Computational simulation of the gas emission in a biomass on grid energy system using HOMER pro software

To reach the Sustainable Development Goals and delivering on the Paris Agreement on climate change mitigation, a Biomass on grid power system is proposed to supply 33,640 kWh/day, which is the average annual energy consumption from a group of office buildings. This study shows the behavior of the ga...

Full description

Autores:
Barrozo, Farid B.
Valencia Ochoa, Guillermo Eliecer
Cardenas Escorcia, Yulineth del Carmen
Tipo de recurso:
Article of journal
Fecha de publicación:
2018
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/1215
Acceso en línea:
http://hdl.handle.net/11323/1215
https://repositorio.cuc.edu.co/
Palabra clave:
Rights
openAccess
License
Atribución – No comercial – Compartir igual
id RCUC2_798a02b559ecb8300f8522ee66a15608
oai_identifier_str oai:repositorio.cuc.edu.co:11323/1215
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.eng.fl_str_mv Computational simulation of the gas emission in a biomass on grid energy system using HOMER pro software
title Computational simulation of the gas emission in a biomass on grid energy system using HOMER pro software
spellingShingle Computational simulation of the gas emission in a biomass on grid energy system using HOMER pro software
title_short Computational simulation of the gas emission in a biomass on grid energy system using HOMER pro software
title_full Computational simulation of the gas emission in a biomass on grid energy system using HOMER pro software
title_fullStr Computational simulation of the gas emission in a biomass on grid energy system using HOMER pro software
title_full_unstemmed Computational simulation of the gas emission in a biomass on grid energy system using HOMER pro software
title_sort Computational simulation of the gas emission in a biomass on grid energy system using HOMER pro software
dc.creator.fl_str_mv Barrozo, Farid B.
Valencia Ochoa, Guillermo Eliecer
Cardenas Escorcia, Yulineth del Carmen
dc.contributor.author.spa.fl_str_mv Barrozo, Farid B.
Valencia Ochoa, Guillermo Eliecer
Cardenas Escorcia, Yulineth del Carmen
description To reach the Sustainable Development Goals and delivering on the Paris Agreement on climate change mitigation, a Biomass on grid power system is proposed to supply 33,640 kWh/day, which is the average annual energy consumption from a group of office buildings. This study shows the behavior of the gas emission of a Biomass on Grid Energy System Using HOMER Pro Software, composed by two 500 kW biogas-powered electric generator, using different types of biomass resource from the Colombian Caribbean Region like manure obtained from the livestock sector and solid urban organic waste. The simulation results showed some emission decrease when operating on the grid the Biogas generator such as the carbon dioxide, the sulfur dioxide and the nitrogen oxides on 11.6% while the carbon monoxide increased on 8.7% concerning the power supply system through electrical grid coming from thermoelectric power plants and hydroelectric power plants.
publishDate 2018
dc.date.accessioned.none.fl_str_mv 2018-11-17T14:04:48Z
dc.date.available.none.fl_str_mv 2018-11-17T14:04:48Z
dc.date.issued.none.fl_str_mv 2018
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_6501
status_str acceptedVersion
dc.identifier.issn.spa.fl_str_mv 2283-9216
dc.identifier.uri.spa.fl_str_mv http://hdl.handle.net/11323/1215
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
identifier_str_mv 2283-9216
Corporación Universidad de la Costa
REDICUC - Repositorio CUC
url http://hdl.handle.net/11323/1215
https://repositorio.cuc.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.references.spa.fl_str_mv Barrozo Budes, F., Valencia Ochoa, G. & Cárdenas Escorcia, Y., 2017. Hybrid PV and wind grid-connected renewable energy system to reduce the gas emission and operation cost. Contemporary engineering sciences, 10(26), pp. 1269-1278. Barrozo Budes, F., Valencia Ochoa, G. & Cárdenas Escorcia, Y., 2017. An economic evaluation of Renewable and Conventional Electricity Generation Systems in a shopping centre using HOMER Pro. Contemporary engineering sciences, 10(26), pp. 1287-1295. Barrozo Budes, F., Valencia Ochoa, G. & Cárdenas Escorcia, Y., 2017. Biomass generator to reduce the gas emission and operation cost in a grid-connected renewable energy systems. International Journal of ChemTech Research, 10(13), pp. 311-316. Chandra, R. et al., 2012. Production of methane from anaerobic digestion of jatropha and pongamia oil cakes. Applied Energy, 93, pp.148–159. Available at: http://www.sciencedirect.com.ezproxy.unbosque.edu.co/science/article/pii/S0306261910005283 [Accessed November 20, 2017]. Commission, E.E., Biofuels. Available at: ec. europa.eu/energy/en/topics/renewable-energy/biofuels. EIA, U.S.E.I.A., Short-Term Energy Outlook. Available at: www.eia.gov/outlooks/steo/report/global_oil.cfm. Esteves, V.P. et al., 2017. Assessment of greenhouse gases (GHG) emissions from the tallow biodiesel production chain including land use change (LUC). Journal of Cleaner Production, 151, pp.578–591. Available at: http://www.sciencedirect.com.ezproxy.unbosque.edu.co/science/article/pii/S0959652617304985 [Accessed November 20, 2017]. Greene CH, Pershing AJ. Climate-driven sea change. Science 2007; 315:1084-5. Hoogwijk M, Faaij A, Eickhout B, de Vries B, Turkenburg W. Potential of biomass energy out to 2100, for four IPCC SRES land-use scenarios. Biomass Bioenergy 2005; 29:225–57 IPCC. Climate change 2007. Impacts, adaptation and vulnerability, Summary for policymakers and technical summary, WG II contribution to the AR4. UK: Cambridge University Press; 2007. p. 93. McCormic, R.L. et al., 2005. Regulated Emissions from Biodiesel Tested in Heavy Duty Engines Meeting 2004 Emission Standards Mondani, F. et al., 2017. Evaluation of greenhouse gases emission based on energy consumption in wheat Agro ecosystems. Energy Reports, 3, pp.37–45. Available at: http://www.sciencedirect.com.ezproxy.unbosque.edu.co/science/article/pii/S2352484717300082 [Accessed November 19, 2017]. O´Shea, R., Wall, D.M. & Murphy, J.D., 2017. An energy and greenhouse gas comparison of centralised biogas production with road haulage of pig slurry, and decentralised biogas production with biogas transportation in a low-pressure pipe network. Applied Energy, 208, pp.108–122. Available at: http://www.sciencedirect.com.ezproxy.unbosque.edu.co/science/article/pii/S0306261917314599 [Accessed November 20, 2017]. Prather M, Ehhalt D, Dentener F, Derwent R, Dlugokencky E, et al. Atmospheric chemistry and greenhouse gases. In: Houghton JT, Ding Y, Griggs DJ, Noguer M, Van der Linden PJ, et al., editors. Climate change 2001: the scientific basis. Cambridge University Press; 2001. p. 239-87. Panjicko, M. et al., 2017. Biogas production from brewery spent grain as a mono-substrate in a two-stage process composed of solid-state anaerobic digestion and granular biomass reactors. Journal of Cleaner Production, 166, pp.519–529. Available at: http://www.sciencedirect.com.ezproxy.unbosque.edu.co/science/article/pii/S0959652617316529 [Accessed November 20, 2017]. Rodríguez A., Ángel J., Rivero E., Acevedo, P., Santis A., Cabeza I., Acosta M. & Hernández M., 2017. Evaluation of the Biochemical Methane Potential of Pig Manure, Organic Fraction of Municipal Solid Waste and Cocoa Industry Residues in Colombia. Chemical Engineering Transactions, vol. 57, pp. 55 – 60. Valencia Ochoa, G. E., Vanegas Chamorro, M. C. & Martinez Gaspar, R. J., 2016. Study of the persistence of wind in the Colombian Caribbean region with emphasis on La Guajira. ISBN: 978-958-8742-69-4 ed. Colombia: Atlantic University. Valencia Ochoa, G. E., Vanegas Chamorro, M. C. & Polo Jimenez, J. P., 2016. Statistical analysis of wind speed and direction in the Colombian Caribbean coast with emphasis on La Guajira. ISBN: 978-958-8742- 73-1 ed. Colombia: Atlantic University. Valencia Ochoa, G. E., Vanegas Chamorro, M. C. & Villicana Ortiz, E., 2016. Solar Atlas of the Colombian Caribbean Coast. ISBN: 978-958-8742-70-0 ed. Colombia: Atlantic University. Vanegas Chamorro, M. C. & Valencia Ochoa, G. E., 2016. Wind Atlas of the Colombian Caribbean Coast. ISBN: 978-958-8742-71-7 ed. Colombia: Atlantic University. Vanegas Chamorro, M. C., Valencia Ochoa, G. E. & Villicana Ortiz, E., 2016. Geographic and temporal availability of solar energy in the Colombian Caribbean Coast. ISBN: 978-958-8742-72-4 ed. Colombia: Atlantic University.
