Computational simulation of the gas emission in a biomass on grid energy system using HOMER pro software
To reach the Sustainable Development Goals and delivering on the Paris Agreement on climate change mitigation, a Biomass on grid power system is proposed to supply 33,640 kWh/day, which is the average annual energy consumption from a group of office buildings. This study shows the behavior of the ga...
- Autores:
-
Barrozo, Farid B.
Valencia Ochoa, Guillermo Eliecer
Cardenas Escorcia, Yulineth del Carmen
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2018
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/1215
- Acceso en línea:
- https://hdl.handle.net/11323/1215
https://repositorio.cuc.edu.co/
- Palabra clave:
- Rights
- openAccess
- License
- Atribución – No comercial – Compartir igual
id |
RCUC2_798a02b559ecb8300f8522ee66a15608 |
---|---|
oai_identifier_str |
oai:repositorio.cuc.edu.co:11323/1215 |
network_acronym_str |
RCUC2 |
network_name_str |
REDICUC - Repositorio CUC |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Computational simulation of the gas emission in a biomass on grid energy system using HOMER pro software |
title |
Computational simulation of the gas emission in a biomass on grid energy system using HOMER pro software |
spellingShingle |
Computational simulation of the gas emission in a biomass on grid energy system using HOMER pro software |
title_short |
Computational simulation of the gas emission in a biomass on grid energy system using HOMER pro software |
title_full |
Computational simulation of the gas emission in a biomass on grid energy system using HOMER pro software |
title_fullStr |
Computational simulation of the gas emission in a biomass on grid energy system using HOMER pro software |
title_full_unstemmed |
Computational simulation of the gas emission in a biomass on grid energy system using HOMER pro software |
title_sort |
Computational simulation of the gas emission in a biomass on grid energy system using HOMER pro software |
dc.creator.fl_str_mv |
Barrozo, Farid B. Valencia Ochoa, Guillermo Eliecer Cardenas Escorcia, Yulineth del Carmen |
dc.contributor.author.spa.fl_str_mv |
Barrozo, Farid B. Valencia Ochoa, Guillermo Eliecer Cardenas Escorcia, Yulineth del Carmen |
description |
To reach the Sustainable Development Goals and delivering on the Paris Agreement on climate change mitigation, a Biomass on grid power system is proposed to supply 33,640 kWh/day, which is the average annual energy consumption from a group of office buildings. This study shows the behavior of the gas emission of a Biomass on Grid Energy System Using HOMER Pro Software, composed by two 500 kW biogas-powered electric generator, using different types of biomass resource from the Colombian Caribbean Region like manure obtained from the livestock sector and solid urban organic waste. The simulation results showed some emission decrease when operating on the grid the Biogas generator such as the carbon dioxide, the sulfur dioxide and the nitrogen oxides on 11.6% while the carbon monoxide increased on 8.7% concerning the power supply system through electrical grid coming from thermoelectric power plants and hydroelectric power plants. |
publishDate |
2018 |
dc.date.accessioned.none.fl_str_mv |
2018-11-17T14:04:48Z |
dc.date.available.none.fl_str_mv |
2018-11-17T14:04:48Z |
dc.date.issued.none.fl_str_mv |
2018 |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
acceptedVersion |
dc.identifier.issn.spa.fl_str_mv |
2283-9216 |
dc.identifier.uri.spa.fl_str_mv |
https://hdl.handle.net/11323/1215 |
dc.identifier.instname.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.identifier.reponame.spa.fl_str_mv |
REDICUC - Repositorio CUC |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.cuc.edu.co/ |
identifier_str_mv |
2283-9216 Corporación Universidad de la Costa REDICUC - Repositorio CUC |
url |
https://hdl.handle.net/11323/1215 https://repositorio.cuc.edu.co/ |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.references.spa.fl_str_mv |
