng, Y., Liu, Y., Zeng, Y., & Liang, G. (2015). Process analysis of regional aerosol pollution during spring in the Pearl River Delta region , China. Atmospheric Environment, 122(January 2013), 829–838. https://doi.org/10.1016/j.atmosenv.2015.09.013 Filchev, L., Pashova, L., Kolev, V., & Frye, S. (2020). Chapter 6 - Surveys, Catalogues, Databases/Archives, and State-of-the-Art Methods for Geoscience Data Processing (P. Škoda & F. B. T.-K. D. in B. D. from A. and E. O. Adam (eds.); pp. 103–136). Elsevier. https://doi.org/https://doi.org/10.1016/B978-0-12-819154-5.00016-3 Gallego, A., Ignacio, G., Bejamin, S., Fernandez, P., Garcinuño, R., Bravo, J., Pradana, J., Garcia, M., & Durand, J. (2012). Contaminación atmosférica. In Universidad Naciaonal a Distancia (Vol. 91, Issue 5). https://doi.org/10.1017/CBO9781107415324.004 GEOS-Chem. (2019). GEOS-Chem. Overview. http://acmg.seas.harvard.edu/geos/geos_overview.html GFWF. (2019). Global Watch Fires. Global Watch Fires. https://fires.globalforestwatch.org/about/ Giglio, L., Boschetti, L., Roy, D. P., Humber, M. L., & Justice, C. O. (2018). The Collection 6 MODIS burned area mapping algorithm and product. Remote Sensing of Environment, 217(March), 72–85. https://doi.org/10.1016/j.rse.2018.08.005 Godish, T. (2003). Air Quality, Fourth Edition. In Air Quality, Fourth Edition. https://doi.org/10.1201/b13168 González-álvarez, Á., Viloria-Marimón, O. M., Coronado-Hernández, Ó. E., Vélez-Pereira, A. M., Tesfagiorgis, K., & Coronado-Hernández, J. R. (2019). Isohyetal maps of daily maximum rainfall for different return periods for the Colombian Caribbean Region. Water (Switzerland), 11(2). https://doi.org/10.3390/w11020358 Guillermo, Ronquillo-Lomeli, Gilberto, Herrera-Ruiz, Alfredo, I., José Gabriel Alejandro, R.-M., Ramirez-Maya, & Trejo-Perea, M. (2018). Total suspended particle emissions modelling in an industrial boiler. Energies, 11(11). https://doi.org/10.3390/en11113097 Guo, L., Chen, B., Zhang, H., Xu, G., Lu, L., Lin, X., Kong, Y., Wang, F., & Li, Y. (2018). Improving PM2.5 forecasting and emission estimation based on the bayesian optimization method and the coupled FLEXPART-WRF model. Atmosphere, 9(11), 1–17. https://doi.org/10.3390/atmos9110428 Hernandez, A. J., Morales-rincon, L. A., Wu, D., Mallia, D., Lin, J. C., & Jimenez, R. (2019). Transboundary transport of biomass burning aerosols and photochemical pollution in the Orinoco River Basin. Atmospheric Environment, 205(45), 1–8. https://doi.org/10.1016/j.atmosenv.2019.01.051 Hoyos, N., Correa-Metrio, A., Sisa, A., Ramos-Fabiel, M. A., Espinosa, J. M., Restrepo, J. C., & Escobar, J. (2017). The environmental envelope of fires in the Colombian Caribbean. Applied Geography, 84, 42–54. https://doi.org/10.1016/j.apgeog.2017.05.001 Huang, H. C., Lin, F. C. F., Wu, M. F., Nfor, O. N., Hsu, S. Y., Lung, C. C., Ho, C. C., Chen, C. Y., & Liaw, Y. P. (2019). Association between chronic obstructive pulmonary disease and PM2.5 in Taiwanese nonsmokers. International Journal of Hygiene and Environmental Health, 222(5), 884–888. https://doi.org/10.1016/j.ijheh.2019.03.009 Huang, X. H. H., Bian, Q., Ng, W. M., Louie, P. K. K., & Yu, J. Z. (2014). Characterization of PM2.5 major components and source investigation in suburban Hong Kong: A one year monitoring study. Aerosol and Air Quality Research, 14(1), 237–250. https://doi.org/10.4209/aaqr.2013.01.0020 IDEAM. (2019). IDEAM - Instituto de Hidrología, Meteorología y Estudios Ambientales. Servicios de Pronósticos y Alertas. http://www.ideam.gov.co/web/atencion-y-participacionciudadana/servicios-pronosticos-alertas INPE. (2020). Banco de datos de quemadas. Portal De Datos Abiertos Del Programa Quemadas. http://queimadas.dgi.inpe.br/queimadas/portal/informacoes/apresentacao Islam, Robiul;Jayarathne, T., Simpson, I., Werden, B., Maben, J., Gilbert, A., Praveen, P., Adhikari, S., Panday, A., Rupakheti, M., Blake, D., Yokelson, R., DeCarlo, P., Keene, W., & Stone, E. (2019). Ambient air quality in the Kathmandu Valley, Nepal during the premonsoon: Concentrations and sources of particulate matter and trace gases. In Atmospheric Chemistry and Physics Discussions (pp. 1–53). https://doi.org/10.5194/acp-2019-333 Jiménez, J. F. (2016). Altura de la Capa de Mezcla en un área urbana montañosa y tropical. Universidad de Antioquia Facultad de Ingeniería. Medellín. Colombia. 235. Juda-Rezler, K., Reizer, M., Maciejewska, K., Błaszczak, B., & Klejnowski, K. (2020). Characterization of atmospheric PM2.5 sources at a Central European urban background site. Science of the Total Environment, 713, 136729. https://doi.org/10.1016/j.scitotenv.2020.136729 Kabisch, N., Selsam, P., Kirsten, T., Lausch, A., & Bumberger, J. (2019). A multi-sensor and multi-temporal remote sensing approach to detect land cover change dynamics in heterogeneous urban landscapes. 99(July 2018), 273–282. Kaneyasu, N., Ishidoya, S., Terao, Y., Mizuno, Y., & Sugawara, H. (2020). Estimation of PM2.5 Emission Sources in the Tokyo Metropolitan Area by Simultaneous Measurements of Particle Elements and Oxidative Ratio in Air. ACS Earth and Space Chemistry, 4(2), 297– 304. https://doi.org/10.1021/acsearthspacechem.9b00314 Knorr, W., Dentener, F., Lamarque, J. F., Jiang, L., & Arneth, A. (2017). Wildfire air pollution hazard during the 21st century. Atmospheric Chemistry and Physics, 17(14), 9223–9236. https://doi.org/10.5194/acp-17-9223-2017 Kong, H., Lin, J., Zhang, R., Liu, M., Weng, H., Ni, R., Chen, L., & Wang, J. (2019). Highresolution (0.05°x 0.05°) NOx emissions in the Yangtze River Delta inferred from OMI. Atmospheric Chemistry and Physics, x, 12835–12856. Kota, S. H., Guo, H., Myllyvirta, L., Hu, J., Sahu, S. K., Garaga, R., Ying, Q., Gao, A., Dahiya, S., Wang, Y., & Zhang, H. (2018). Year-long simulation of gaseous and particulate air pollutants in India. Atmospheric Environment, 180, 244–255. https://doi.org/10.1016/j.atmosenv.2018.03.003 Kraaij, T., Baard, J. A., Arndt, J., Vhengani, L., & van Wilgen, B. W. (2018). An assessment of climate, weather, and fuel factors influencing a large, destructive wildfire in the Knysna region, South Africa. Fire Ecology, 14(2), 1–12. https://doi.org/10.1186/s42408-018-0001-0 Kumar, S., Lin, N., Chantara, S., Wang, S., Khamkaew, C., Prapamontol, T., & Janjai, S. (2018). Science of the Total Environment Radiative response of biomass-burning aerosols over an urban atmosphere in northern peninsular Southeast Asia. Science of the Total Environment, 633, 892–911. https://doi.org/10.1016/j.scitotenv.2018.03.204 Lai, H. C., Ma, H. W., Chen, C. R., Hsiao, M. C., & Pan, B. H. (2019). Design and application of a hybrid assessment of air quality models for the source apportionment of PM2.5. Atmospheric Environment, 212(May), 116–127. https://doi.org/10.1016/j.atmosenv.2019.05.038 Langley Dewitt, H., Gasore, J., Rupakheti, M., Potter, K. E., Prinn, R. G., De Dieu Ndikubwimana, J., Nkusi, J., & Safari, B. (2019). Seasonal and diurnal variability in O3, black carbon, and CO measured at the Rwanda Climate Observatory. Atmospheric Chemistry and Physics, 19(3), 2063–2078. https://doi.org/10.5194/acp-19-2063-2019 Li, Fang, Val Martin, M., Hantson, S., Andreae, M. O., Arneth, A., Lasslop, G., Yue, C., Bachelet, D., Forrest, M., Kaiser, J. W., Kluzek, E., Liu, X., Melton, J. R., Ward, D. S., Darmenov, A., Hickler, T., Ichoku, C., Magi, B. I., Sitch, S., … Wiedinmyer, C. (2019). Historical (1700–2012) Global Multi-model Estimates of the Fire Emissions from the Fire Modeling Intercomparison Project (FireMIP). Atmospheric Chemistry and Physics Discussions, January, 1–57. https://doi.org/10.5194/acp-2019-37 Li, Fangjun, Zhang, X., Kondragunta, S., & Roy, D. P. (2018). Investigation of the Fire Radiative Energy Biomass Combustion Coefficient: A Comparison of Polar and Geostationary Satellite Retrievals Over the Conterminous United States. Journal of Geophysical Research: Biogeosciences, 123(2), 722–739. https://doi.org/10.1002/2017JG004279 Li, X., Chen, W. Y., Sanesi, G., & Lafortezza, R. (2019). Remote sensing in urban forestry: Recent applications and future directions. Remote Sensing, 11(10), 1–20. https://doi.org/10.3390/rs11101144 Li, Z., Wang, Y., Li, Z., Guo, S., & Hu, Y. (2020). Levels and Source of PM2.5 Associated PAHs during and after Wheat Harvest in a Central Rural Area of Beijing-Tianjin-Hebei (BTH) Region. Aerosol and Air Quality Research, 1070–1082. https://doi.org/10.4209/aaqr.2020.03.0083 Liu, T., Marlier, M. E., DeFries, R. S., Westervelt, D. M., Xia, K. R., Fiore, A. M., Mickley, L. J., Cusworth, D. H., & Milly, G. (2018). Seasonal impact of regional outdoor biomass burning on air pollution in three Indian cities: Delhi, Bengaluru, and Pune. Atmospheric Environment, 172(September 2017), 83–92. https://doi.org/10.1016/j.atmosenv.2017.10.024 Liu, Y., Wang, J., Zhao, X., Wang, J., Wang, X., Hou, L., Yang, W., Han, B., & Bai, Z. (2020). Characteristics, secondary formation and regional contributions of pm2.5 pollution in jinan during winter. Atmosphere, 11(3), 9–11. https://doi.org/10.3390/atmos11030273 Llanos, E. (2011). Metropolización de Barranquilla y problemática espacial de Soledad - Atlántico. Perspectiva Geográfica, 1(15), 261–276. https://doi.org/10.19053/01233769.1742 Luo, Lei, Wang, X., Guo, H., Lasaponara, R., Zong, X., Masini, N., Wang, G., Shi, P., Khatteli, H., Chen, F., Tariq, S., Shao, J., Bachagha, N., Yang, R., & Yao, Y. (2019). Airborne and spaceborne remote sensing for archaeological and cultural heritage applications: A review of the century (1907–2017). Remote Sensing of Environment, 232(June), 111280. https://doi.org/10.1016/j.rse.2019.111280 Luo, Li, Zhang, Y., Xiao, H., Xiao, H., & Zheng, N. (2019). Spatial Distributions and Sources of Inorganic chlorine in PM2.5 across China in winter. Atmosphere, x. MADS. (2011). Estrategia de corresponsabilidad social en la lucha contra incendios forestales. 8, 21. www.minambiente.gov.coContenido Malamakal, T., Chen, L. A., Wang, X., Green, M. C., Gronstal, S., Chow, J. C., & Watson, J. G. (2013). Prescribed burn smoke impact in the Lake Tahoe Basin : model simulation and field verification. 52, 225–243. Markou, M. T., & Kassomenos, P. (2010). Cluster analysis of five years of back trajectories arriving in Athens, Greece. Atmospheric Research, 98(2–4), 438–457. https://doi.org/10.1016/j.atmosres.2010.08.006 Martins, L. D., Hallak, R., Alves, R. C., de Almeida, D. S., Squizzato, R., Moreira, C. A. B., Beal, A., da Silva, I., Rudke, A., & Martins, J. A. (2018). Long-range transport of aerosols from biomass burning over Southeastern South America and their implications on air quality. Aerosol and Air Quality Research, 18(7), 1734–1745. https://doi.org/10.4209/aaqr.2017.11.0545 Masiol, M., Squizzato, S., Rich, D. Q., & Hopke, P. K. (2019). Long-term trends (2005–2016) of source apportioned PM2.5 across New York State. Atmospheric Environment, 201(June 2018), 110–120. https://doi.org/10.1016/j.atmosenv.2018.12.038 Mataveli, G. A. V., Silva, M. E. S., França, D. de A., Brunsell, N. A., de Oliveira, G., Cardozo, F. da S., Bertani, G., & Pereira, G. (2019). Characterization and Trends of Fine Particulate Matter (PM2.5) Fire Emissions in the Brazilian Cerrado during 2002–2017. Remote Sensing, 11(19), 2254. https://doi.org/10.3390/rs11192254 Mendez-Espinosa, J. F., Belalcazar, L. C., Morales Betancourt, R., Ballesteros-González, K., Sullivan, A. P., Morales-Betancourt, R., Hoyos, N., Correa-Metrio, A., Sisa, A., Ramos- Fabiel, M. A., Espinosa, J. M., Restrepo, J. C., Escobar, J., Chen, S. P., Wang, C. C. H., Lin, W. D., Tong, Y. H., Chen, Y. C., Chiu, C. J., … Wu, W. (2017). Ultrafine particles from residential biomass combustion: A review on experimental data and toxicological response. Atmospheric Chemistry and Physics, 9(February), 1–15. https://doi.org/10.1080/02726351003758444 Mielonen, T., Aaltonen, V., Lihavainen, H., Hyvärinen, A. P., Arola, A., Komppula, M., & Kivi, R. (2013). Biomass burning aerosols observed in Northern Finland during the 2010 wildfires in Russia. Atmosphere, 4(1), 17–34. https://doi.org/10.3390/atmos4010017 Ministerio de Ambiente y Desarrollo Sostenible. (2017). 2017 COLOMBIA Resolución 2254 de 2017 - Niveles Calidad del Aire. Moghim, S., & Ramezanpoor, R. (2019). Characterization of aerosol types over Lake Urmia Basin. E3S Web of Conferences, 99, 3–6. https://doi.org/10.1051/e3sconf/20199901006 Moreno Horacio. (2019). Semana Sostenible. Muertes Por Contaminación Del Aire Le Costaron a Medellín $5 Billones En Solo Un Año. https://sostenibilidad.semana.com/medioambiente/articulo/muertes-por-contaminacion-del-aire-le-costaron-a-medellin-5-billonesde-pesos-en-solo-un-ano/43332 Moya Álvarez, A. S., Arredondo, R. E., & Yuli Posadas, R. Á. (2017). Determination of the presence of particles (PM 10 ) in Peru produced by biomass burning using numerical models. Revista Internacional de Contaminacion Ambiental, 33(1), 99–108. https://doi.org/10.20937/RICA.2017.33.01.09 Mukai, S., Yasumoto, M., & Nakata, M. (2014). Estimation of Biomass Burning Influence on Air Pollution around Beijing from an Aerosol Retrieval Model. Scientific World Journal, 2014(June 2010). https://doi.org/10.1155/2014/649648 Mukherjee, T., Vinoj, V., Midya, S. K., Puppala, S. P., & Adhikary, B. (2020). Numerical simulations of different sectoral contributions to post monsoon pollution over Delhi. Heliyon, 6(3), e03548. https://doi.org/10.1016/j.heliyon.2020.e03548 Nación. (2018, December 21). El fenómeno del Niño ya está en el país y nos está impactando. EL Tiempo. https://www.eltiempo.com/colombia/otras-ciudades/fenomeno-del-nino-2018- 2019-en-colombia-y-probables-afectaciones-307218 NASA. (2019a). MODIS Moderate Resolution Imaging Spectroradiometer. https://modis.gsfc.nasa.gov/about/index.php NASA. (2019b). NASA Worldview. https://worldview.earthdata.nasa.gov/ Ngan, F., Stein, A., Finn, D., & Eckman, R. (2018). Dispersion simulations using HYSPLIT for the Sagebrush Tracer Experiment. Atmospheric Environment, 186(March), 18–31. https://doi.org/10.1016/j.atmosenv.2018.05.012 NOAA. (2019a). Hysplit. National Oceanic and Atmospheric Administration. https://www.arl.noaa.gov/hysplit/hysplit/ NOAA. (2019b). Información de archivo del Sistema global de asimilación de datos. Air Resources Laboratory. Información de archivo del Sistema global de asimilación de datos Noda, J., Bergström, R., Kong, X., Gustafsson, T. L., Kovacevik, B., Svane, M., & Pettersson, J. B. C. (2019). Aerosol from Biomass Combustion in Northern Europe: Influence of Meteorological Conditions and Air Mass History. Atmosphere, 10(12), 789. https://doi.org/10.3390/atmos10120789 Noyes, K. J., Kahn, R., Sedlacek, A., Kleinman, L., Limbacher, J., & Li, Z. (2020). Wildfire smoke particle properties and evolution, from space-based multi-angle imaging. Remote Sensing, 12(5). https://doi.org/10.3390/rs12050769 Ocko, I. B., & Ginoux, P. A. (2017). Comparing multiple model-derived aerosol optical properties to spatially collocated ground-based and satellite measurements. Atmospheric Chemistry and Physics, 17(7), 4451–4475. https://doi.org/10.5194/acp-17-4451-2017 Orioli, R., Cremona, G., Ciancarella, L., & Solimini, A. G. (2018). Association between PM10, PM2.5, NO2, O3 and self-reported diabetes in Italy: A cross-sectional, ecological study. PLoS ONE, 13(1), 1–17. https://doi.org/10.1371/journal.pone.0191112 Parques Nacionales Naturales de Colombia. (2014). Tres Hectáreas fueron consumidas en quema en el Vía Parque Isla de Salamanca. Parques Nacionales. http://www.parquesnacionales.gov.co/portal/es/tres-hectareas-fueron-consumidas-enquema-en-el-via-parque-isla-de-salamanca/ Pathak, B., Bhuyan, P. K., Gogoi, M., & Bhuyan, K. (2012). Seasonal heterogeneity in aerosol types over Dibrugarh-North-Eastern India. Atmospheric Environment, 47, 307–315. https://doi.org/10.1016/j.atmosenv.2011.10.061 Pereira, Allan A., Pereira, J. M. C., Libonati, R., Oom, D., Setzer, A. W., Morelli, F., MachadoSilva, F., & de Carvalho, L. M. T. (2017a). Burned area mapping in the Brazilian Savanna using a one-class support vector machine trained by active fires. Remote Sensing, 9(11). https://doi.org/10.3390/rs9111161 Pereira, Allan A., Pereira, J. M. C., Libonati, R., Oom, D., Setzer, A. W., Morelli, F., MachadoSilva, F., & de Carvalho, L. M. T. (2017b). Burned area mapping in the Brazilian Savanna using a one-class support vector machine trained by active fires. Remote Sensing, 9(11). https://doi.org/10.3390/rs9111161 Pereira, Allan Arantes, De Barros, D. A., Acerbi, F. W., Alves Pereira, J. A., & Dos Reis, A. A. (2013). Análise da distribuição espacial de áreas queimadas através da função K de Ripley. Scientia Forestalis/Forest Sciences, 41(100), 445–455. Pisso, I., Sollum, E., Grythe, H., Kristiansen, N., Cassiani, M., Eckhardt, S., Arnold, D., Morton, D., Thompson, R. L., Groot Zwaaftink, C. D., Evangeliou, N., Sodemann, H., Haimberger, L., Henne, S., Brunner, D., Burkhart, J. F., Fouilloux, A., Brioude, J., Philipp, A., … Stohl, A. (2019). The Lagrangian particle dispersion model FLEXPART version 10.3. Geoscientific Model Development Discussions, January, 1–67. https://doi.org/10.5194/gmd- 2018-333 Prato, D. F., & Huertas, J. I. (2019). Determination of the area affected by agricultural burning. Atmosphere, 10(6), 1–14. https://doi.org/10.3390/atmos10060312 Pribadi, A., & Kurats, G. (2016). Greenhouse gas and air pollutant emissions from land and forest fire in Indonesia during 2015 based on satellite data. Journal of Physics: Conference Series, 755(1), 0–8. https://doi.org/10.1088/1742-6596/755/1/011001 Querol, X., Pérez, N., Reche, C., Ealo, M., Ripoll, A., Tur, J., Pandolfi, M., Pey, J., Salvador, P., Moreno, T., & Alastuey, A. (2019). African dust and air quality over Spain: Is it only dust that matters? Science of the Total Environment, 686, 737–752. https://doi.org/10.1016/j.scitotenv.2019.05.349 Reddington, C. L., Morgan, W. T., Darbyshire, E., Brito, J., Coe, H., Artaxo, P., Marsham, J., & Spracklen, D. V. (2018). Biomass burning aerosol over the Amazon: analysis of aircraft, surface and satellite observations using a global aerosol model. Atmospheric Chemistry and Physics Discussions, October 2012, 1–32. https://doi.org/10.5194/acp-2018-849 Roberts, G., Wooster, M. J., Xu, W., & He, J. (2018). Fire activity and fuel consumption dynamics in sub-Saharan Africa. Remote Sensing, 10(10), 1–22. https://doi.org/10.3390/rs10101591 Rodrigues, J. A., Libonati, R., Peres, L. D. F., & Setzer, A. (2018). Mapeamento de Áreas Queimadas em Unidades de Conservação da Região Serrana do Rio de Janeiro Utilizando o Satélite Landsat-8 Durante a Seca de 2014. Anuário Do Instituto de Geociências - UFRJ, 41(1), 318–327. https://doi.org/0101-9759 Rolph, G., Stein, A., & Stunder, B. (2017). Real-time Environmental Applications and Display sYstem: READY. Environmental Modelling and Software, 95, 210–228. https://doi.org/10.1016/j.envsoft.2017.06.025 Rönkkö, T. J., Hirvonen, M. R., Happo, M. S., Leskinen, A., Koponen, H., Mikkonen, S., Bauer, S., Ihantola, T., Hakkarainen, H., Miettinen, M., Orasche, J., Gu, C., Wang, Q., Jokiniemi, J., Sippula, O., Komppula, M., & Jalava, P. I. (2020). Air quality intervention during the Nanjing youth olympic games altered PM sources, chemical composition, and toxicological responses. Environmental Research, 185(September 2019), 109360. https://doi.org/10.1016/j.envres.2020.109360 Rupakheti, D., & Kang, S. (2018). Observation of optical properties and sources of aerosols at Buddha ’ s birthplace , Lumbini , Nepal : environmental implications. 14868–14881. Rybarczyk, Y., & Zalakeviciute, R. (2018). Machine learning approaches for outdoor air quality modelling: A systematic review. Applied Sciences (Switzerland), 8(12). https://doi.org/10.3390/app8122570 Samek, L., Stegowski, Z., Furman, L., Styszko, K., Szramowiat, K., & Fiedor, J. (2017). Quantitative Assessment of PM2.5 Sources and Their Seasonal Variation in Krakow. Water, Air, and Soil Pollution, 228(8). https://doi.org/10.1007/s11270-017-3483-5 Schwartz, J. D., Wang, Y., Kloog, I., Yitshak-Sade, M., Dominici, F., & Zanobetti, A. (2018). Estimating the Effects of PM 2.5 on Life Expectancy Using Causal Modeling Methods. Environmental Health Perspectives, 126(12), 127002. https://doi.org/10.1289/EHP3130 Shelestov, A., Kolotii, A., Borisova, T., Turos, O., Milinevsky, G., Gomilko, I., Bulanay, T., Fedorov, O., Shumilo, L., Pidgorodetska, L., Kolos, L., Borysov, A., Pozdnyakova, N., Chunikhin, A., Dudarenko, M., Petrosian, A., Danylevsky, V., Miatselskaya, N., & Choliy, V. (2019). Essential variables for air quality estimation. International Journal of Digital Earth, 0(0), 1–21. https://doi.org/10.1080/17538947.2019.1620881 Shen, H., Cheng, P. H., Yuan, C. S., Yang, Z. M., Hung, C. M., & Ie, I. R. (2020). Chemical characteristics, spatiotemporal distribution, and source apportionment of PM2.5 surrounding industrial complexes in Southern Kaohsiung. Aerosol and Air Quality Research, 20(3), 557–575. https://doi.org/10.4209/aaqr.2020.01.0007 Shi, S., Cheng, T., Gu, X., Guo, H., Wu, Y., & Wang, Y. (2019). Biomass burning aerosol characteristics for different vegetation types in different aging periods. Environment International, 126(February), 504–511. https://doi.org/10.1016/j.envint.2019.02.073 Silva, P. S., Bastos, A., Libonati, R., Rodrigues, J. A., & DaCamara, C. C. (2019). Impacts of the 1.5 °C global warming target on future burned area in the Brazilian Cerrado. Forest Ecology and Management, 446(May), 193–203. https://doi.org/10.1016/j.foreco.2019.05.047 Sobhani, N., Kulkarni, S., & Carmichael, G. R. (2018). Source sector and region contributions to black carbon and PM2.5 in the Arctic. Atmospheric Chemistry and Physics, 18(24), 18123– 18148. https://doi.org/10.5194/acp-18-18123-2018 Soleimanifar, N., Bidad, K., Nicknam, M., Nikbin, B., & Mahmoudi, M. (2018). Effect of food intake and ambient particulate air pollution on ankylosing spondylitis disease activity. Clinical and Experimental Rheumatology, 36, S43. http://www.embase.com/search/results?subaction=viewrecord&from=export&id=L6222665 23 Thermo Fisher Scientific. (2014). Instruction Manual Model 5014 i Beta. 106428. www.thermofisher.com Turap, Y., Rekefu, S., Wang, G., Talifu, D., Gao, B., Aierken, T., Hao, S., Wang, X., Tursun, Y., Maihemuti, M., & Nuerla, A. (2019). Chemical characteristics and source apportionment of pm2.5 during winter in the southern part of Urumqi, China. Aerosol and Air Quality Research, 19(6), 1325–1337. https://doi.org/10.4209/aaqr.2018.12.0454 Uccelli, R., Mastrantonio, M., Altavista, P., Pacchierotti, F., Piersanti, A., & Ciancarella, L. (2019). Impact of modelled PM2.5, NO2 and O3 annual air concentrations on some causes of mortality in Tuscany municipalities. European Journal of Public Health, 29(5), 871–876. https://doi.org/10.1093/eurpub/cky210 UN-HABITAT. (2011). Book Review: Global Report on Human Settlements 2011, Cities and Climate Change. In Environmental Law Review (Vol. 14, Issue 3). https://doi.org/10.1350/enlr.2012.14.3.162 Venkatappa, M., Sasaki, N., Shrestha, R. P., Tripathi, N. K., & Ma, H. O. (2019). Determination of vegetation thresholds for assessing land use and land use changes in Cambodia using the Google Earth Engine cloud-computing platform. Remote Sensing, 11(13). https://doi.org/10.3390/rs11131514 Victor, N., Alexandru, D., Luminita, M., & Camelia, T. (2018). Biomass Burning Aerosol Over Romania Using Dispersion Model And Calipso Data. 04012, 1–4. Viloria-Marimón, O. M., González-Álvarez, Á., & Mouthón-Bello, J. A. (2019). Analysis of the behavior of daily maximum rainfall within the department of Atlántico, Colombia. Water (Switzerland), 11(12), 1–24. https://doi.org/10.3390/w11122453 Vivanco Moreno, S. F., & Ramírez Lara, E. (2007). Aplicación del Modelo Hysplit (Hybrid Single Particle Lagrangian Integrated Trayectories) para Evaluar las Trayectorias del Aire y su Impacto en la Dispersión de Contaminantes Atmosféricos. Vongruang, P., Wongwises, P., & Pimonsree, S. (2017). Assessment of fire emission inventories for simulating particulate matter in Upper Southeast Asia using WRF-CMAQ. Atmospheric Pollution Research, 8(5), 921–929. https://doi.org/10.1016/j.apr.2017.03.004 Wang, L. K., Pereira, N. C., & Hung, Y. (2004). Air Pollution Control Engineering (H. Press (ed.); Vol. 1). Wang, X. D., Zheng, M., Lou, H. F., Wang, C. S., Zhang, Y., Bo, M. Y., Ge, S. Q., Zhang, N., Zhang, L., & Bachert, C. (2016). An increased prevalence of self-reported allergic rhinitis in major Chinese cities from 2005 to 2011. Allergy: European Journal of Allergy and Clinical Immunology. https://doi.org/10.1111/all.12874 Werf, G. R. Van Der, Randerson, J. T., Giglio, L., Collatz, G. J., Mu, M., Kasibhatla, P. S., & Morton, D. C. (2010). and Physics Global fire emissions and the contribution of deforestation , savanna , forest , agricultural , and peat fires ( 1997 – 2009 ). 2001, 11707– 11735. https://doi.org/10.5194/acp-10-11707-2010 WHO. (2014). Burden of disease from Ambient Air Pollution for 2012. Lmi, 2012–2014. https://doi.org/10.1016/S0140-6736(12)61766-8.Smith Wikistart. (2019). FLEXPART. Modelo FLEXPART. https://www.flexpart.eu/ Wooster, M. J., Roberts, G., Perry, G. L. W., & Kaufman, Y. J. (2005). Retrieval of biomass combustion rates and totals from fire radiative power observations: FRP derivation and calibration relationships between biomass consumption and fire radiative energy release. Journal of Geophysical Research Atmospheres, 110(24), 1–24. https://doi.org/10.1029/2005JD006318 Wooster, M. J., Xu, W., & Nightingale, T. (2012). Sentinel-3 SLSTR active fire detection and FRP product: Pre-launch algorithm development and performance evaluation using MODIS and ASTER datasets. Remote Sensing of Environment, 114(2), 236–254. https://doi.org/10.1016/j.rse.2017.12.016 World Health Organization. (2005). Guías de calidad del aire de la OMS relativas al material particulado, el ozono, el dióxido de nitrógeno y el dióxido de azufre. Actualización mundial 2005. In World Health Organization. http://www.who.int/phe/health_topics/outdoorair/outdoorair_aqg/es/ World Health Organization. (2013). Health risks of air pollution in Europe – HRAPIE project. World Heath Organization (WHO), 60. https://doi.org/10.1021/acs.est.5b05833 World Health Organization. (2018). Nueve de cada diez personas de todo el mundo respiran aire contaminado. World Health Organization. https://www.who.int/es/news-room/detail/02-052018-9-out-of-10-people-worldwide-breathe-polluted-air-but-more-countries-are-takingaction Wu, Y., Arapi, A., Huang, J., Gross, B., & Moshary, F. (2018). Intra-continental wild fi re smoke transport and impact on local air quality observed by ground-based and satellite remote sensing in New York City. 187(December 2017), 266–281. WWF Colombia. (2013). Nodos Regionales De Cambio Climatico Reporte Consolidado De Linea Base Analisis De Riesgos Climaticos Y Necesidades De Adaptación Climatica. Ministerio Medio Ambiente. Colombia. http://www.minambiente.gov.co/index.php/component/content/article?id=1695:plantillacambio-climatico-45#1-1-enlaces Yang, Q., Huang, X., & Tang, Q. (2019). Science of the Total Environment The footprint of urban heat island effect in 302 Chinese cities : Temporal trends and associated factors. Science of the Total Environment, 655, 652–662. https://doi.org/10.1016/j.scitotenv.2018.11.171 Yeo, S. young, Lee, H. kyeong, Choi, S. woo, Seol, S. hee, Jin, H. ah, Yoo, C., Lim, J. yun, & Kim, J. soo. (2019). Analysis of the National Air Pollutant Emission Inventory (CAPSS 2015) and the major cause of change in Republic of Korea. Asian Journal of Atmospheric Environment, 13(3), 212–231. https://doi.org/10.5572/ajae.2019.13.3.212 Yin, L., Du, P., Zhang, M., Liu, M., Xu, T., & Song, Y. (2019). Estimation of emissions from biomass burning in China (2003-2017) based on MODIS fire radiative energy data. Biogeosciences, 16(7), 1629–1640. https://doi.org/10.5194/bg-16-1629-2019 Zhang, T., Wooster, M. J., de Jong, M. C., & Xu, W. (2018). How well does the “small fire boost” methodology used within the GFED4.1s fire emissions database represent the timing, location and magnitude of agricultural burning? Remote Sensing, 10(6). https://doi.org/10.3390/rs10060823 Zhang, X., Kondragunta, S., & Quayle, B. (2011). Estimation of biomass burned areas using multiple-satellite-observed active fires. IEEE Transactions on Geoscience and Remote Sensing, 49(11 PART 2), 4469–4482. https://doi.org/10.1109/TGRS.2011.2149535 Zhang, X., Kondragunta, S., Ram, J., Schmidt, C., & Huang, H.-C. (2012). Near-real-time global biomass burning emissions product from geostationary satellite constellation. Journal of Geophysical Research: Atmospheres, 117(D14), n/a-n/a. https://doi.org/10.1029/2012jd017459 Zhou, Y., Han, Z., Liu, R., Zhu, B., Li, J., & Zhang, R. (2018). A modeling study of the impact of crop residue burning on pm2.5 concentration in beijing and tianjin during a severe autumn haze event. Aerosol and Air Quality Research, 18(7), 1558–1572. https://doi.org/10.4209/aaqr.2017.09.0334 |
dc.rights.spa.fl_str_mv |
Attribution-NonCommercial-ShareAlike 4.0 International |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Attribution-NonCommercial-ShareAlike 4.0 International http://creativecommons.org/licenses/by-nc-sa/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.publisher.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.publisher.program.spa.fl_str_mv |
Maestría de Investigación en Desarrollo Sostenible Mides |
institution |
Corporación Universidad de la Costa |
bitstream.url.fl_str_mv |
https://repositorio.cuc.edu.co/bitstreams/2c79f9e4-de3a-41d0-835c-84181291c81c/download https://repositorio.cuc.edu.co/bitstreams/658f15b2-5b55-460e-870c-4b1c3bd8a8b1/download https://repositorio.cuc.edu.co/bitstreams/445ac4cb-dd11-4633-a7c1-73a04c4218b3/download https://repositorio.cuc.edu.co/bitstreams/d7036a6a-5d7d-4f0e-ba27-eaa0741ed1be/download https://repositorio.cuc.edu.co/bitstreams/9b2c2dec-cba4-4876-955f-440d1f76409b/download |
bitstream.checksum.fl_str_mv |
2167c02dcc9d61cd16015b2f5f17ec55 934f4ca17e109e0a05eaeaba504d7ce4 e30e9215131d99561d40d6b0abbe9bad 51952f7721cca09a4d3c11544145313d 4d74dc685c838f9d3653ff71d8420639 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad de la Costa CUC |
repository.mail.fl_str_mv |
repdigital@cuc.edu.co |
_version_ |
1828166881009205248 |
spelling |
Schneider, Ismael LuisCano Cuadro, Heidis PatriciaBolaño Truyol, Jehison Rafael2020-09-08T23:30:23Z2020-09-08T23:30:23Z2020Bolaño, J. (2020). Determinación del aporte de quemas de biomasa en la concentración de pm2.5 en dos municipios del área metropolitana de barranquilla a través del uso de herramientas de sensoramiento remoto. Trabajo de Maestría. Recuperado de https://hdl.handle.net/11323/7078https://hdl.handle.net/11323/7078Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/The disruption of air quality due to the increase in atmospheric emissions, especially due to the burning of biomass, constitutes one of the greatest environmental concerns worldwide. In this study, through the use of remote sensing tools and dispersion models, the contributions of the burns in the alterations of PM2.5 in two municipalities of the Barranquilla Metropolitan Area were estimated. Initially, the variations of PM2.5 between January 2017 and June 2018 were analyzed and validated for the municipalities of Soledad (Hipódromo and EDUMAS stations) and Malambo (Tránsito y Transporte station). Subsequently, using the parameters AOD and AAE, the aircraft are classified according to their origin. The biomass burning report is estimated for the period between February 24 and March 30, 2018, when the main burning periods are observed. The burn points and their intensity were obtained from satellite images and the Hysplit model used to estimate emissions. From the dispersion model, which used forward trajectories, it obtained the burns that contribute, on average, with 26.93% for EDUMAS and 22.82% at Hipódromo (Soledad), while for Transit and Transportation with 28.78% (Malambo) of PM2.5 proteins. These results indicate a significant contribution of regional burns, with the contributions coming from La Guajira being recorded. This information is essential so that they can implement more effective mitigation measures and lessen the impact on the population's health.El deterioro de la calidad de aire por el aumento de emisiones atmosféricas, en especial por las quemas de biomasa, constituye una de las mayores preocupaciones ambientales a nivel mundial. En este estudio, mediante el uso de herramientas de sensoramiento remoto y modelos de dispersión, se estimaron los aportes de las quemas en las concentraciones de PM2.5 en dos muncipios del Área Metropolitana de Barranquilla. Inicialmente se analizó y validó las concentraciones de PM2.5 entre enero 2017 a junio 2018 para los municipios de Soledad (estaciones Hipódromo y EDUMAS) y Malambo (estación Tránsito y Transporte). Posteriormente, empleando los parámetros AOD y AAE, los aerosoles se clasificaron según su origen. El aporte de las quemas de biomasa se estimó para el período entre 24 de febrero y 30 de marzo de 2018, cuando se presentaron los principales períodos de quema. Los puntos de quema y su intensidad se obtuvieron a partir de imágenes satelitales y el modelo Hysplit utilizado para estimar las emisiones. A partir del modelo de dispersión, que empleó trayectórias forward, se obtuvo que las quemas aportan, en promedio, con 26,93% para EDUMAS y 22,82% en Hipódromo (Soledad), mientras que para Tránsito y Transporte con 28,78% (Malambo) de las concentraciones de PM2.5. Esos resultados indican un aporte significativo de quemas regionales, siendo registradas contribuciones que vienen desde La Guajira. Esas informaciones son fundamentales para que se puedan implementar medidas de mitigación más efectivas y disminuir el impacto sobre la salud de la población.Bolaño Truyol, Jehison RafaelspaCorporación Universidad de la CostaMaestría de Investigación en Desarrollo Sostenible MidesAttribution-NonCommercial-ShareAlike 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Biomass burningParticulate matterRemote sensingDispersion model,HysplitQuemas de biomasaMaterial particuladoSensoramiento remotoModelo de dispersiónDeterminación del aporte de quemas de biomasa en la concentración de pm2.5 en dos municipios del área metropolitana de Barranquilla a través del uso de herramientas de sensoramiento remotoTrabajo de grado - MaestríaTextinfo:eu-repo/semantics/masterThesishttp://purl.org/redcol/resource_type/TMinfo:eu-repo/semantics/acceptedVersionAbdelhady, S., Borello, D., Shaban, A., & Rispoli, F. (2014). Viability study of biomass power plant fired with rice straw in Egypt. Energy Procedia, 61, 211–215. https://doi.org/10.1016/j.egypro.2014.11.1072Adamiec, E., Dajda, J., Gruszecka-Kosowska, A., Helios-Rybicka, E., Kisiel-Dorohinicki, M., Klimek, R., Pałka, D., & Wąs, J. (2019). Using Medium-Cost Sensors to Estimate Air Quality in Remote Locations. Case Study of Niedzica, Southern Poland. Atmosphere, 10(7), 393. https://doi.org/10.3390/atmos10070393Akagi, S. K., Yokelson, R. J., Wiedinmyer, C., Alvarado, M. J., Reid, J. S., Karl, T., Crounse, J. D., & Wennberg, P. O. (2011). Emission factors for open and domestic biomass burning for use in atmospheric models. Atmospheric Chemistry and Physics, 11(9), 4039–4072. https://doi.org/10.5194/acp-11-4039-2011Albar, I., Amissah, L., Bowman, D., Charlton, V., Cochrane, M., Groot, B. De, Ellison, D., Field, R., Flannigan, M., Goldammer, J., Kant, P., Khan, M. N., Kornexl, W. L., Krasovskii, A., McCaffrey, S., Mitchell, A. M., Mohanty, A. K., Moore, P., Murdiyarso, D., … Vikram, E. (2018). Global Fire Challenges in a warming world: Summary Note of a Global Expert Workshop on Fire and Climate Change. Occasional Paper No. 32, 32(January), 61.Alcaldía de Barranquilla. (2013). Gaceta distrital N° 390-6. Gaceta Distrial, 429, 100.Aldeghi, Carn, Escobar-Wolf, & Groppelli. (2019). Volcano Monitoring from Space Using High-Cadence Planet CubeSat Images Applied to Fuego Volcano, Guatemala. Remote Sensing, 11(18), 2151. https://doi.org/10.3390/rs11182151AMB. (2005). Area Metropolitana De Barranquilla Plan De Gestion Integral De Diagnóstico Capitulo V . Diagnostico Institucional: Vol. I.Armenteras-Pascual, D., Retana-Alumbreros, J., Molowny-Horas, R., Roman-Cuesta, R. M., Gonzalez-Alonso, F., & Morales-Rivas, M. (2011). Characterising fire spatial pattern interactions with climate and vegetation in Colombia. Agricultural and Forest Meteorology, 151(3), 279–289. https://doi.org/10.1016/j.agrformet.2010.11.002Asif, Z., Chen, Z., & Han, Y. (2018). Air quality modeling for effective environmental management in the mining region. Journal of the Air and Waste Management Association, 68(9), 1001–1014. https://doi.org/10.1080/10962247.2018.1463301Bae, M., Kim, B. U., Kim, H. C., & Kim, S. (2020). A multiscale tiered approach to quantify contributions: A case study of PM2.5 in South Korea during 2010-2017. Atmosphere, 11(2), 5–15. https://doi.org/10.3390/atmos11020141Ballesteros-González, K., Sullivan, A. P., & Morales-Betancourt, R. (2020). Estimating the air quality and health impacts of biomass burning in northern South America using a chemical transport model. Science of The Total Environment, 139755. https://doi.org/10.1016/j.scitotenv.2020.139755Barranquilla, A. de. (2016). Plan de Ordenamiento Territorial.Bibi, H., Alam, K., & Bibi, S. (2016). In-depth discrimination of aerosol types using multiple clustering techniques over four locations in Indo-Gangetic plains. Atmospheric Research, 181, 106–114. https://doi.org/10.1016/j.atmosres.2016.06.017Bitta, J., Pavlíková, I., Svozilík, V., & Jančík, P. (2018). Air pollution dispersion modelling using spatial analyses. ISPRS International Journal of Geo-Information, 7(12), 7–9. https://doi.org/10.3390/ijgi7120489Chang, C. H., Hsiao, Y. L., & Hwang, C. (2015). Evaluating spatial and temporal variations of aerosol optical depth and biomass burning over southeast asia based on satellite data products. Aerosol and Air Quality Research, 15(7), 2625–2640. https://doi.org/10.4209/aaqr.2015.10.0589Chuesaard, T., Chetiyanukornkul, T., Kameda, T., Hayakawa, K., & Toriba, A. (2014). Influence of biomass burning on the levels of atmospheric polycyclic aromatic hydrocarbons and their nitro derivatives in Chiang Mai, Thailand. Aerosol and Air Quality Research, 14(4), 1247– 1257. https://doi.org/10.4209/aaqr.2013.05.0161CIOH. (2020). Centro de Investigaciones Oceanográficas e Hidrográficas. Epocas Climaticas En El Litoral Caribe Colombiano. https://www.cioh.org.co/meteorologia/Climatologia/ClimatologiaCaribe7.phpCONAMA. (2016). Teledetección y sensores Medioambientales. Respuesta Verde CONAMA 2016, 17. http://www.conama.org/conama/download/files/conama2016//GTs 2016/14_final.pdfContraloría Distrital. (2018). Informe del estado de los recursos naturales y del Ambiente de Barranquilla 2018.Dawson, J. P., Adams, P. J., & Pandis, S. N. (2007). Sensitivity of PM2.5 to climate in the Eastern US: A modeling case study. Atmospheric Chemistry and Physics, 7(16), 4295– 4309. https://doi.org/10.5194/acp-7-4295-2007Departamento Nacional de Planeación de Colombia. (2018). Valoración económica de la degradación ambiental en Colombia 2015. https://colaboracion.dnp.gov.co/CDT/Prensa/Valoración económica de la degradación ambiental.pdfDevara, P. C. S., & Manoj, M. G. (2013). Aerosol-cloud-precipitation interactions: A challenging problem in regional environment and climate research. Particuology, 11(1), 25– 33. https://doi.org/10.1016/j.partic.2012.07.006Ding, A., Yang, Y., Zhao, Z., Hüls, A., Vierkötter, A., Yuan, Z., Cai, J., Zhang, J., Gao, W., Li, J., Zhang, M., Matsui, M., Krutmann, J., Kan, H., Schikowski, T., Jin, L., & Wang, S. (2017). Indoor PM2.5 exposure affects skin aging manifestation in a Chinese population. Scientific Reports. https://doi.org/10.1038/s41598-017-15295-8EPA. (2017). Quality Assurance Handbook for Air Pollution Measurement Systems: Vol. II.Fan, Q., Lan, J., Liu, Y., Wang, X., Chan, P., Hong, Y., Feng, Y., Liu, Y., Zeng, Y., & Liang, G. (2015). Process analysis of regional aerosol pollution during spring in the Pearl River Delta region , China. Atmospheric Environment, 122(January 2013), 829–838. https://doi.org/10.1016/j.atmosenv.2015.09.013Filchev, L., Pashova, L., Kolev, V., & Frye, S. (2020). Chapter 6 - Surveys, Catalogues, Databases/Archives, and State-of-the-Art Methods for Geoscience Data Processing (P. Škoda & F. B. T.-K. D. in B. D. from A. and E. O. Adam (eds.); pp. 103–136). Elsevier. https://doi.org/https://doi.org/10.1016/B978-0-12-819154-5.00016-3Gallego, A., Ignacio, G., Bejamin, S., Fernandez, P., Garcinuño, R., Bravo, J., Pradana, J., Garcia, M., & Durand, J. (2012). Contaminación atmosférica. In Universidad Naciaonal a Distancia (Vol. 91, Issue 5). https://doi.org/10.1017/CBO9781107415324.004GEOS-Chem. (2019). GEOS-Chem. Overview. http://acmg.seas.harvard.edu/geos/geos_overview.htmlGFWF. (2019). Global Watch Fires. Global Watch Fires. https://fires.globalforestwatch.org/about/Giglio, L., Boschetti, L., Roy, D. P., Humber, M. L., & Justice, C. O. (2018). The Collection 6 MODIS burned area mapping algorithm and product. Remote Sensing of Environment, 217(March), 72–85. https://doi.org/10.1016/j.rse.2018.08.005Godish, T. (2003). Air Quality, Fourth Edition. In Air Quality, Fourth Edition. https://doi.org/10.1201/b13168González-álvarez, Á., Viloria-Marimón, O. M., Coronado-Hernández, Ó. E., Vélez-Pereira, A. M., Tesfagiorgis, K., & Coronado-Hernández, J. R. (2019). Isohyetal maps of daily maximum rainfall for different return periods for the Colombian Caribbean Region. Water (Switzerland), 11(2). https://doi.org/10.3390/w11020358Guillermo, Ronquillo-Lomeli, Gilberto, Herrera-Ruiz, Alfredo, I., José Gabriel Alejandro, R.-M., Ramirez-Maya, & Trejo-Perea, M. (2018). Total suspended particle emissions modelling in an industrial boiler. Energies, 11(11). https://doi.org/10.3390/en11113097Guo, L., Chen, B., Zhang, H., Xu, G., Lu, L., Lin, X., Kong, Y., Wang, F., & Li, Y. (2018). Improving PM2.5 forecasting and emission estimation based on the bayesian optimization method and the coupled FLEXPART-WRF model. Atmosphere, 9(11), 1–17. https://doi.org/10.3390/atmos9110428Hernandez, A. J., Morales-rincon, L. A., Wu, D., Mallia, D., Lin, J. C., & Jimenez, R. (2019). Transboundary transport of biomass burning aerosols and photochemical pollution in the Orinoco River Basin. Atmospheric Environment, 205(45), 1–8. https://doi.org/10.1016/j.atmosenv.2019.01.051Hoyos, N., Correa-Metrio, A., Sisa, A., Ramos-Fabiel, M. A., Espinosa, J. M., Restrepo, J. C., & Escobar, J. (2017). The environmental envelope of fires in the Colombian Caribbean. Applied Geography, 84, 42–54. https://doi.org/10.1016/j.apgeog.2017.05.001Huang, H. C., Lin, F. C. F., Wu, M. F., Nfor, O. N., Hsu, S. Y., Lung, C. C., Ho, C. C., Chen, C. Y., & Liaw, Y. P. (2019). Association between chronic obstructive pulmonary disease and PM2.5 in Taiwanese nonsmokers. International Journal of Hygiene and Environmental Health, 222(5), 884–888. https://doi.org/10.1016/j.ijheh.2019.03.009Huang, X. H. H., Bian, Q., Ng, W. M., Louie, P. K. K., & Yu, J. Z. (2014). Characterization of PM2.5 major components and source investigation in suburban Hong Kong: A one year monitoring study. Aerosol and Air Quality Research, 14(1), 237–250. https://doi.org/10.4209/aaqr.2013.01.0020IDEAM. (2019). IDEAM - Instituto de Hidrología, Meteorología y Estudios Ambientales. Servicios de Pronósticos y Alertas. http://www.ideam.gov.co/web/atencion-y-participacionciudadana/servicios-pronosticos-alertasINPE. (2020). Banco de datos de quemadas. Portal De Datos Abiertos Del Programa Quemadas. http://queimadas.dgi.inpe.br/queimadas/portal/informacoes/apresentacaoIslam, Robiul;Jayarathne, T., Simpson, I., Werden, B., Maben, J., Gilbert, A., Praveen, P., Adhikari, S., Panday, A., Rupakheti, M., Blake, D., Yokelson, R., DeCarlo, P., Keene, W., & Stone, E. (2019). Ambient air quality in the Kathmandu Valley, Nepal during the premonsoon: Concentrations and sources of particulate matter and trace gases. In Atmospheric Chemistry and Physics Discussions (pp. 1–53). https://doi.org/10.5194/acp-2019-333Jiménez, J. F. (2016). Altura de la Capa de Mezcla en un área urbana montañosa y tropical. Universidad de Antioquia Facultad de Ingeniería. Medellín. Colombia. 