dc.rights.spa.fl_str_mv Atribución – No comercial – Compartir igual
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Atribución – No comercial – Compartir igual
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.publisher.spa.fl_str_mv Chemical Engineering Transactions
institution Corporación Universidad de la Costa
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstream/11323/1215/1/Computational%20simulation%20of%20the%20gas%20emission%20in%20a%20biomass%20on%20grid%20energy%20system%20using%20HOMER%20pro%20software.pdf
https://repositorio.cuc.edu.co/bitstream/11323/1215/2/license.txt
https://repositorio.cuc.edu.co/bitstream/11323/1215/4/Computational%20simulation%20of%20the%20gas%20emission%20in%20a%20biomass%20on%20grid%20energy%20system%20using%20HOMER%20pro%20software.pdf.jpg
https://repositorio.cuc.edu.co/bitstream/11323/1215/5/Computational%20simulation%20of%20the%20gas%20emission%20in%20a%20biomass%20on%20grid%20energy%20system%20using%20HOMER%20pro%20software.pdf.txt
bitstream.checksum.fl_str_mv 9bf3004eedee8899ce51875d3c9fff2e
8a4605be74aa9ea9d79846c1fba20a33
711ba2d39ec2904f7071712c2e21b9c8
8535c58bb21b3111f4443a3b9102322a
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Universidad de La Costa
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1808400117337686016
spelling Barrozo, Farid B.8eff10c6956352b93bdb9fd7d5859e18Valencia Ochoa, Guillermo Eliecerf48e278e72fed2f5937be19a6c38767eCardenas Escorcia, Yulineth del Carmen03fd6a99d8c63fdc544119cb52765c402018-11-17T14:04:48Z2018-11-17T14:04:48Z20182283-9216http://hdl.handle.net/11323/1215Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/To reach the Sustainable Development Goals and delivering on the Paris Agreement on climate change mitigation, a Biomass on grid power system is proposed to supply 33,640 kWh/day, which is the average annual energy consumption from a group of office buildings. This study shows the behavior of the gas emission of a Biomass on Grid Energy System Using HOMER Pro Software, composed by two 500 kW biogas-powered electric generator, using different types of biomass resource from the Colombian Caribbean Region like manure obtained from the livestock sector and solid urban organic waste. The simulation results showed some emission decrease when operating on the grid the Biogas generator such as the carbon dioxide, the sulfur dioxide and the nitrogen oxides on 11.6% while the carbon monoxide increased on 8.7% concerning the power supply system through electrical grid coming from thermoelectric power plants and hydroelectric power plants.engChemical Engineering TransactionsAtribución – No comercial – Compartir igualinfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Computational simulation of the gas emission in a biomass on grid energy system using HOMER pro softwareArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersionBarrozo Budes, F., Valencia Ochoa, G. & Cárdenas Escorcia, Y., 2017. Hybrid PV and wind grid-connected renewable energy system to reduce the gas emission and operation cost. Contemporary engineering sciences, 10(26), pp. 1269-1278. Barrozo Budes, F., Valencia Ochoa, G. & Cárdenas Escorcia, Y., 2017. An economic evaluation of Renewable and Conventional Electricity Generation Systems in a shopping centre using HOMER Pro. Contemporary engineering sciences, 10(26), pp. 1287-1295. Barrozo Budes, F., Valencia Ochoa, G. & Cárdenas Escorcia, Y., 2017. Biomass generator to reduce the gas emission and operation cost in a grid-connected renewable energy systems. International Journal of ChemTech Research, 10(13), pp. 311-316. Chandra, R. et al., 2012. Production of methane from anaerobic digestion of jatropha and pongamia oil cakes. Applied Energy, 93, pp.148–159. Available at: http://www.sciencedirect.com.ezproxy.unbosque.edu.co/science/article/pii/S0306261910005283 [Accessed November 20, 2017]. Commission, E.E., Biofuels. Available at: ec. europa.eu/energy/en/topics/renewable-energy/biofuels. EIA, U.S.E.I.A., Short-Term Energy Outlook. Available at: www.eia.gov/outlooks/steo/report/global_oil.cfm. Esteves, V.P. et al., 2017. Assessment of greenhouse gases (GHG) emissions from the tallow biodiesel production chain including land use change (LUC). Journal of Cleaner Production, 151, pp.578–591. Available at: http://www.sciencedirect.com.ezproxy.unbosque.edu.co/science/article/pii/S0959652617304985 [Accessed November 20, 2017]. Greene CH, Pershing AJ. Climate-driven sea change. Science 2007; 315:1084-5. Hoogwijk M, Faaij A, Eickhout B, de Vries B, Turkenburg W. Potential of biomass energy out to 2100, for four IPCC SRES land-use scenarios. Biomass Bioenergy 2005; 29:225–57 IPCC. Climate change 2007. Impacts, adaptation and vulnerability, Summary for policymakers and technical summary, WG II contribution to the AR4. UK: Cambridge University Press; 2007. p. 93. McCormic, R.L. et al., 2005. Regulated Emissions from Biodiesel Tested in Heavy Duty Engines Meeting 2004 Emission Standards Mondani, F. et al., 2017. Evaluation of greenhouse gases emission based on energy consumption in wheat Agro ecosystems. Energy Reports, 3, pp.37–45. Available at: http://www.sciencedirect.com.ezproxy.unbosque.edu.co/science/article/pii/S2352484717300082 [Accessed November 19, 2017]. O´Shea, R., Wall, D.M. & Murphy, J.D., 2017. An energy and greenhouse gas comparison of centralised biogas production with road haulage of pig slurry, and decentralised biogas production with biogas transportation in a low-pressure pipe network. Applied Energy, 208, pp.108–122. Available at: http://www.sciencedirect.com.ezproxy.unbosque.edu.co/science/article/pii/S0306261917314599 [Accessed November 20, 2017]. Prather M, Ehhalt D, Dentener F, Derwent R, Dlugokencky E, et al. Atmospheric chemistry and greenhouse gases. In: Houghton JT, Ding Y, Griggs DJ, Noguer M, Van der Linden PJ, et al., editors. Climate change 2001: the scientific basis. Cambridge University Press; 2001. p. 239-87. Panjicko, M. et al., 2017. Biogas production from brewery spent grain as a mono-substrate in a two-stage process composed of solid-state anaerobic digestion and granular biomass reactors. Journal of Cleaner Production, 166, pp.519–529. Available at: http://www.sciencedirect.com.ezproxy.unbosque.edu.co/science/article/pii/S0959652617316529 [Accessed November 20, 2017]. Rodríguez A., Ángel J., Rivero E., Acevedo, P., Santis A., Cabeza I., Acosta M. & Hernández M., 2017. Evaluation of the Biochemical Methane Potential of Pig Manure, Organic Fraction of Municipal Solid Waste and Cocoa Industry Residues in Colombia. Chemical Engineering Transactions, vol. 57, pp. 55 – 60. Valencia Ochoa, G. E., Vanegas Chamorro, M. C. & Martinez Gaspar, R. J., 2016. Study of the persistence of wind in the Colombian Caribbean region with emphasis on La Guajira. ISBN: 978-958-8742-69-4 ed. Colombia: Atlantic University. Valencia Ochoa, G. E., Vanegas Chamorro, M. C. & Polo Jimenez, J. P., 2016. Statistical analysis of wind speed and direction in the Colombian Caribbean coast with emphasis on La Guajira. ISBN: 978-958-8742- 73-1 ed. Colombia: Atlantic University. Valencia Ochoa, G. E., Vanegas Chamorro, M. C. & Villicana Ortiz, E., 2016. Solar Atlas of the Colombian Caribbean Coast. ISBN: 978-958-8742-70-0 ed. Colombia: Atlantic University. Vanegas Chamorro, M. C. & Valencia Ochoa, G. E., 2016. Wind Atlas of the Colombian Caribbean Coast. ISBN: 978-958-8742-71-7 ed. Colombia: Atlantic University. Vanegas Chamorro, M. C., Valencia Ochoa, G. E. & Villicana Ortiz, E., 2016. Geographic and temporal availability of solar energy in the Colombian Caribbean Coast. ISBN: 978-958-8742-72-4 ed. Colombia: Atlantic University.ORIGINALComputational simulation of the gas emission in a biomass on grid energy system using HOMER pro software.pdfComputational simulation of the gas emission in a biomass on grid energy system using HOMER pro software.pdfapplication/pdf262632https://repositorio.cuc.edu.co/bitstream/11323/1215/1/Computational%20simulation%20of%20the%20gas%20emission%20in%20a%20biomass%20on%20grid%20energy%20system%20using%20HOMER%20pro%20software.pdf9bf3004eedee8899ce51875d3c9fff2eMD51open accessLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.cuc.edu.co/bitstream/11323/1215/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52open accessTHUMBNAILComputational simulation of the gas emission in a biomass on grid energy system using HOMER pro software.pdf.jpgComputational simulation of the gas emission in a biomass on grid energy system using HOMER pro software.pdf.jpgimage/jpeg72780https://repositorio.cuc.edu.co/bitstream/11323/1215/4/Computational%20simulation%20of%20the%20gas%20emission%20in%20a%20biomass%20on%20grid%20energy%20system%20using%20HOMER%20pro%20software.pdf.jpg711ba2d39ec2904f7071712c2e21b9c8MD54open accessTEXTComputational simulation of the gas emission in a biomass on grid energy system using HOMER pro software.pdf.txtComputational simulation of the gas emission in a biomass on grid energy system using HOMER pro software.pdf.txttext/plain19067https://repositorio.cuc.edu.co/bitstream/11323/1215/5/Computational%20simulation%20of%20the%20gas%20emission%20in%20a%20biomass%20on%20grid%20energy%20system%20using%20HOMER%20pro%20software.pdf.txt8535c58bb21b3111f4443a3b9102322aMD55open access11323/1215oai:repositorio.cuc.edu.co:11323/12152023-12-14 14:27:49.026open accessRepositorio Universidad de La Costabdigital@metabiblioteca.comTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=