Barrozo Budes, F., Valencia Ochoa, G. & Cárdenas Escorcia, Y., 2017. Hybrid PV and wind grid-connected renewable energy system to reduce the gas emission and operation cost. Contemporary engineering sciences, 10(26), pp. 1269-1278. Barrozo Budes, F., Valencia Ochoa, G. & Cárdenas Escorcia, Y., 2017. An economic evaluation of Renewable and Conventional Electricity Generation Systems in a shopping centre using HOMER Pro. Contemporary engineering sciences, 10(26), pp. 1287-1295. Barrozo Budes, F., Valencia Ochoa, G. & Cárdenas Escorcia, Y., 2017. Biomass generator to reduce the gas emission and operation cost in a grid-connected renewable energy systems. International Journal of ChemTech Research, 10(13), pp. 311-316. Chandra, R. et al., 2012. Production of methane from anaerobic digestion of jatropha and pongamia oil cakes. Applied Energy, 93, pp.148–159. Available at: http://www.sciencedirect.com.ezproxy.unbosque.edu.co/science/article/pii/S0306261910005283 [Accessed November 20, 2017]. Commission, E.E., Biofuels. Available at: ec. europa.eu/energy/en/topics/renewable-energy/biofuels. EIA, U.S.E.I.A., Short-Term Energy Outlook. Available at: www.eia.gov/outlooks/steo/report/global_oil.cfm. Esteves, V.P. et al., 2017. Assessment of greenhouse gases (GHG) emissions from the tallow biodiesel production chain including land use change (LUC). Journal of Cleaner Production, 151, pp.578–591. Available at: http://www.sciencedirect.com.ezproxy.unbosque.edu.co/science/article/pii/S0959652617304985 [Accessed November 20, 2017]. Greene CH, Pershing AJ. Climate-driven sea change. Science 2007; 315:1084-5. Hoogwijk M, Faaij A, Eickhout B, de Vries B, Turkenburg W. Potential of biomass energy out to 2100, for four IPCC SRES land-use scenarios. Biomass Bioenergy 2005; 29:225–57 IPCC. Climate change 2007. Impacts, adaptation and vulnerability, Summary for policymakers and technical summary, WG II contribution to the AR4. UK: Cambridge University Press; 2007. p. 93. McCormic, R.L. et al., 2005. Regulated Emissions from Biodiesel Tested in Heavy Duty Engines Meeting 2004 Emission Standards Mondani, F. et al., 2017. Evaluation of greenhouse gases emission based on energy consumption in wheat Agro ecosystems. Energy Reports, 3, pp.37–45. Available at: http://www.sciencedirect.com.ezproxy.unbosque.edu.co/science/article/pii/S2352484717300082 [Accessed November 19, 2017]. O´Shea, R., Wall, D.M. & Murphy, J.D., 2017. An energy and greenhouse gas comparison of centralised biogas production with road haulage of pig slurry, and decentralised biogas production with biogas transportation in a low-pressure pipe network. Applied Energy, 208, pp.108–122. Available at: http://www.sciencedirect.com.ezproxy.unbosque.edu.co/science/article/pii/S0306261917314599 [Accessed November 20, 2017]. Prather M, Ehhalt D, Dentener F, Derwent R, Dlugokencky E, et al. Atmospheric chemistry and greenhouse gases. In: Houghton JT, Ding Y, Griggs DJ, Noguer M, Van der Linden PJ, et al., editors. Climate change 2001: the scientific basis. Cambridge University Press; 2001. p. 239-87. Panjicko, M. et al., 2017. Biogas production from brewery spent grain as a mono-substrate in a two-stage process composed of solid-state anaerobic digestion and granular biomass reactors. Journal of Cleaner Production, 166, pp.519–529. Available at: http://www.sciencedirect.com.ezproxy.unbosque.edu.co/science/article/pii/S0959652617316529 [Accessed November 20, 2017]. Rodríguez A., Ángel J., Rivero E., Acevedo, P., Santis A., Cabeza I., Acosta M. & Hernández M., 2017. Evaluation of the Biochemical Methane Potential of Pig Manure, Organic Fraction of Municipal Solid Waste and Cocoa Industry Residues in Colombia. Chemical Engineering Transactions, vol. 57, pp. 55 – 60. Valencia Ochoa, G. E., Vanegas Chamorro, M. C. & Martinez Gaspar, R. J., 2016. Study of the persistence of wind in the Colombian Caribbean region with emphasis on La Guajira. ISBN: 978-958-8742-69-4 ed. Colombia: Atlantic University. Valencia Ochoa, G. E., Vanegas Chamorro, M. C. & Polo Jimenez, J. P., 2016. Statistical analysis of wind speed and direction in the Colombian Caribbean coast with emphasis on La Guajira. ISBN: 978-958-8742- 73-1 ed. Colombia: Atlantic University. Valencia Ochoa, G. E., Vanegas Chamorro, M. C. & Villicana Ortiz, E., 2016. Solar Atlas of the Colombian Caribbean Coast. ISBN: 978-958-8742-70-0 ed. Colombia: Atlantic University. Vanegas Chamorro, M. C. & Valencia Ochoa, G. E., 2016. Wind Atlas of the Colombian Caribbean Coast. ISBN: 978-958-8742-71-7 ed. Colombia: Atlantic University. Vanegas Chamorro, M. C., Valencia Ochoa, G. E. & Villicana Ortiz, E., 2016. Geographic and temporal availability of solar energy in the Colombian Caribbean Coast. ISBN: 978-958-8742-72-4 ed. Colombia: Atlantic University. |
dc.rights.spa.fl_str_mv |