235.Juda-Rezler, K., Reizer, M., Maciejewska, K., Błaszczak, B., & Klejnowski, K. (2020). Characterization of atmospheric PM2.5 sources at a Central European urban background site. Science of the Total Environment, 713, 136729. https://doi.org/10.1016/j.scitotenv.2020.136729Kabisch, N., Selsam, P., Kirsten, T., Lausch, A., & Bumberger, J. (2019). A multi-sensor and multi-temporal remote sensing approach to detect land cover change dynamics in heterogeneous urban landscapes. 99(July 2018), 273–282.Kaneyasu, N., Ishidoya, S., Terao, Y., Mizuno, Y., & Sugawara, H. (2020). Estimation of PM2.5 Emission Sources in the Tokyo Metropolitan Area by Simultaneous Measurements of Particle Elements and Oxidative Ratio in Air. ACS Earth and Space Chemistry, 4(2), 297– 304. https://doi.org/10.1021/acsearthspacechem.9b00314Knorr, W., Dentener, F., Lamarque, J. F., Jiang, L., & Arneth, A. (2017). Wildfire air pollution hazard during the 21st century. Atmospheric Chemistry and Physics, 17(14), 9223–9236. https://doi.org/10.5194/acp-17-9223-2017Kong, H., Lin, J., Zhang, R., Liu, M., Weng, H., Ni, R., Chen, L., & Wang, J. (2019). Highresolution (0.05°x 0.05°) NOx emissions in the Yangtze River Delta inferred from OMI. Atmospheric Chemistry and Physics, x, 12835–12856.Kota, S. H., Guo, H., Myllyvirta, L., Hu, J., Sahu, S. K., Garaga, R., Ying, Q., Gao, A., Dahiya, S., Wang, Y., & Zhang, H. (2018). Year-long simulation of gaseous and particulate air pollutants in India. Atmospheric Environment, 180, 244–255. https://doi.org/10.1016/j.atmosenv.2018.03.003Kraaij, T., Baard, J. A., Arndt, J., Vhengani, L., & van Wilgen, B. W. (2018). An assessment of climate, weather, and fuel factors influencing a large, destructive wildfire in the Knysna region, South Africa. Fire Ecology, 14(2), 1–12. https://doi.org/10.1186/s42408-018-0001-0Kumar, S., Lin, N., Chantara, S., Wang, S., Khamkaew, C., Prapamontol, T., & Janjai, S. (2018). Science of the Total Environment Radiative response of biomass-burning aerosols over an urban atmosphere in northern peninsular Southeast Asia. Science of the Total Environment, 633, 892–911. https://doi.org/10.1016/j.scitotenv.2018.03.204Lai, H. C., Ma, H. W., Chen, C. R., Hsiao, M. C., & Pan, B. H. (2019). Design and application of a hybrid assessment of air quality models for the source apportionment of PM2.5. Atmospheric Environment, 212(May), 116–127. https://doi.org/10.1016/j.atmosenv.2019.05.038Langley Dewitt, H., Gasore, J., Rupakheti, M., Potter, K. E., Prinn, R. G., De Dieu Ndikubwimana, J., Nkusi, J., & Safari, B. (2019). Seasonal and diurnal variability in O3, black carbon, and CO measured at the Rwanda Climate Observatory. Atmospheric Chemistry and Physics, 19(3), 2063–2078. https://doi.org/10.5194/acp-19-2063-2019Li, Fang, Val Martin, M., Hantson, S., Andreae, M. O., Arneth, A., Lasslop, G., Yue, C., Bachelet, D., Forrest, M., Kaiser, J. W., Kluzek, E., Liu, X., Melton, J. R., Ward, D. S., Darmenov, A., Hickler, T., Ichoku, C., Magi, B. I., Sitch, S., … Wiedinmyer, C. (2019). Historical (1700–2012) Global Multi-model Estimates of the Fire Emissions from the Fire Modeling Intercomparison Project (FireMIP). Atmospheric Chemistry and Physics Discussions, January, 1–57. https://doi.org/10.5194/acp-2019-37Li, Fangjun, Zhang, X., Kondragunta, S., & Roy, D. P. (2018). Investigation of the Fire Radiative Energy Biomass Combustion Coefficient: A Comparison of Polar and Geostationary Satellite Retrievals Over the Conterminous United States. Journal of Geophysical Research: Biogeosciences, 123(2), 722–739. https://doi.org/10.1002/2017JG004279Li, X., Chen, W. Y., Sanesi, G., & Lafortezza, R. (2019). Remote sensing in urban forestry: Recent applications and future directions. Remote Sensing, 11(10), 1–20. https://doi.org/10.3390/rs11101144Li, Z., Wang, Y., Li, Z., Guo, S., & Hu, Y. (2020). Levels and Source of PM2.5 Associated PAHs during and after Wheat Harvest in a Central Rural Area of Beijing-Tianjin-Hebei (BTH) Region. Aerosol and Air Quality Research, 1070–1082. https://doi.org/10.4209/aaqr.2020.03.0083Liu, T., Marlier, M. E., DeFries, R. S., Westervelt, D. M., Xia, K. R., Fiore, A. M., Mickley, L. J., Cusworth, D. H., & Milly, G. (2018). Seasonal impact of regional outdoor biomass burning on air pollution in three Indian cities: Delhi, Bengaluru, and Pune. Atmospheric Environment, 172(September 2017), 83–92. https://doi.org/10.1016/j.atmosenv.2017.10.024Liu, Y., Wang, J., Zhao, X., Wang, J., Wang, X., Hou, L., Yang, W., Han, B., & Bai, Z. (2020). Characteristics, secondary formation and regional contributions of pm2.5 pollution in jinan during winter. Atmosphere, 11(3), 9–11. https://doi.org/10.3390/atmos11030273Llanos, E. (2011). Metropolización de Barranquilla y problemática espacial de Soledad - Atlántico. Perspectiva Geográfica, 1(15), 261–276. https://doi.org/10.19053/01233769.1742Luo, Lei, Wang, X., Guo, H., Lasaponara, R., Zong, X., Masini, N., Wang, G., Shi, P., Khatteli, H., Chen, F., Tariq, S., Shao, J., Bachagha, N., Yang, R., & Yao, Y. (2019). Airborne and spaceborne remote sensing for archaeological and cultural heritage applications: A review of the century (1907–2017). Remote Sensing of Environment, 232(June), 111280. https://doi.org/10.1016/j.rse.2019.111280Luo, Li, Zhang, Y., Xiao, H., Xiao, H., & Zheng, N. (2019). Spatial Distributions and Sources of Inorganic chlorine in PM2.5 across China in winter. Atmosphere, x.MADS. (2011). Estrategia de corresponsabilidad social en la lucha contra incendios forestales. 8, 21. www.minambiente.gov.coContenidoMalamakal, T., Chen, L. A., Wang, X., Green, M. C., Gronstal, S., Chow, J. C., & Watson, J. G. (2013). Prescribed burn smoke impact in the Lake Tahoe Basin : model simulation and field verification. 52, 225–243.Markou, M. T., & Kassomenos, P. (2010). Cluster analysis of five years of back trajectories arriving in Athens, Greece. Atmospheric Research, 98(2–4), 438–457. https://doi.org/10.1016/j.atmosres.2010.08.006Martins, L. D., Hallak, R., Alves, R. C., de Almeida, D. S., Squizzato, R., Moreira, C. A. B., Beal, A., da Silva, I., Rudke, A., & Martins, J. A. (2018). Long-range transport of aerosols from biomass burning over Southeastern South America and their implications on air quality. Aerosol and Air Quality Research, 18(7), 1734–1745. https://doi.org/10.4209/aaqr.2017.11.0545Masiol, M., Squizzato, S., Rich, D. Q., & Hopke, P. K. (2019). Long-term trends (2005–2016) of source apportioned PM2.5 across New York State. Atmospheric Environment, 201(June 2018), 110–120. https://doi.org/10.1016/j.atmosenv.2018.12.038Mataveli, G. A. V., Silva, M. E. S., França, D. de A., Brunsell, N. A., de Oliveira, G., Cardozo, F. da S., Bertani, G., & Pereira, G. (2019). Characterization and Trends of Fine Particulate Matter (PM2.5) Fire Emissions in the Brazilian Cerrado during 2002–2017. Remote Sensing, 11(19), 2254. https://doi.org/10.3390/rs11192254Mendez-Espinosa, J. F., Belalcazar, L. C., Morales Betancourt, R., Ballesteros-González, K., Sullivan, A. P., Morales-Betancourt, R., Hoyos, N., Correa-Metrio, A., Sisa, A., Ramos- Fabiel, M. A., Espinosa, J. M., Restrepo, J. C., Escobar, J., Chen, S. P., Wang, C. C. H., Lin, W. D., Tong, Y. H., Chen, Y. C., Chiu, C. J., … Wu, W. (2017). Ultrafine particles from residential biomass combustion: A review on experimental data and toxicological response. Atmospheric Chemistry and Physics, 9(February), 1–15. https://doi.org/10.1080/02726351003758444Mielonen, T., Aaltonen, V., Lihavainen, H., Hyvärinen, A. P., Arola, A., Komppula, M., & Kivi, R. (2013). Biomass burning aerosols observed in Northern Finland during the 2010 wildfires in Russia. Atmosphere, 4(1), 17–34. https://doi.org/10.3390/atmos4010017 Ministerio de Ambiente y Desarrollo Sostenible. (2017). 2017 COLOMBIA Resolución 2254 de 2017 - Niveles Calidad del Aire.Moghim, S., & Ramezanpoor, R. (2019). Characterization of aerosol types over Lake Urmia Basin. E3S Web of Conferences, 99, 3–6. https://doi.org/10.1051/e3sconf/20199901006Moreno Horacio. (2019). Semana Sostenible. Muertes Por Contaminación Del Aire Le Costaron a Medellín $5 Billones En Solo Un Año. https://sostenibilidad.semana.com/medioambiente/articulo/muertes-por-contaminacion-del-aire-le-costaron-a-medellin-5-billonesde-pesos-en-solo-un-ano/43332Moya Álvarez, A. S., Arredondo, R. E., & Yuli Posadas, R. Á. (2017). Determination of the presence of particles (PM 10 ) in Peru produced by biomass burning using numerical models. Revista Internacional de Contaminacion Ambiental, 33(1), 99–108. https://doi.org/10.20937/RICA.2017.33.01.09Mukai, S., Yasumoto, M., & Nakata, M. (2014). Estimation of Biomass Burning Influence on Air Pollution around Beijing from an Aerosol Retrieval Model. Scientific World Journal, 2014(June 2010). https://doi.org/10.1155/2014/649648Mukherjee, T., Vinoj, V., Midya, S. K., Puppala, S. P., & Adhikary, B. (2020). Numerical simulations of different sectoral contributions to post monsoon pollution over Delhi. Heliyon, 6(3), e03548. https://doi.org/10.1016/j.heliyon.2020.e03548Nación. (2018, December 21). El fenómeno del Niño ya está en el país y nos está impactando. EL Tiempo. https://www.eltiempo.com/colombia/otras-ciudades/fenomeno-del-nino-2018- 2019-en-colombia-y-probables-afectaciones-307218NASA. (2019a). MODIS Moderate Resolution Imaging Spectroradiometer. https://modis.gsfc.nasa.gov/about/index.phpNASA. (2019b). NASA Worldview. https://worldview.earthdata.nasa.gov/Ngan, F., Stein, A., Finn, D., & Eckman, R. (2018). Dispersion simulations using HYSPLIT for the Sagebrush Tracer Experiment. Atmospheric Environment, 186(March), 18–31. https://doi.org/10.1016/j.atmosenv.2018.05.012NOAA. (2019a). Hysplit. National Oceanic and Atmospheric Administration. https://www.arl.noaa.gov/hysplit/hysplit/NOAA. (2019b). Información de archivo del Sistema global de asimilación de datos. Air Resources Laboratory. Información de archivo del Sistema global de asimilación de datosNoda, J., Bergström, R., Kong, X., Gustafsson, T. L., Kovacevik, B., Svane, M., & Pettersson, J. B. C. (2019). Aerosol from Biomass Combustion in Northern Europe: Influence of Meteorological Conditions and Air Mass History. Atmosphere, 10(12), 789. https://doi.org/10.3390/atmos10120789Noyes, K. J., Kahn, R., Sedlacek, A., Kleinman, L., Limbacher, J., & Li, Z. (2020). Wildfire smoke particle properties and evolution, from space-based multi-angle imaging. Remote Sensing, 12(5). https://doi.org/10.3390/rs12050769Ocko, I. B., & Ginoux, P. A. (2017). Comparing multiple model-derived aerosol optical properties to spatially collocated ground-based and satellite measurements. Atmospheric Chemistry and Physics, 17(7), 4451–4475. https://doi.org/10.5194/acp-17-4451-2017Orioli, R., Cremona, G., Ciancarella, L., & Solimini, A. G. (2018). Association between PM10, PM2.5, NO2, O3 and self-reported diabetes in Italy: A cross-sectional, ecological study. PLoS ONE, 13(1), 1–17. https://doi.org/10.1371/journal.pone.0191112Parques Nacionales Naturales de Colombia. (2014). Tres Hectáreas fueron consumidas en quema en el Vía Parque Isla de Salamanca. Parques Nacionales. http://www.parquesnacionales.gov.co/portal/es/tres-hectareas-fueron-consumidas-enquema-en-el-via-parque-isla-de-salamanca/Pathak, B., Bhuyan, P. K., Gogoi, M., & Bhuyan, K. (2012). Seasonal heterogeneity in aerosol types over Dibrugarh-North-Eastern India. Atmospheric Environment, 47, 307–315. https://doi.org/10.1016/j.atmosenv.2011.10.061Pereira, Allan A., Pereira, J. M. C., Libonati, R., Oom, D., Setzer, A. W., Morelli, F., MachadoSilva, F., & de Carvalho, L. M. T. (2017a). Burned area mapping in the Brazilian Savanna using a one-class support vector machine trained by active fires. Remote Sensing, 9(11). https://doi.org/10.3390/rs9111161Pereira, Allan A., Pereira, J. M. C., Libonati, R., Oom, D., Setzer, A. W., Morelli, F., MachadoSilva, F., & de Carvalho, L. M. T. (2017b). Burned area mapping in the Brazilian Savanna using a one-class support vector machine trained by active fires. Remote Sensing, 9(11). https://doi.org/10.3390/rs9111161Pereira, Allan Arantes, De Barros, D. A., Acerbi, F. W., Alves Pereira, J. A., & Dos Reis, A. A. (2013). Análise da distribuição espacial de áreas queimadas através da função K de Ripley. Scientia Forestalis/Forest Sciences, 41(100), 445–455.Pisso, I., Sollum, E., Grythe, H., Kristiansen, N., Cassiani, M., Eckhardt, S., Arnold, D., Morton, D., Thompson, R. L., Groot Zwaaftink, C. D., Evangeliou, N., Sodemann, H., Haimberger, L., Henne, S., Brunner, D., Burkhart, J. F., Fouilloux, A., Brioude, J., Philipp, A., … Stohl, A. (2019). The Lagrangian particle dispersion model FLEXPART version 10.3. Geoscientific Model Development Discussions, January, 1–67. https://doi.org/10.5194/gmd- 2018-333Prato, D. F., & Huertas, J. I. (2019). Determination of the area affected by agricultural burning. Atmosphere, 10(6), 1–14. https://doi.org/10.3390/atmos10060312Pribadi, A., & Kurats, G. (2016). Greenhouse gas and air pollutant emissions from land and forest fire in Indonesia during 2015 based on satellite data. Journal of Physics: Conference Series, 755(1), 0–8. https://doi.org/10.1088/1742-6596/755/1/011001Querol, X., Pérez, N., Reche, C., Ealo, M., Ripoll, A., Tur, J., Pandolfi, M., Pey, J., Salvador, P., Moreno, T., & Alastuey, A. (2019). African dust and air quality over Spain: Is it only dust that matters? Science of the Total Environment, 686, 737–752. https://doi.org/10.1016/j.scitotenv.2019.05.349Reddington, C. L., Morgan, W. T., Darbyshire, E., Brito, J., Coe, H., Artaxo, P., Marsham, J., & Spracklen, D. V. (2018). Biomass burning aerosol over the Amazon: analysis of aircraft, surface and satellite observations using a global aerosol model. Atmospheric Chemistry and Physics Discussions, October 2012, 1–32. https://doi.org/10.5194/acp-2018-849Roberts, G., Wooster, M. J., Xu, W., & He, J. (2018). Fire activity and fuel consumption dynamics in sub-Saharan Africa. Remote Sensing, 10(10), 1–22. https://doi.org/10.3390/rs10101591Rodrigues, J. A., Libonati, R., Peres, L. D. F., & Setzer, A. (2018). Mapeamento de Áreas Queimadas em Unidades de Conservação da Região Serrana do Rio de Janeiro Utilizando o Satélite Landsat-8 Durante a Seca de 2014. Anuário Do Instituto de Geociências - UFRJ, 41(1), 318–327. https://doi.org/0101-9759Rolph, G., Stein, A., & Stunder, B. (2017). Real-time Environmental Applications and Display sYstem: READY. Environmental Modelling and Software, 95, 210–228. https://doi.org/10.1016/j.envsoft.2017.06.025Rönkkö, T. J., Hirvonen, M. R., Happo, M. S., Leskinen, A., Koponen, H., Mikkonen, S., Bauer, S., Ihantola, T., Hakkarainen, H., Miettinen, M., Orasche, J., Gu, C., Wang, Q., Jokiniemi, J., Sippula, O., Komppula, M., & Jalava, P. I. (2020). Air quality intervention during the Nanjing youth olympic games altered PM sources, chemical composition, and toxicological responses. Environmental Research, 185(September 2019), 109360. https://doi.org/10.1016/j.envres.2020.109360Rupakheti, D., & Kang, S. (2018). Observation of optical properties and sources of aerosols at Buddha ’ s birthplace , Lumbini , Nepal : environmental implications. 14868–14881.Rybarczyk, Y., & Zalakeviciute, R. (2018). Machine learning approaches for outdoor air quality modelling: A systematic review. Applied Sciences (Switzerland), 8(12). https://doi.org/10.3390/app8122570Samek, L., Stegowski, Z., Furman, L., Styszko, K., Szramowiat, K., & Fiedor, J. (2017). Quantitative Assessment of PM2.5 Sources and Their Seasonal Variation in Krakow. Water, Air, and Soil Pollution, 228(8). https://doi.org/10.1007/s11270-017-3483-5Schwartz, J. D., Wang, Y., Kloog, I., Yitshak-Sade, M., Dominici, F., & Zanobetti, A. (2018). Estimating the Effects of PM 2.5 on Life Expectancy Using Causal Modeling Methods. Environmental Health Perspectives, 126(12), 127002. https://doi.org/10.1289/EHP3130Shelestov, A., Kolotii, A., Borisova, T., Turos, O., Milinevsky, G., Gomilko, I., Bulanay, T., Fedorov, O., Shumilo, L., Pidgorodetska, L., Kolos, L., Borysov, A., Pozdnyakova, N., Chunikhin, A., Dudarenko, M., Petrosian, A., Danylevsky, V., Miatselskaya, N., & Choliy, V. (2019). Essential variables for air quality estimation. International Journal of Digital Earth, 0(0), 1–21. https://doi.org/10.1080/17538947.2019.1620881Shen, H., Cheng, P. H., Yuan, C. S., Yang, Z. M., Hung, C. M., & Ie, I. R. (2020). Chemical characteristics, spatiotemporal distribution, and source apportionment of PM2.5 surrounding industrial complexes in Southern Kaohsiung. Aerosol and Air Quality Research, 20(3), 557–575. https://doi.org/10.4209/aaqr.2020.01.0007Shi, S., Cheng, T., Gu, X., Guo, H., Wu, Y., & Wang, Y. (2019). Biomass burning aerosol characteristics for different vegetation types in different aging periods. Environment International, 126(February), 504–511. https://doi.org/10.1016/j.envint.2019.02.073Silva, P. S., Bastos, A., Libonati, R., Rodrigues, J. A., & DaCamara, C. C. (2019). Impacts of the 1.5 °C global warming target on future burned area in the Brazilian Cerrado. Forest Ecology and Management, 446(May), 193–203. https://doi.org/10.1016/j.foreco.2019.05.047Sobhani, N., Kulkarni, S., & Carmichael, G. R. (2018). Source sector and region contributions to black carbon and PM2.5 in the Arctic. Atmospheric Chemistry and Physics, 18(24), 18123– 18148. https://doi.org/10.5194/acp-18-18123-2018Soleimanifar, N., Bidad, K., Nicknam, M., Nikbin, B., & Mahmoudi, M. (2018). Effect of food intake and ambient particulate air pollution on ankylosing spondylitis disease activity. Clinical and Experimental Rheumatology, 36, S43. http://www.embase.com/search/results?subaction=viewrecord&from=export&id=L6222665 23Thermo Fisher Scientific. (2014). Instruction Manual Model 5014 i Beta. 106428. www.thermofisher.comTurap, Y., Rekefu, S., Wang, G., Talifu, D., Gao, B., Aierken, T., Hao, S., Wang, X., Tursun, Y., Maihemuti, M., & Nuerla, A. (2019). Chemical characteristics and source apportionment of pm2.5 during winter in the southern part of Urumqi, China. Aerosol and Air Quality Research, 19(6), 1325–1337. https://doi.org/10.4209/aaqr.2018.12.0454Uccelli, R., Mastrantonio, M., Altavista, P., Pacchierotti, F., Piersanti, A., & Ciancarella, L. (2019). Impact of modelled PM2.5, NO2 and O3 annual air concentrations on some causes of mortality in Tuscany municipalities. European Journal of Public Health, 29(5), 871–876. https://doi.org/10.1093/eurpub/cky210UN-HABITAT. (2011). Book Review: Global Report on Human Settlements 2011, Cities and Climate Change. In Environmental Law Review (Vol. 14, Issue 3). https://doi.org/10.1350/enlr.2012.14.3.162Venkatappa, M., Sasaki, N., Shrestha, R. P., Tripathi, N. K., & Ma, H. O. (2019). Determination of vegetation thresholds for assessing land use and land use changes in Cambodia using the Google Earth Engine cloud-computing platform. Remote Sensing, 11(13). https://doi.org/10.3390/rs11131514Victor, N., Alexandru, D., Luminita, M., & Camelia, T. (2018). Biomass Burning Aerosol Over Romania Using Dispersion Model And Calipso Data. 04012, 1–4.Viloria-Marimón, O. M., González-Álvarez, Á., & Mouthón-Bello, J. A. (2019). Analysis of the behavior of daily maximum rainfall within the department of Atlántico, Colombia. Water (Switzerland), 11(12), 1–24. https://doi.org/10.3390/w11122453Vivanco Moreno, S. F., & Ramírez Lara, E. (2007). Aplicación del Modelo Hysplit (Hybrid Single Particle Lagrangian Integrated Trayectories) para Evaluar las Trayectorias del Aire y su Impacto en la Dispersión de Contaminantes Atmosféricos.Vongruang, P., Wongwises, P., & Pimonsree, S. (2017). Assessment of fire emission inventories for simulating particulate matter in Upper Southeast Asia using WRF-CMAQ. Atmospheric Pollution Research, 8(5), 921–929. https://doi.org/10.1016/j.apr.2017.03.004Wang, L. K., Pereira, N. C., & Hung, Y. (2004). Air Pollution Control Engineering (H. Press (ed.); Vol. 1).Wang, X. D., Zheng, M., Lou, H. F., Wang, C. S., Zhang, Y., Bo, M. Y., Ge, S. Q., Zhang, N., Zhang, L., & Bachert, C. (2016). An increased prevalence of self-reported allergic rhinitis in major Chinese cities from 2005 to 2011. Allergy: European Journal of Allergy and Clinical Immunology. https://doi.org/10.1111/all.12874Werf, G. R. Van Der, Randerson, J. T., Giglio, L., Collatz, G. J., Mu, M., Kasibhatla, P. S., & Morton, D. C. (2010). and Physics Global fire emissions and the contribution of deforestation , savanna , forest , agricultural , and peat fires ( 1997 – 2009 ). 2001, 11707– 11735. https://doi.org/10.5194/acp-10-11707-2010WHO. (2014). Burden of disease from Ambient Air Pollution for 2012. Lmi, 2012–2014. https://doi.org/10.1016/S0140-6736(12)61766-8.SmithWikistart. (2019). FLEXPART. Modelo FLEXPART. https://www.flexpart.eu/ Wooster, M. J., Roberts, G., Perry, G. L. W., & Kaufman, Y. J. (2005). Retrieval of biomass combustion rates and totals from fire radiative power observations: FRP derivation and calibration relationships between biomass consumption and fire radiative energy release. Journal of Geophysical Research Atmospheres, 110(24), 1–24. https://doi.org/10.1029/2005JD006318Wooster, M. J., Xu, W., & Nightingale, T. (2012). Sentinel-3 SLSTR active fire detection and FRP product: Pre-launch algorithm development and performance evaluation using MODIS and ASTER datasets. Remote Sensing of Environment, 114(2), 236–254. https://doi.org/10.1016/j.rse.2017.12.016World Health Organization. (2005). Guías de calidad del aire de la OMS relativas al material particulado, el ozono, el dióxido de nitrógeno y el dióxido de azufre. Actualización mundial 2005. In World Health Organization. http://www.who.int/phe/health_topics/outdoorair/outdoorair_aqg/es/World Health Organization. (2013). Health risks of air pollution in Europe – HRAPIE project. World Heath Organization (WHO), 60. https://doi.org/10.1021/acs.est.5b05833World Health Organization. (2018). Nueve de cada diez personas de todo el mundo respiran aire contaminado. World Health Organization. https://www.who.int/es/news-room/detail/02-052018-9-out-of-10-people-worldwide-breathe-polluted-air-but-more-countries-are-takingactionWu, Y., Arapi, A., Huang, J., Gross, B., & Moshary, F. (2018). Intra-continental wild fi re smoke transport and impact on local air quality observed by ground-based and satellite remote sensing in New York City. 187(December 2017), 266–281.WWF Colombia. (2013). Nodos Regionales De Cambio Climatico Reporte Consolidado De Linea Base Analisis De Riesgos Climaticos Y Necesidades De Adaptación Climatica. Ministerio Medio Ambiente. Colombia. http://www.minambiente.gov.co/index.php/component/content/article?id=1695:plantillacambio-climatico-45#1-1-enlacesYang, Q., Huang, X., & Tang, Q. (2019). Science of the Total Environment The footprint of urban heat island effect in 302 Chinese cities : Temporal trends and associated factors. Science of the Total Environment, 655, 652–662. https://doi.org/10.1016/j.scitotenv.2018.11.171 Yeo, S. young, Lee, H. kyeong, Choi, S. woo, Seol, S. hee, Jin, H. ah, Yoo, C., Lim, J. yun, & Kim, J. soo. (2019). Analysis of the National Air Pollutant Emission Inventory (CAPSS 2015) and the major cause of change in Republic of Korea. Asian Journal of Atmospheric Environment, 13(3), 212–231. https://doi.org/10.5572/ajae.2019.13.3.212Yin, L., Du, P., Zhang, M., Liu, M., Xu, T., & Song, Y. (2019). Estimation of emissions from biomass burning in China (2003-2017) based on MODIS fire radiative energy data. Biogeosciences, 16(7), 1629–1640. https://doi.org/10.5194/bg-16-1629-2019Zhang, T., Wooster, M. J., de Jong, M. C., & Xu, W. (2018). How well does the “small fire boost” methodology used within the GFED4.1s fire emissions database represent the timing, location and magnitude of agricultural burning? Remote Sensing, 10(6). https://doi.org/10.3390/rs10060823Zhang, X., Kondragunta, S., & Quayle, B. (2011). Estimation of biomass burned areas using multiple-satellite-observed active fires. IEEE Transactions on Geoscience and Remote Sensing, 49(11 PART 2), 4469–4482. https://doi.org/10.1109/TGRS.2011.2149535Zhang, X., Kondragunta, S., Ram, J., Schmidt, C., & Huang, H.-C. (2012). Near-real-time global biomass burning emissions product from geostationary satellite constellation. Journal of Geophysical Research: Atmospheres, 117(D14), n/a-n/a. https://doi.org/10.1029/2012jd017459Zhou, Y., Han, Z., Liu, R., Zhu, B., Li, J., & Zhang, R. (2018). A modeling study of the impact of crop residue burning on pm2.5 concentration in beijing and tianjin during a severe autumn haze event. Aerosol and Air Quality Research, 18(7), 1558–1572. https://doi.org/10.4209/aaqr.2017.09.0334PublicationORIGINALDeterminación del aporte de quemas de biomasa en la concentración de pm2.5 en dos municipios del Área Metropolitana de Barranquilla a través del uso de herramientas de sensoramiento remoto.pdfDeterminación del aporte de quemas de biomasa en la concentración de pm2.5 en dos municipios del Área Metropolitana de Barranquilla a través del uso de herramientas de sensoramiento remoto.pdfapplication/pdf3071515https://repositorio.cuc.edu.co/bitstreams/2c79f9e4-de3a-41d0-835c-84181291c81c/download2167c02dcc9d61cd16015b2f5f17ec55MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81031https://repositorio.cuc.edu.co/bitstreams/658f15b2-5b55-460e-870c-4b1c3bd8a8b1/download934f4ca17e109e0a05eaeaba504d7ce4MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/445ac4cb-dd11-4633-a7c1-73a04c4218b3/downloade30e9215131d99561d40d6b0abbe9badMD53THUMBNAILDeterminación del aporte de quemas de biomasa en la concentración de pm2.5 en dos municipios del Área Metropolitana de Barranquilla a través del uso de herramientas de sensoramiento remoto.pdf.jpgDeterminación del aporte de quemas de biomasa en la concentración de pm2.5 en dos municipios del Área Metropolitana de Barranquilla a través del uso de herramientas de sensoramiento remoto.pdf.jpgimage/jpeg31063https://repositorio.cuc.edu.co/bitstreams/d7036a6a-5d7d-4f0e-ba27-eaa0741ed1be/download51952f7721cca09a4d3c11544145313dMD54TEXTDeterminación del aporte de quemas de biomasa en la concentración de pm2.5 en dos municipios del Área Metropolitana de Barranquilla a través del uso de herramientas de sensoramiento remoto.pdf.txtDeterminación del aporte de quemas de biomasa en la concentración de pm2.5 en dos municipios del Área Metropolitana de Barranquilla a través del uso de herramientas de sensoramiento remoto.pdf.txttext/plain166989https://repositorio.cuc.edu.co/bitstreams/9b2c2dec-cba4-4876-955f-440d1f76409b/download4d74dc685c838f9d3653ff71d8420639MD5511323/7078oai:repositorio.cuc.edu.co:11323/70782024-09-17 14:21:27.58http://creativecommons.org/licenses/by-nc-sa/4.0/Attribution-NonCommercial-ShareAlike 4.0 Internationalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA== |