Atribución – No comercial – Compartir igual |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Atribución – No comercial – Compartir igual http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.publisher.spa.fl_str_mv |
Chemical Engineering Transactions |
institution |
Corporación Universidad de la Costa |
bitstream.url.fl_str_mv |
https://repositorio.cuc.edu.co/bitstreams/041bebb2-0c41-4f24-b034-25354baab73e/download https://repositorio.cuc.edu.co/bitstreams/1c13793b-9e58-4262-8e99-e1c169bff724/download https://repositorio.cuc.edu.co/bitstreams/97f541b1-855b-4c06-9c96-22094bea4eb3/download https://repositorio.cuc.edu.co/bitstreams/1bdcdeb3-1908-42f3-ad9a-53ac0dc31aad/download |
bitstream.checksum.fl_str_mv |
9bf3004eedee8899ce51875d3c9fff2e 8a4605be74aa9ea9d79846c1fba20a33 711ba2d39ec2904f7071712c2e21b9c8 8535c58bb21b3111f4443a3b9102322a |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad de la Costa CUC |
repository.mail.fl_str_mv |
repdigital@cuc.edu.co |
_version_ |
1828166714667302912 |
spelling |
Barrozo, Farid B.Valencia Ochoa, Guillermo EliecerCardenas Escorcia, Yulineth del Carmen2018-11-17T14:04:48Z2018-11-17T14:04:48Z20182283-9216https://hdl.handle.net/11323/1215Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/To reach the Sustainable Development Goals and delivering on the Paris Agreement on climate change mitigation, a Biomass on grid power system is proposed to supply 33,640 kWh/day, which is the average annual energy consumption from a group of office buildings. This study shows the behavior of the gas emission of a Biomass on Grid Energy System Using HOMER Pro Software, composed by two 500 kW biogas-powered electric generator, using different types of biomass resource from the Colombian Caribbean Region like manure obtained from the livestock sector and solid urban organic waste. The simulation results showed some emission decrease when operating on the grid the Biogas generator such as the carbon dioxide, the sulfur dioxide and the nitrogen oxides on 11.6% while the carbon monoxide increased on 8.7% concerning the power supply system through electrical grid coming from thermoelectric power plants and hydroelectric power plants.Barrozo, Farid B.-80668d58-a960-484f-8ce9-ab9cd59bd3b9-0Valencia Ochoa, Guillermo Eliecer-badc27cf-8d52-48c7-8cc8-5ffbe0292696-0Cardenas Escorcia, Yulineth del Carmen-0000-0002-9841-701X-600engChemical Engineering TransactionsAtribución – No comercial – Compartir igualinfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Computational simulation of the gas emission in a biomass on grid energy system using HOMER pro softwareArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersionBarrozo Budes, F., Valencia Ochoa, G. & Cárdenas Escorcia, Y., 2017. Hybrid PV and wind grid-connected renewable energy system to reduce the gas emission and operation cost. Contemporary engineering sciences, 10(26), pp. 1269-1278. Barrozo Budes, F., Valencia Ochoa, G. & Cárdenas Escorcia, Y., 2017. An economic evaluation of Renewable and Conventional Electricity Generation Systems in a shopping centre using HOMER Pro. Contemporary engineering sciences, 10(26), pp. 1287-1295. Barrozo Budes, F., Valencia Ochoa, G. & Cárdenas Escorcia, Y., 2017. Biomass generator to reduce the gas emission and operation cost in a grid-connected renewable energy systems. International Journal of ChemTech Research, 10(13), pp. 311-316. Chandra, R. et al., 2012. Production of methane from anaerobic digestion of jatropha and pongamia oil cakes. Applied Energy, 93, pp.148–159. Available at: http://www.sciencedirect.com.ezproxy.unbosque.edu.co/science/article/pii/S0306261910005283 [Accessed November 20, 2017]. Commission, E.E., Biofuels. Available at: ec. europa.eu/energy/en/topics/renewable-energy/biofuels. EIA, U.S.E.I.A., Short-Term Energy Outlook. Available at: www.eia.gov/outlooks/steo/report/global_oil.cfm. Esteves, V.P. et al., 2017. Assessment of greenhouse gases (GHG) emissions from the tallow biodiesel production chain including land use change (LUC). Journal of Cleaner Production, 151, pp.578–591. Available at: http://www.sciencedirect.com.ezproxy.unbosque.edu.co/science/article/pii/S0959652617304985 [Accessed November 20, 2017]. Greene CH, Pershing AJ. Climate-driven sea change. Science 2007; 315:1084-5. Hoogwijk M, Faaij A, Eickhout B, de Vries B, Turkenburg W. Potential of biomass energy out to 2100, for four IPCC SRES land-use scenarios. Biomass Bioenergy 2005; 29:225–57 IPCC. Climate change 2007. Impacts, adaptation and vulnerability, Summary for policymakers and technical summary, WG II contribution to the AR4. UK: Cambridge University Press; 2007. p. 93. McCormic, R.L. et al., 2005. Regulated Emissions from Biodiesel Tested in Heavy Duty Engines Meeting 2004 Emission Standards Mondani, F. et al., 2017. Evaluation of greenhouse gases emission based on energy consumption in wheat Agro ecosystems. Energy Reports, 3, pp.37–45. Available at: http://www.sciencedirect.com.ezproxy.unbosque.edu.co/science/article/pii/S2352484717300082 [Accessed November 19, 2017]. O´Shea, R., Wall, D.M. & Murphy, J.D., 2017. An energy and greenhouse gas comparison of centralised biogas production with road haulage of pig slurry, and decentralised biogas production with biogas transportation in a low-pressure pipe network. Applied Energy, 208, pp.108–122. Available at: http://www.sciencedirect.com.ezproxy.unbosque.edu.co/science/article/pii/S0306261917314599 [Accessed November 20, 2017]. Prather M, Ehhalt D, Dentener F, Derwent R, Dlugokencky E, et al. Atmospheric chemistry and greenhouse gases. In: Houghton JT, Ding Y, Griggs DJ, Noguer M, Van der Linden PJ, et al., editors. Climate change 2001: the scientific basis. Cambridge University Press; 2001. p. 239-87. Panjicko, M. et al., 2017. Biogas production from brewery spent grain as a mono-substrate in a two-stage process composed of solid-state anaerobic digestion and granular biomass reactors. Journal of Cleaner Production, 166, pp.519–529. Available at: http://www.sciencedirect.com.ezproxy.unbosque.edu.co/science/article/pii/S0959652617316529 [Accessed November 20, 2017]. Rodríguez A., Ángel J., Rivero E., Acevedo, P., Santis A., Cabeza I., Acosta M. & Hernández M., 2017. Evaluation of the Biochemical Methane Potential of Pig Manure, Organic Fraction of Municipal Solid Waste and Cocoa Industry Residues in Colombia. Chemical Engineering Transactions, vol. 57, pp. 55 – 60. Valencia Ochoa, G. E., Vanegas Chamorro, M. C. & Martinez Gaspar, R. J., 2016. Study of the persistence of wind in the Colombian Caribbean region with emphasis on La Guajira. ISBN: 978-958-8742-69-4 ed. Colombia: Atlantic University. Valencia Ochoa, G. E., Vanegas Chamorro, M. C. & Polo Jimenez, J. P., 2016. Statistical analysis of wind speed and direction in the Colombian Caribbean coast with emphasis on La Guajira. ISBN: 978-958-8742- 73-1 ed. Colombia: Atlantic University. Valencia Ochoa, G. E., Vanegas Chamorro, M. C. & Villicana Ortiz, E., 2016. Solar Atlas of the Colombian Caribbean Coast. ISBN: 978-958-8742-70-0 ed. Colombia: Atlantic University. Vanegas Chamorro, M. C. & Valencia Ochoa, G. E., 2016. Wind Atlas of the Colombian Caribbean Coast. ISBN: 978-958-8742-71-7 ed. Colombia: Atlantic University. Vanegas Chamorro, M. C., Valencia Ochoa, G. E. & Villicana Ortiz, E., 2016. Geographic and temporal availability of solar energy in the Colombian Caribbean Coast. ISBN: 978-958-8742-72-4 ed. Colombia: Atlantic University.PublicationORIGINALComputational simulation of the gas emission in a biomass on grid energy system using HOMER pro software.pdfComputational simulation of the gas emission in a biomass on grid energy system using HOMER pro software.pdfapplication/pdf262632https://repositorio.cuc.edu.co/bitstreams/041bebb2-0c41-4f24-b034-25354baab73e/download9bf3004eedee8899ce51875d3c9fff2eMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.cuc.edu.co/bitstreams/1c13793b-9e58-4262-8e99-e1c169bff724/download8a4605be74aa9ea9d79846c1fba20a33MD52THUMBNAILComputational simulation of the gas emission in a biomass on grid energy system using HOMER pro software.pdf.jpgComputational simulation of the gas emission in a biomass on grid energy system using HOMER pro software.pdf.jpgimage/jpeg72780https://repositorio.cuc.edu.co/bitstreams/97f541b1-855b-4c06-9c96-22094bea4eb3/download711ba2d39ec2904f7071712c2e21b9c8MD54TEXTComputational simulation of the gas emission in a biomass on grid energy system using HOMER pro software.pdf.txtComputational simulation of the gas emission in a biomass on grid energy system using HOMER pro software.pdf.txttext/plain19067https://repositorio.cuc.edu.co/bitstreams/1bdcdeb3-1908-42f3-ad9a-53ac0dc31aad/download8535c58bb21b3111f4443a3b9102322aMD5511323/1215oai:repositorio.cuc.edu.co:11323/12152024-09-17 11:09:01.727open.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |