Supported NiMo carbidic (phosphidic)-sulphidic catalysts as interesting alternatives for hydrotreating of fatty acids to obtain renewable diesel

The effect of the composite type of NiMo on the hydrotreating of fatty acids was evaluated. XRF showed atomic ratio Ni:Mo and Mo:Ni:P ∼1 and SEM- EDS confirmed the elements were well-distributed on supports, although small metal aggregates were also observed. XRD revealed the Ni3Mo3C and NiMoP forma...

Full description

Autores:
Puello-Polo, Esneyder
Toloza, Carlos A.T.
Méndez, Franklin J.
Tipo de recurso:
Article of investigation
Fecha de publicación:
2022
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/10790
Acceso en línea:
https://hdl.handle.net/11323/10790
https://repositorio.cuc.edu.co/
Palabra clave:
Activated carbon
Fatty acids
MgO–Al2O3
NiMo carbidic-sulphidic
NiMo phosphidic-sulphidic
Rights
embargoedAccess
License
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
id RCUC2_78d9961b8a517d457ca4613f2c570d5d
oai_identifier_str oai:repositorio.cuc.edu.co:11323/10790
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.spa.fl_str_mv Supported NiMo carbidic (phosphidic)-sulphidic catalysts as interesting alternatives for hydrotreating of fatty acids to obtain renewable diesel
title Supported NiMo carbidic (phosphidic)-sulphidic catalysts as interesting alternatives for hydrotreating of fatty acids to obtain renewable diesel
spellingShingle Supported NiMo carbidic (phosphidic)-sulphidic catalysts as interesting alternatives for hydrotreating of fatty acids to obtain renewable diesel
Activated carbon
Fatty acids
MgO–Al2O3
NiMo carbidic-sulphidic
NiMo phosphidic-sulphidic
title_short Supported NiMo carbidic (phosphidic)-sulphidic catalysts as interesting alternatives for hydrotreating of fatty acids to obtain renewable diesel
title_full Supported NiMo carbidic (phosphidic)-sulphidic catalysts as interesting alternatives for hydrotreating of fatty acids to obtain renewable diesel
title_fullStr Supported NiMo carbidic (phosphidic)-sulphidic catalysts as interesting alternatives for hydrotreating of fatty acids to obtain renewable diesel
title_full_unstemmed Supported NiMo carbidic (phosphidic)-sulphidic catalysts as interesting alternatives for hydrotreating of fatty acids to obtain renewable diesel
title_sort Supported NiMo carbidic (phosphidic)-sulphidic catalysts as interesting alternatives for hydrotreating of fatty acids to obtain renewable diesel
dc.creator.fl_str_mv Puello-Polo, Esneyder
Toloza, Carlos A.T.
Méndez, Franklin J.
dc.contributor.author.none.fl_str_mv Puello-Polo, Esneyder
Toloza, Carlos A.T.
Méndez, Franklin J.
dc.subject.proposal.eng.fl_str_mv Activated carbon
Fatty acids
MgO–Al2O3
NiMo carbidic-sulphidic
NiMo phosphidic-sulphidic
topic Activated carbon
Fatty acids
MgO–Al2O3
NiMo carbidic-sulphidic
NiMo phosphidic-sulphidic
description The effect of the composite type of NiMo on the hydrotreating of fatty acids was evaluated. XRF showed atomic ratio Ni:Mo and Mo:Ni:P ∼1 and SEM- EDS confirmed the elements were well-distributed on supports, although small metal aggregates were also observed. XRD revealed the Ni3Mo3C and NiMoP formation in the NiMo carbidic-sulphidic and phosphidic-sulphidic catalysts, respectively. MoS2 formation was observed by the Raman spectra. The carbidic-sulphidic/phosphidic-sulphidic composites have the following textural properties: 219/58 m2/g (SBET), 0.094/0.20 cm3/g (Vp), and 5.4/14.2 nm (Dp), but no correlation with the catalytic behavior. XPS results evidenced the mixture carbide-sulfide or phosphide-sulfide. NiMo phosphidic-sulfidic composite has higher activity in HDO, HDCx-HDCn, and HCK than the material obtained from carbides, which was related to metal oxophilic capacity.
publishDate 2022
dc.date.issued.none.fl_str_mv 2022-11-15
dc.date.accessioned.none.fl_str_mv 2024-02-23T22:25:23Z
dc.date.available.none.fl_str_mv 2024-11-15
2024-02-23T22:25:23Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
format http://purl.org/coar/resource_type/c_2df8fbb1
status_str publishedVersion
dc.identifier.citation.spa.fl_str_mv Esneyder Puello-Polo, Carlos A.T. Toloza, Franklin J. Méndez, Supported NiMo carbidic (phosphidic)-sulphidic catalysts as interesting alternatives for hydrotreating of fatty acids to obtain renewable diesel, Materials Chemistry and Physics, Volume 291, 2022, 126728, ISSN 0254-0584, https://doi.org/10.1016/j.matchemphys.2022.126728
dc.identifier.issn.spa.fl_str_mv 0254-0584
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/11323/10790
dc.identifier.doi.none.fl_str_mv 10.1016/j.matchemphys.2022.126728
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC – Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
identifier_str_mv Esneyder Puello-Polo, Carlos A.T. Toloza, Franklin J. Méndez, Supported NiMo carbidic (phosphidic)-sulphidic catalysts as interesting alternatives for hydrotreating of fatty acids to obtain renewable diesel, Materials Chemistry and Physics, Volume 291, 2022, 126728, ISSN 0254-0584, https://doi.org/10.1016/j.matchemphys.2022.126728
0254-0584
10.1016/j.matchemphys.2022.126728
Corporación Universidad de la Costa
REDICUC – Repositorio CUC
url https://hdl.handle.net/11323/10790
https://repositorio.cuc.edu.co/
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.ispartofjournal.spa.fl_str_mv Materials Chemistry and Physics
dc.relation.references.spa.fl_str_mv [1] M. Pearlson, C. Wollersheim, J. Hileman, A techno-economic review of hydroprocessed renewable esters and fatty acids for jet fuel production, Biofuel, Bioproducts and Biorefining 7 (2013) 89–96, https://doi.org/10.1002/bbb.1378.
[2] S.J. Patil, P.D. Vaidya, On the production of bio-hydrogenated diesel over hydrotalcite-like supported palladium and ruthenium catalysts, Fuel Process. Technol. 169 (2018) 142–149, https://doi.org/10.1016/j.fuproc.2017.09.026.
[3] L. Souza Macedo, R.R. Oliveira, T. van Haasterecht, V. Teixeira da Silva, H. Bitter, Influence of synthesis method on molybdenum carbide crystal structure and catalytic performance in stearic acid hydrodeoxygenation, Appl. Catal., B 241 (2019) 81–88, https://doi.org/10.1016/j.apcatb.2018.09.020.
[4] B. Donnis, R.G. Egeberg, P. Blom, K.G. Knudsen, Hydroprocessing of bio-oils and oxygenates to hydrocarbons. Understanding the reaction routes, Top. Catal. 52 (2009) 229–240, https://doi.org/10.1007/s11244-008-9159-z.
[5] K.J. Smith, Metal carbides, phosphides, and nitrides for biomass conversion, Curr. Opinion Green Sustain. Chem. 22 (2020) 47–53, https://doi.org/10.1016/j. cogsc.2019.11.008.
[6] C. Leyva, M.S. Rana, F. Trejo, J. Ancheyta, On the use of acid-base-supported catalysts for hydroprocessing of heavy petroleum, Ind. Eng. Chem. Res. 46 (2007) 7448–7466, https://doi.org/10.1021/ie070128q.
[7] F.J. M´endez, O.E. Franco-Lopez, ´ X. Bokhimi, D.A. Solís-Casados, L. EscobarAlarcon, ´ T.E. Klimova, Dibenzothiophene hydrodesulfurization with NiMo and CoMo catalysts supported on niobium-modified MCM-41, Appl. Catal., B 219 (2017) 479–491, https://doi.org/10.1016/j.apcatb.2017.07.079.
[8] F.J. M´endez, O.E. Franco-Lopez, ´ G. Díaz, A. Gomez-Cort ´ ´es, X. Bokhimi, T. E. Klimova, On the role of niobium in nanostructured Mo/Nb-MCM-41 and NiMo/ Nb-MCM-41 catalysts for hydrodesulfurization of dibenzothiophene, Fuel 280 (2020), 118550, https://doi.org/10.1016/j.fuel.2020.118550.
[9] A. Centeno, E. Laurent, B. Delmon, Influence of the support of CoMo sulfide catalysts and of the addition of potassium and platinum on the catalytic performances for the hydrodeoxygenation of carbonyl, carboxyl, and guaiacol-type molecules, J. Catal. 154 (1995) 288–298, https://doi.org/10.1006/jcat.1995.1170.
[10] Y.-K. Lee, S.T. Oyama, Bifunctional nature of a SiO2-supported Ni2P catalyst for hydrotreating. EXAFS and FTIR studies, J. Catal. 239 (2006) 376–389, https://doi. org/10.1016/j.jcat.2005.12.029.
[11] M.M. Sullivan, C.-J. Chen, A. Bhan, Catalytic deoxygenation on transition metal carbide catalysts, Catal. Sci. Technol. 6 (2016) 602–616, https://doi.org/10.1039/ C5CY01665G.
[12] P.-H. Cuong, A.P.E. York, M. Benaissa, P. Del Gallo, M.J. Ledoux, Reactions of nheptane and methylcyclopentane over an oxygen-modified molybdenum carbide catalyst. Study of coke formation, catalyst deactivation, and regeneration, Ind. Eng. Chem. Res. 34 (1995) 1107–1113, https://doi.org/10.1021/ie00043a012.
[13] D.M. Alonso, S.G. Wettstein, J.A. Dumesic, Bimetallic catalysts for upgrading of biomass to fuels and chemicals, Chem. Soc. Rev. 41 (2012) 8075–8098, https:// doi.org/10.1039/C2CS35188A.
[14] Z. Pan, R. Wang, M. Li, Y. Chu, J. Chen, Deoxygenation of methyl laurate to hydrocarbons on silica-supported Ni-Mo phosphides. Effect of calcination temperatures of precursor, J. Energy Chem. 24 (2015) 77–86, https://doi.org/ 10.1016/S2095-4956(15)60287-X.
[15] G.-N. Yun, S.-J. Ahn, A. Takagaki, R. Kikuchi, S.T. Oyama, Hydrodeoxygenation of γ-valerolactone on bimetallic NiMo phosphide catalysts, J. Catal. 353 (2017) 141–151, https://doi.org/10.1016/j.cat.2017-07-006.
[16] Z. Nie, Z. Zhang, J. Chen, Effect of Ni and noble metals (Ru, Pd and Pt) on performance of bifunctional MoP/SiO2 for hydroconversion of methyl laurate, Appl. Surf. Sci. 420 (2017) 511–522, https://doi.org/10.1016/j. apsusc.2017.05.173.
[17] H. Tang, J. Lin, Y. Cao, K. Jibran, J. Li, Influence of NiMoP phase on hydrodeoxygenation pathways of jatropha oil, Energy 243 (2022), 123048, https://doi.org/10.1016/j.energy.2021.123048.
[18] W.-S. Lee, Z. Wang, R.J. Wu, A. Bhan, Selective vapor-phase hydrodeoxygenation of anisole to benzene on molybdenum carbide catalysts, J. Catal. 319 (2014) 44–53, https://doi.org/10.1016/j.jcat.2014.07.025.
[19] D.R. Stellwagen, J.H. Bitter, Structure-performance relations of molybdenum- and tungsten carbide catalysts for deoxygenation, Green Chem. 17 (2015) 582–593, https://doi.org/10.1039/C4GC01831A.
[20] J. Han, J. Duan, P. Chen, H. Lou, X. Zheng, H. Hong, Carbon-supported molybdenum carbide catalysts for the conversion of vegetable oils, ChemSusChem 5 (2012) 727–733, https://doi.org/10.1002/cssc.201100476.
[21] F. Wang, J. Jiang, K. Wang, Q. Zhai, H. Sun, P. Liu, J. Feng, H. Xia, J. Ye, Z. Li, F. Li, J. Xu, Activated carbon supported molybdenum and tungsten carbides for hydrotreatment of fatty acids into green diesel, Fuel 228 (2018) 103–111, https:// doi.org/10.1016/j.fuel.2018.04.150.
[22] F. Wang, J. Xu, J. Jiang, P. Liu, F. Li, J. Ye, M. Zhou, Hydrotreatment of vegetable oil for green diesel over activated carbon supported molybdenum carbide catalyst, Fuel 216 (2018) 738–746, https://doi.org/10.1016/j.fuel.2017.12.059.
[23] S. Masoumi, A.K. Dalai, NiMo carbide supported on algal derived activated carbon for hydrodeoxygenation of algal biocrude oil, Energy Convers. Manag. 231 (2021), 113834, https://doi.org/10.1016/j.enconman.2021.113834.
[24] A.E. Nelson, M. Sun, A.S.M. Junaid, On the structure and composition of the phosphosulfide overlayer on Ni2P at hydrotreating conditions, J. Catal. 241 (2006) 180–188, https://doi.org/10.1016/j.jcat.2006.04.023.
[25] E. Puello-Polo, J.L. Brito, Effect of the type of precursor and the synthesis method on thiophene hydrodesulfurization activity of activated carbon supported Fe-Mo, Co-Mo and Ni-Mo carbides, J. Mol. Catal. 281 (2008) 85–92, https://doi.org/ 10.1016/j.molcata.2007.09.015.
[26] Y. Villasana, F.J. M´endez, M. Luis-Luis, J.L. Brito, Pollutant reduction and catalytic upgrading of a Venezuelan extra-heavy crude oil with Al2O3-supported NiW catalysts: effect of carburization, nitridation and sulfurization, Fuel 235 (2019) 577–588, https://doi.org/10.1016/j.fuel.2018.08.047.
[27] Y.N. Regmi, B.M. Leonard, General synthesis method for bimetallic carbides of group VIIIA first row transition metals with molybdenum and tungsten, Chem. Mater. 26 (2014) 2609–2616, https://doi.org/10.1021/cm500076v.
[28] E. Puello-Polo, E. Marquez, J.L. Brito, One-pot synthesis of Nb-modified Al2O3 support for NiMo hydrodesulfurization catalysts, J. Sol. Gel Sci. Technol. 88 (2018) 90–99, https://doi.org/10.1007/s10971-018-4792-x.
[29] H. Li, Q. Zhang, C.C.R. Yap, B.K. Tay, T.H.T. Edwin, A. Olivier, D. Baillargeat, From bulk to monolayer MoS2. Evolution of Raman scattering, Adv. Funct. Mater. 22 (2012) 1385–1390, https://doi.org/10.1002/adfm.201102111.
[30] B. Fang, M. Yang, C. Zhang, J. Li, C. Li, J. Ni, X. Wang, J. Lin, B. Lin, L. Jiang, Molybdenum carbide phase effects in heterogeneous catalytic ammonia synthesis, Chem. Eng. Sci. 259 (2022), 117834, https://doi.org/10.1016/j.ces.2022.117834.
[31] S. Upadhyay, O.P. Pandey, One-pot synthesis of pure phase molybdenum carbide (Mo2C and MoC) nanoparticles for hydrogen evolution reaction, Int. J. Hydrogen Energy 45 (2020) 27114–27128, https://doi.org/10.1016/j.ijhydene.2020.07.069.
[32] M. Thommes, K. Kaneko, V. Neimark-Alexander, P. Olivier-James, F. RodriguezReinoso, J. Rouquerol, S.W. Sing-Kenneth, Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report), Pure Appl. Chem. 87 (2015) 1051–1069, https://doi.org/ 10.1515/pac-2014-1117.
[33] E. Puello-Polo, M. Ayala-G, J.L. Brito, Sulfidability and thiophene hydrodesulfurization activity of supported NiMo carbides, Catal. Commun. 53 (2014) 9–14, https://doi.org/10.1016/j.catcom.2014.04.018.
[34] T. Weber, J.C. Muijsers, J.H.M.C. van Wolput, C.P.J. Verhagen, J. W. Niemantsverdriet, Basic reaction steps in the sulfidation of crystalline MoO3 to MoS2, as studied by X-ray photoelectron and infrared emission spectroscopy, J. Phys. Chem. 100 (1996) 14144–14150, https://doi.org/10.1021/jp961204y.
[35] D.C. Phillips, S.J. Sawhill, R. Self, M.E. Bussell, Synthesis, characterization, and hydrodesulfurization properties of silica-supported molybdenum phosphide catalysts, J. Catal. 207 (2002) 266–273, https://doi.org/10.1006/jcat.2002.3524.
[36] S.J. Sawhill, K.A. Layman, D.R. Van Wyk, M.H. Engelhard, C. Wang, M.E. Bussell, Thiophene hydrodesulfurization over nickel phosphide catalysts: effect of the precursor composition and support, J. Catal. 231 (2005) 300–313, https://doi.org/ 10.1016/j.jcat.2005.01.020.
[37] S. Biniak, G. Szymanski, ´ J. Siedlewski, A. Swi ´ ątkowski, The characterization of activated carbons with oxygen and nitrogen surface groups, Carbon 35 (1997) 1799–1810, https://doi.org/10.1016/S0008-6223(97)00096-1.
[38] J. Zhang, C. Zhao, C. Li, S. Li, C.-W. Tsang, C. Liang, The role of oxophilic Mo species in Pt/MgO catalysts as extremely active sites for enhanced hydrodeoxygenation of dibenzofuran, Catal. Sci. Technol. 10 (2020) 2948–2960, https://doi.org/10.1039/D0CY00341G.
[39] A.J. Medford, A. Vojvodic, J.S. Hummelshøj, J. Voss, F. Abild-Pedersen, F. Studt, T. Bligaard, A. Nilsson, J.K. Nørskov, From the Sabatier principle to a predictive theory of transition-metal heterogeneous catalysis, J. Catal. 328 (2015) 36–42, https://doi.org/10.1016/j.jcat.2014.12.033.
[40] E. Puello-Polo, Y. Pajaro, ´ E. M´ arquez, Effect of the gallium and vanadium on the dibenzothiophene hydrodesulfurization and naphthalene hydrogenation activities using sulfided NiMo-V2O5/Al2O3-Ga2O3, Catalysts 10 (2020) 894, https://doi.org/ 10.3390/catal10080894.
dc.relation.citationvolume.spa.fl_str_mv 291
dc.rights.eng.fl_str_mv © 2022 Elsevier B.V. All rights reserved.
dc.rights.license.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/embargoedAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_f1cf
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
© 2022 Elsevier B.V. All rights reserved.
https://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_f1cf
eu_rights_str_mv embargoedAccess
dc.format.extent.spa.fl_str_mv 9 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Elsevier BV
dc.publisher.place.spa.fl_str_mv Netherlands
dc.source.spa.fl_str_mv https://www.sciencedirect.com/science/article/pii/S0254058422010343
institution Corporación Universidad de la Costa
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/531f5185-a319-4ce0-9a76-3130f0707a5f/download
https://repositorio.cuc.edu.co/bitstreams/1ced5cb0-9c51-41bc-842b-792acaa5db42/download
https://repositorio.cuc.edu.co/bitstreams/08bae7e5-30b7-4997-b7c5-1ba621aa0aca/download
https://repositorio.cuc.edu.co/bitstreams/9890fcad-ce07-4605-bc78-d1896c28fd32/download
bitstream.checksum.fl_str_mv 2afdaa260100c497b6a381c6a2b7585a
2f9959eaf5b71fae44bbf9ec84150c7a
d99d8f4eae5f8602f129fa2eb7aea5c2
ea1ec234badf9f6598c32c582b19b792
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1811760803257253888
spelling Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)© 2022 Elsevier B.V. All rights reserved.https://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/embargoedAccesshttp://purl.org/coar/access_right/c_f1cfPuello-Polo, EsneyderToloza, Carlos A.T.Méndez, Franklin J.2024-02-23T22:25:23Z2024-11-152024-02-23T22:25:23Z2022-11-15Esneyder Puello-Polo, Carlos A.T. Toloza, Franklin J. Méndez, Supported NiMo carbidic (phosphidic)-sulphidic catalysts as interesting alternatives for hydrotreating of fatty acids to obtain renewable diesel, Materials Chemistry and Physics, Volume 291, 2022, 126728, ISSN 0254-0584, https://doi.org/10.1016/j.matchemphys.2022.1267280254-0584https://hdl.handle.net/11323/1079010.1016/j.matchemphys.2022.126728Corporación Universidad de la CostaREDICUC – Repositorio CUChttps://repositorio.cuc.edu.co/The effect of the composite type of NiMo on the hydrotreating of fatty acids was evaluated. XRF showed atomic ratio Ni:Mo and Mo:Ni:P ∼1 and SEM- EDS confirmed the elements were well-distributed on supports, although small metal aggregates were also observed. XRD revealed the Ni3Mo3C and NiMoP formation in the NiMo carbidic-sulphidic and phosphidic-sulphidic catalysts, respectively. MoS2 formation was observed by the Raman spectra. The carbidic-sulphidic/phosphidic-sulphidic composites have the following textural properties: 219/58 m2/g (SBET), 0.094/0.20 cm3/g (Vp), and 5.4/14.2 nm (Dp), but no correlation with the catalytic behavior. XPS results evidenced the mixture carbide-sulfide or phosphide-sulfide. NiMo phosphidic-sulfidic composite has higher activity in HDO, HDCx-HDCn, and HCK than the material obtained from carbides, which was related to metal oxophilic capacity.9 páginasapplication/pdfengElsevier BVNetherlandshttps://www.sciencedirect.com/science/article/pii/S0254058422010343Supported NiMo carbidic (phosphidic)-sulphidic catalysts as interesting alternatives for hydrotreating of fatty acids to obtain renewable dieselArtículo de revistahttp://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85Materials Chemistry and Physics[1] M. Pearlson, C. Wollersheim, J. Hileman, A techno-economic review of hydroprocessed renewable esters and fatty acids for jet fuel production, Biofuel, Bioproducts and Biorefining 7 (2013) 89–96, https://doi.org/10.1002/bbb.1378.[2] S.J. Patil, P.D. Vaidya, On the production of bio-hydrogenated diesel over hydrotalcite-like supported palladium and ruthenium catalysts, Fuel Process. Technol. 169 (2018) 142–149, https://doi.org/10.1016/j.fuproc.2017.09.026.[3] L. Souza Macedo, R.R. Oliveira, T. van Haasterecht, V. Teixeira da Silva, H. Bitter, Influence of synthesis method on molybdenum carbide crystal structure and catalytic performance in stearic acid hydrodeoxygenation, Appl. Catal., B 241 (2019) 81–88, https://doi.org/10.1016/j.apcatb.2018.09.020.[4] B. Donnis, R.G. Egeberg, P. Blom, K.G. Knudsen, Hydroprocessing of bio-oils and oxygenates to hydrocarbons. Understanding the reaction routes, Top. Catal. 52 (2009) 229–240, https://doi.org/10.1007/s11244-008-9159-z.[5] K.J. Smith, Metal carbides, phosphides, and nitrides for biomass conversion, Curr. Opinion Green Sustain. Chem. 22 (2020) 47–53, https://doi.org/10.1016/j. cogsc.2019.11.008.[6] C. Leyva, M.S. Rana, F. Trejo, J. Ancheyta, On the use of acid-base-supported catalysts for hydroprocessing of heavy petroleum, Ind. Eng. Chem. Res. 46 (2007) 7448–7466, https://doi.org/10.1021/ie070128q.[7] F.J. M´endez, O.E. Franco-Lopez, ´ X. Bokhimi, D.A. Solís-Casados, L. EscobarAlarcon, ´ T.E. Klimova, Dibenzothiophene hydrodesulfurization with NiMo and CoMo catalysts supported on niobium-modified MCM-41, Appl. Catal., B 219 (2017) 479–491, https://doi.org/10.1016/j.apcatb.2017.07.079.[8] F.J. M´endez, O.E. Franco-Lopez, ´ G. Díaz, A. Gomez-Cort ´ ´es, X. Bokhimi, T. E. Klimova, On the role of niobium in nanostructured Mo/Nb-MCM-41 and NiMo/ Nb-MCM-41 catalysts for hydrodesulfurization of dibenzothiophene, Fuel 280 (2020), 118550, https://doi.org/10.1016/j.fuel.2020.118550.[9] A. Centeno, E. Laurent, B. Delmon, Influence of the support of CoMo sulfide catalysts and of the addition of potassium and platinum on the catalytic performances for the hydrodeoxygenation of carbonyl, carboxyl, and guaiacol-type molecules, J. Catal. 154 (1995) 288–298, https://doi.org/10.1006/jcat.1995.1170.[10] Y.-K. Lee, S.T. Oyama, Bifunctional nature of a SiO2-supported Ni2P catalyst for hydrotreating. EXAFS and FTIR studies, J. Catal. 239 (2006) 376–389, https://doi. org/10.1016/j.jcat.2005.12.029.[11] M.M. Sullivan, C.-J. Chen, A. Bhan, Catalytic deoxygenation on transition metal carbide catalysts, Catal. Sci. Technol. 6 (2016) 602–616, https://doi.org/10.1039/ C5CY01665G.[12] P.-H. Cuong, A.P.E. York, M. Benaissa, P. Del Gallo, M.J. Ledoux, Reactions of nheptane and methylcyclopentane over an oxygen-modified molybdenum carbide catalyst. Study of coke formation, catalyst deactivation, and regeneration, Ind. Eng. Chem. Res. 34 (1995) 1107–1113, https://doi.org/10.1021/ie00043a012.[13] D.M. Alonso, S.G. Wettstein, J.A. Dumesic, Bimetallic catalysts for upgrading of biomass to fuels and chemicals, Chem. Soc. Rev. 41 (2012) 8075–8098, https:// doi.org/10.1039/C2CS35188A.[14] Z. Pan, R. Wang, M. Li, Y. Chu, J. Chen, Deoxygenation of methyl laurate to hydrocarbons on silica-supported Ni-Mo phosphides. Effect of calcination temperatures of precursor, J. Energy Chem. 24 (2015) 77–86, https://doi.org/ 10.1016/S2095-4956(15)60287-X.[15] G.-N. Yun, S.-J. Ahn, A. Takagaki, R. Kikuchi, S.T. Oyama, Hydrodeoxygenation of γ-valerolactone on bimetallic NiMo phosphide catalysts, J. Catal. 353 (2017) 141–151, https://doi.org/10.1016/j.cat.2017-07-006.[16] Z. Nie, Z. Zhang, J. Chen, Effect of Ni and noble metals (Ru, Pd and Pt) on performance of bifunctional MoP/SiO2 for hydroconversion of methyl laurate, Appl. Surf. Sci. 420 (2017) 511–522, https://doi.org/10.1016/j. apsusc.2017.05.173.[17] H. Tang, J. Lin, Y. Cao, K. Jibran, J. Li, Influence of NiMoP phase on hydrodeoxygenation pathways of jatropha oil, Energy 243 (2022), 123048, https://doi.org/10.1016/j.energy.2021.123048.[18] W.-S. Lee, Z. Wang, R.J. Wu, A. Bhan, Selective vapor-phase hydrodeoxygenation of anisole to benzene on molybdenum carbide catalysts, J. Catal. 319 (2014) 44–53, https://doi.org/10.1016/j.jcat.2014.07.025.[19] D.R. Stellwagen, J.H. Bitter, Structure-performance relations of molybdenum- and tungsten carbide catalysts for deoxygenation, Green Chem. 17 (2015) 582–593, https://doi.org/10.1039/C4GC01831A.[20] J. Han, J. Duan, P. Chen, H. Lou, X. Zheng, H. Hong, Carbon-supported molybdenum carbide catalysts for the conversion of vegetable oils, ChemSusChem 5 (2012) 727–733, https://doi.org/10.1002/cssc.201100476.[21] F. Wang, J. Jiang, K. Wang, Q. Zhai, H. Sun, P. Liu, J. Feng, H. Xia, J. Ye, Z. Li, F. Li, J. Xu, Activated carbon supported molybdenum and tungsten carbides for hydrotreatment of fatty acids into green diesel, Fuel 228 (2018) 103–111, https:// doi.org/10.1016/j.fuel.2018.04.150.[22] F. Wang, J. Xu, J. Jiang, P. Liu, F. Li, J. Ye, M. Zhou, Hydrotreatment of vegetable oil for green diesel over activated carbon supported molybdenum carbide catalyst, Fuel 216 (2018) 738–746, https://doi.org/10.1016/j.fuel.2017.12.059.[23] S. Masoumi, A.K. Dalai, NiMo carbide supported on algal derived activated carbon for hydrodeoxygenation of algal biocrude oil, Energy Convers. Manag. 231 (2021), 113834, https://doi.org/10.1016/j.enconman.2021.113834.[24] A.E. Nelson, M. Sun, A.S.M. Junaid, On the structure and composition of the phosphosulfide overlayer on Ni2P at hydrotreating conditions, J. Catal. 241 (2006) 180–188, https://doi.org/10.1016/j.jcat.2006.04.023.[25] E. Puello-Polo, J.L. Brito, Effect of the type of precursor and the synthesis method on thiophene hydrodesulfurization activity of activated carbon supported Fe-Mo, Co-Mo and Ni-Mo carbides, J. Mol. Catal. 281 (2008) 85–92, https://doi.org/ 10.1016/j.molcata.2007.09.015.[26] Y. Villasana, F.J. M´endez, M. Luis-Luis, J.L. Brito, Pollutant reduction and catalytic upgrading of a Venezuelan extra-heavy crude oil with Al2O3-supported NiW catalysts: effect of carburization, nitridation and sulfurization, Fuel 235 (2019) 577–588, https://doi.org/10.1016/j.fuel.2018.08.047.[27] Y.N. Regmi, B.M. Leonard, General synthesis method for bimetallic carbides of group VIIIA first row transition metals with molybdenum and tungsten, Chem. Mater. 26 (2014) 2609–2616, https://doi.org/10.1021/cm500076v.[28] E. Puello-Polo, E. Marquez, J.L. Brito, One-pot synthesis of Nb-modified Al2O3 support for NiMo hydrodesulfurization catalysts, J. Sol. Gel Sci. Technol. 88 (2018) 90–99, https://doi.org/10.1007/s10971-018-4792-x.[29] H. Li, Q. Zhang, C.C.R. Yap, B.K. Tay, T.H.T. Edwin, A. Olivier, D. Baillargeat, From bulk to monolayer MoS2. Evolution of Raman scattering, Adv. Funct. Mater. 22 (2012) 1385–1390, https://doi.org/10.1002/adfm.201102111.[30] B. Fang, M. Yang, C. Zhang, J. Li, C. Li, J. Ni, X. Wang, J. Lin, B. Lin, L. Jiang, Molybdenum carbide phase effects in heterogeneous catalytic ammonia synthesis, Chem. Eng. Sci. 259 (2022), 117834, https://doi.org/10.1016/j.ces.2022.117834.[31] S. Upadhyay, O.P. Pandey, One-pot synthesis of pure phase molybdenum carbide (Mo2C and MoC) nanoparticles for hydrogen evolution reaction, Int. J. Hydrogen Energy 45 (2020) 27114–27128, https://doi.org/10.1016/j.ijhydene.2020.07.069.[32] M. Thommes, K. Kaneko, V. Neimark-Alexander, P. Olivier-James, F. RodriguezReinoso, J. Rouquerol, S.W. Sing-Kenneth, Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report), Pure Appl. Chem. 87 (2015) 1051–1069, https://doi.org/ 10.1515/pac-2014-1117.[33] E. Puello-Polo, M. Ayala-G, J.L. Brito, Sulfidability and thiophene hydrodesulfurization activity of supported NiMo carbides, Catal. Commun. 53 (2014) 9–14, https://doi.org/10.1016/j.catcom.2014.04.018.[34] T. Weber, J.C. Muijsers, J.H.M.C. van Wolput, C.P.J. Verhagen, J. W. Niemantsverdriet, Basic reaction steps in the sulfidation of crystalline MoO3 to MoS2, as studied by X-ray photoelectron and infrared emission spectroscopy, J. Phys. Chem. 100 (1996) 14144–14150, https://doi.org/10.1021/jp961204y.[35] D.C. Phillips, S.J. Sawhill, R. Self, M.E. Bussell, Synthesis, characterization, and hydrodesulfurization properties of silica-supported molybdenum phosphide catalysts, J. Catal. 207 (2002) 266–273, https://doi.org/10.1006/jcat.2002.3524.[36] S.J. Sawhill, K.A. Layman, D.R. Van Wyk, M.H. Engelhard, C. Wang, M.E. Bussell, Thiophene hydrodesulfurization over nickel phosphide catalysts: effect of the precursor composition and support, J. Catal. 231 (2005) 300–313, https://doi.org/ 10.1016/j.jcat.2005.01.020.[37] S. Biniak, G. Szymanski, ´ J. Siedlewski, A. Swi ´ ątkowski, The characterization of activated carbons with oxygen and nitrogen surface groups, Carbon 35 (1997) 1799–1810, https://doi.org/10.1016/S0008-6223(97)00096-1.[38] J. Zhang, C. Zhao, C. Li, S. Li, C.-W. Tsang, C. Liang, The role of oxophilic Mo species in Pt/MgO catalysts as extremely active sites for enhanced hydrodeoxygenation of dibenzofuran, Catal. Sci. Technol. 10 (2020) 2948–2960, https://doi.org/10.1039/D0CY00341G.[39] A.J. Medford, A. Vojvodic, J.S. Hummelshøj, J. Voss, F. Abild-Pedersen, F. Studt, T. Bligaard, A. Nilsson, J.K. Nørskov, From the Sabatier principle to a predictive theory of transition-metal heterogeneous catalysis, J. Catal. 328 (2015) 36–42, https://doi.org/10.1016/j.jcat.2014.12.033.[40] E. Puello-Polo, Y. Pajaro, ´ E. M´ arquez, Effect of the gallium and vanadium on the dibenzothiophene hydrodesulfurization and naphthalene hydrogenation activities using sulfided NiMo-V2O5/Al2O3-Ga2O3, Catalysts 10 (2020) 894, https://doi.org/ 10.3390/catal10080894.291Activated carbonFatty acidsMgO–Al2O3NiMo carbidic-sulphidicNiMo phosphidic-sulphidicPublicationORIGINALSupported NiMo carbidic (phosphidic)-sulphidic catalysts as interesting alternatives for hydrotreating of fatty acids to obtain renewable diesel.pdfSupported NiMo carbidic (phosphidic)-sulphidic catalysts as interesting alternatives for hydrotreating of fatty acids to obtain renewable diesel.pdfArtículoapplication/pdf6689293https://repositorio.cuc.edu.co/bitstreams/531f5185-a319-4ce0-9a76-3130f0707a5f/download2afdaa260100c497b6a381c6a2b7585aMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-814828https://repositorio.cuc.edu.co/bitstreams/1ced5cb0-9c51-41bc-842b-792acaa5db42/download2f9959eaf5b71fae44bbf9ec84150c7aMD52TEXTSupported NiMo carbidic (phosphidic)-sulphidic catalysts as interesting alternatives for hydrotreating of fatty acids to obtain renewable diesel.pdf.txtSupported NiMo carbidic (phosphidic)-sulphidic catalysts as interesting alternatives for hydrotreating of fatty acids to obtain renewable diesel.pdf.txtExtracted texttext/plain44591https://repositorio.cuc.edu.co/bitstreams/08bae7e5-30b7-4997-b7c5-1ba621aa0aca/downloadd99d8f4eae5f8602f129fa2eb7aea5c2MD53THUMBNAILSupported NiMo carbidic (phosphidic)-sulphidic catalysts as interesting alternatives for hydrotreating of fatty acids to obtain renewable diesel.pdf.jpgSupported NiMo carbidic (phosphidic)-sulphidic catalysts as interesting alternatives for hydrotreating of fatty acids to obtain renewable diesel.pdf.jpgGenerated Thumbnailimage/jpeg14323https://repositorio.cuc.edu.co/bitstreams/9890fcad-ce07-4605-bc78-d1896c28fd32/downloadea1ec234badf9f6598c32c582b19b792MD5411323/10790oai:repositorio.cuc.edu.co:11323/107902024-09-17 12:46:20.932https://creativecommons.org/licenses/by-nc-nd/4.0/© 2022 Elsevier B.V. All rights reserved.open.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coTEEgT0JSQSAoVEFMIFkgQ09NTyBTRSBERUZJTkUgTcOBUyBBREVMQU5URSkgU0UgT1RPUkdBIEJBSk8gTE9TIFRFUk1JTk9TIERFIEVTVEEgTElDRU5DSUEgUMOaQkxJQ0EgREUgQ1JFQVRJVkUgQ09NTU9OUyAo4oCcTFBDQ+KAnSBPIOKAnExJQ0VOQ0lB4oCdKS4gTEEgT0JSQSBFU1TDgSBQUk9URUdJREEgUE9SIERFUkVDSE9TIERFIEFVVE9SIFkvVSBPVFJBUyBMRVlFUyBBUExJQ0FCTEVTLiBRVUVEQSBQUk9ISUJJRE8gQ1VBTFFVSUVSIFVTTyBRVUUgU0UgSEFHQSBERSBMQSBPQlJBIFFVRSBOTyBDVUVOVEUgQ09OIExBIEFVVE9SSVpBQ0nDk04gUEVSVElORU5URSBERSBDT05GT1JNSURBRCBDT04gTE9TIFTDiVJNSU5PUyBERSBFU1RBIExJQ0VOQ0lBIFkgREUgTEEgTEVZIERFIERFUkVDSE8gREUgQVVUT1IuCgpNRURJQU5URSBFTCBFSkVSQ0lDSU8gREUgQ1VBTFFVSUVSQSBERSBMT1MgREVSRUNIT1MgUVVFIFNFIE9UT1JHQU4gRU4gRVNUQSBMSUNFTkNJQSwgVVNURUQgQUNFUFRBIFkgQUNVRVJEQSBRVUVEQVIgT0JMSUdBRE8gRU4gTE9TIFRFUk1JTk9TIFFVRSBTRSBTRcORQUxBTiBFTiBFTExBLiBFTCBMSUNFTkNJQU5URSBDT05DRURFIEEgVVNURUQgTE9TIERFUkVDSE9TIENPTlRFTklET1MgRU4gRVNUQSBMSUNFTkNJQSBDT05ESUNJT05BRE9TIEEgTEEgQUNFUFRBQ0nDk04gREUgU1VTIFRFUk1JTk9TIFkgQ09ORElDSU9ORVMuCjEuIERlZmluaWNpb25lcwoKYS4JT2JyYSBDb2xlY3RpdmEgZXMgdW5hIG9icmEsIHRhbCBjb21vIHVuYSBwdWJsaWNhY2nDs24gcGVyacOzZGljYSwgdW5hIGFudG9sb2fDrWEsIG8gdW5hIGVuY2ljbG9wZWRpYSwgZW4gbGEgcXVlIGxhIG9icmEgZW4gc3UgdG90YWxpZGFkLCBzaW4gbW9kaWZpY2FjacOzbiBhbGd1bmEsIGp1bnRvIGNvbiB1biBncnVwbyBkZSBvdHJhcyBjb250cmlidWNpb25lcyBxdWUgY29uc3RpdHV5ZW4gb2JyYXMgc2VwYXJhZGFzIGUgaW5kZXBlbmRpZW50ZXMgZW4gc8OtIG1pc21hcywgc2UgaW50ZWdyYW4gZW4gdW4gdG9kbyBjb2xlY3Rpdm8uIFVuYSBPYnJhIHF1ZSBjb25zdGl0dXllIHVuYSBvYnJhIGNvbGVjdGl2YSBubyBzZSBjb25zaWRlcmFyw6EgdW5hIE9icmEgRGVyaXZhZGEgKGNvbW8gc2UgZGVmaW5lIGFiYWpvKSBwYXJhIGxvcyBwcm9ww7NzaXRvcyBkZSBlc3RhIGxpY2VuY2lhLiBhcXVlbGxhIHByb2R1Y2lkYSBwb3IgdW4gZ3J1cG8gZGUgYXV0b3JlcywgZW4gcXVlIGxhIE9icmEgc2UgZW5jdWVudHJhIHNpbiBtb2RpZmljYWNpb25lcywganVudG8gY29uIHVuYSBjaWVydGEgY2FudGlkYWQgZGUgb3RyYXMgY29udHJpYnVjaW9uZXMsIHF1ZSBjb25zdGl0dXllbiBlbiBzw60gbWlzbW9zIHRyYWJham9zIHNlcGFyYWRvcyBlIGluZGVwZW5kaWVudGVzLCBxdWUgc29uIGludGVncmFkb3MgYWwgdG9kbyBjb2xlY3Rpdm8sIHRhbGVzIGNvbW8gcHVibGljYWNpb25lcyBwZXJpw7NkaWNhcywgYW50b2xvZ8OtYXMgbyBlbmNpY2xvcGVkaWFzLgoKYi4JT2JyYSBEZXJpdmFkYSBzaWduaWZpY2EgdW5hIG9icmEgYmFzYWRhIGVuIGxhIG9icmEgb2JqZXRvIGRlIGVzdGEgbGljZW5jaWEgbyBlbiDDqXN0YSB5IG90cmFzIG9icmFzIHByZWV4aXN0ZW50ZXMsIHRhbGVzIGNvbW8gdHJhZHVjY2lvbmVzLCBhcnJlZ2xvcyBtdXNpY2FsZXMsIGRyYW1hdGl6YWNpb25lcywg4oCcZmljY2lvbmFsaXphY2lvbmVz4oCdLCB2ZXJzaW9uZXMgcGFyYSBjaW5lLCDigJxncmFiYWNpb25lcyBkZSBzb25pZG/igJ0sIHJlcHJvZHVjY2lvbmVzIGRlIGFydGUsIHJlc8O6bWVuZXMsIGNvbmRlbnNhY2lvbmVzLCBvIGN1YWxxdWllciBvdHJhIGVuIGxhIHF1ZSBsYSBvYnJhIHB1ZWRhIHNlciB0cmFuc2Zvcm1hZGEsIGNhbWJpYWRhIG8gYWRhcHRhZGEsIGV4Y2VwdG8gYXF1ZWxsYXMgcXVlIGNvbnN0aXR1eWFuIHVuYSBvYnJhIGNvbGVjdGl2YSwgbGFzIHF1ZSBubyBzZXLDoW4gY29uc2lkZXJhZGFzIHVuYSBvYnJhIGRlcml2YWRhIHBhcmEgZWZlY3RvcyBkZSBlc3RhIGxpY2VuY2lhLiAoUGFyYSBldml0YXIgZHVkYXMsIGVuIGVsIGNhc28gZGUgcXVlIGxhIE9icmEgc2VhIHVuYSBjb21wb3NpY2nDs24gbXVzaWNhbCBvIHVuYSBncmFiYWNpw7NuIHNvbm9yYSwgcGFyYSBsb3MgZWZlY3RvcyBkZSBlc3RhIExpY2VuY2lhIGxhIHNpbmNyb25pemFjacOzbiB0ZW1wb3JhbCBkZSBsYSBPYnJhIGNvbiB1bmEgaW1hZ2VuIGVuIG1vdmltaWVudG8gc2UgY29uc2lkZXJhcsOhIHVuYSBPYnJhIERlcml2YWRhIHBhcmEgbG9zIGZpbmVzIGRlIGVzdGEgbGljZW5jaWEpLgoKYy4JTGljZW5jaWFudGUsIGVzIGVsIGluZGl2aWR1byBvIGxhIGVudGlkYWQgdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgZGUgYXV0b3IgcXVlIG9mcmVjZSBsYSBPYnJhIGVuIGNvbmZvcm1pZGFkIGNvbiBsYXMgY29uZGljaW9uZXMgZGUgZXN0YSBMaWNlbmNpYS4KCmQuCUF1dG9yIG9yaWdpbmFsLCBlcyBlbCBpbmRpdmlkdW8gcXVlIGNyZcOzIGxhIE9icmEuCgplLglPYnJhLCBlcyBhcXVlbGxhIG9icmEgc3VzY2VwdGlibGUgZGUgcHJvdGVjY2nDs24gcG9yIGVsIHLDqWdpbWVuIGRlIERlcmVjaG8gZGUgQXV0b3IgeSBxdWUgZXMgb2ZyZWNpZGEgZW4gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIGxpY2VuY2lhCgpmLglVc3RlZCwgZXMgZWwgaW5kaXZpZHVvIG8gbGEgZW50aWRhZCBxdWUgZWplcmNpdGEgbG9zIGRlcmVjaG9zIG90b3JnYWRvcyBhbCBhbXBhcm8gZGUgZXN0YSBMaWNlbmNpYSB5IHF1ZSBjb24gYW50ZXJpb3JpZGFkIG5vIGhhIHZpb2xhZG8gbGFzIGNvbmRpY2lvbmVzIGRlIGxhIG1pc21hIHJlc3BlY3RvIGEgbGEgT2JyYSwgbyBxdWUgaGF5YSBvYnRlbmlkbyBhdXRvcml6YWNpw7NuIGV4cHJlc2EgcG9yIHBhcnRlIGRlbCBMaWNlbmNpYW50ZSBwYXJhIGVqZXJjZXIgbG9zIGRlcmVjaG9zIGFsIGFtcGFybyBkZSBlc3RhIExpY2VuY2lhIHBlc2UgYSB1bmEgdmlvbGFjacOzbiBhbnRlcmlvci4KCjIuIERlcmVjaG9zIGRlIFVzb3MgSG9ucmFkb3MgeSBleGNlcGNpb25lcyBMZWdhbGVzLgpOYWRhIGVuIGVzdGEgTGljZW5jaWEgcG9kcsOhIHNlciBpbnRlcnByZXRhZG8gY29tbyB1bmEgZGlzbWludWNpw7NuLCBsaW1pdGFjacOzbiBvIHJlc3RyaWNjacOzbiBkZSBsb3MgZGVyZWNob3MgZGVyaXZhZG9zIGRlbCB1c28gaG9ucmFkbyB5IG90cmFzIGxpbWl0YWNpb25lcyBvIGV4Y2VwY2lvbmVzIGEgbG9zIGRlcmVjaG9zIGRlbCBhdXRvciBiYWpvIGVsIHLDqWdpbWVuIGxlZ2FsIHZpZ2VudGUgbyBkZXJpdmFkbyBkZSBjdWFscXVpZXIgb3RyYSBub3JtYSBxdWUgc2UgbGUgYXBsaXF1ZS4KCjMuIENvbmNlc2nDs24gZGUgbGEgTGljZW5jaWEuCkJham8gbG9zIHTDqXJtaW5vcyB5IGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIGVsIExpY2VuY2lhbnRlIG90b3JnYSBhIFVzdGVkIHVuYSBsaWNlbmNpYSBtdW5kaWFsLCBsaWJyZSBkZSByZWdhbMOtYXMsIG5vIGV4Y2x1c2l2YSB5IHBlcnBldHVhIChkdXJhbnRlIHRvZG8gZWwgcGVyw61vZG8gZGUgdmlnZW5jaWEgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yKSBwYXJhIGVqZXJjZXIgZXN0b3MgZGVyZWNob3Mgc29icmUgbGEgT2JyYSB0YWwgeSBjb21vIHNlIGluZGljYSBhIGNvbnRpbnVhY2nDs246CgphLglSZXByb2R1Y2lyIGxhIE9icmEsIGluY29ycG9yYXIgbGEgT2JyYSBlbiB1bmEgbyBtw6FzIE9icmFzIENvbGVjdGl2YXMsIHkgcmVwcm9kdWNpciBsYSBPYnJhIGluY29ycG9yYWRhIGVuIGxhcyBPYnJhcyBDb2xlY3RpdmFzLgoKYi4JRGlzdHJpYnVpciBjb3BpYXMgbyBmb25vZ3JhbWFzIGRlIGxhcyBPYnJhcywgZXhoaWJpcmxhcyBww7pibGljYW1lbnRlLCBlamVjdXRhcmxhcyBww7pibGljYW1lbnRlIHkvbyBwb25lcmxhcyBhIGRpc3Bvc2ljacOzbiBww7pibGljYSwgaW5jbHV5w6luZG9sYXMgY29tbyBpbmNvcnBvcmFkYXMgZW4gT2JyYXMgQ29sZWN0aXZhcywgc2Vnw7puIGNvcnJlc3BvbmRhLgoKYy4JRGlzdHJpYnVpciBjb3BpYXMgZGUgbGFzIE9icmFzIERlcml2YWRhcyBxdWUgc2UgZ2VuZXJlbiwgZXhoaWJpcmxhcyBww7pibGljYW1lbnRlLCBlamVjdXRhcmxhcyBww7pibGljYW1lbnRlIHkvbyBwb25lcmxhcyBhIGRpc3Bvc2ljacOzbiBww7pibGljYS4KTG9zIGRlcmVjaG9zIG1lbmNpb25hZG9zIGFudGVyaW9ybWVudGUgcHVlZGVuIHNlciBlamVyY2lkb3MgZW4gdG9kb3MgbG9zIG1lZGlvcyB5IGZvcm1hdG9zLCBhY3R1YWxtZW50ZSBjb25vY2lkb3MgbyBxdWUgc2UgaW52ZW50ZW4gZW4gZWwgZnV0dXJvLiBMb3MgZGVyZWNob3MgYW50ZXMgbWVuY2lvbmFkb3MgaW5jbHV5ZW4gZWwgZGVyZWNobyBhIHJlYWxpemFyIGRpY2hhcyBtb2RpZmljYWNpb25lcyBlbiBsYSBtZWRpZGEgcXVlIHNlYW4gdMOpY25pY2FtZW50ZSBuZWNlc2FyaWFzIHBhcmEgZWplcmNlciBsb3MgZGVyZWNob3MgZW4gb3RybyBtZWRpbyBvIGZvcm1hdG9zLCBwZXJvIGRlIG90cmEgbWFuZXJhIHVzdGVkIG5vIGVzdMOhIGF1dG9yaXphZG8gcGFyYSByZWFsaXphciBvYnJhcyBkZXJpdmFkYXMuIFRvZG9zIGxvcyBkZXJlY2hvcyBubyBvdG9yZ2Fkb3MgZXhwcmVzYW1lbnRlIHBvciBlbCBMaWNlbmNpYW50ZSBxdWVkYW4gcG9yIGVzdGUgbWVkaW8gcmVzZXJ2YWRvcywgaW5jbHV5ZW5kbyBwZXJvIHNpbiBsaW1pdGFyc2UgYSBhcXVlbGxvcyBxdWUgc2UgbWVuY2lvbmFuIGVuIGxhcyBzZWNjaW9uZXMgNChkKSB5IDQoZSkuCgo0LiBSZXN0cmljY2lvbmVzLgpMYSBsaWNlbmNpYSBvdG9yZ2FkYSBlbiBsYSBhbnRlcmlvciBTZWNjacOzbiAzIGVzdMOhIGV4cHJlc2FtZW50ZSBzdWpldGEgeSBsaW1pdGFkYSBwb3IgbGFzIHNpZ3VpZW50ZXMgcmVzdHJpY2Npb25lczoKCmEuCVVzdGVkIHB1ZWRlIGRpc3RyaWJ1aXIsIGV4aGliaXIgcMO6YmxpY2FtZW50ZSwgZWplY3V0YXIgcMO6YmxpY2FtZW50ZSwgbyBwb25lciBhIGRpc3Bvc2ljacOzbiBww7pibGljYSBsYSBPYnJhIHPDs2xvIGJham8gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIHkgVXN0ZWQgZGViZSBpbmNsdWlyIHVuYSBjb3BpYSBkZSBlc3RhIGxpY2VuY2lhIG8gZGVsIElkZW50aWZpY2Fkb3IgVW5pdmVyc2FsIGRlIFJlY3Vyc29zIGRlIGxhIG1pc21hIGNvbiBjYWRhIGNvcGlhIGRlIGxhIE9icmEgcXVlIGRpc3RyaWJ1eWEsIGV4aGliYSBww7pibGljYW1lbnRlLCBlamVjdXRlIHDDumJsaWNhbWVudGUgbyBwb25nYSBhIGRpc3Bvc2ljacOzbiBww7pibGljYS4gTm8gZXMgcG9zaWJsZSBvZnJlY2VyIG8gaW1wb25lciBuaW5ndW5hIGNvbmRpY2nDs24gc29icmUgbGEgT2JyYSBxdWUgYWx0ZXJlIG8gbGltaXRlIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhIG8gZWwgZWplcmNpY2lvIGRlIGxvcyBkZXJlY2hvcyBkZSBsb3MgZGVzdGluYXRhcmlvcyBvdG9yZ2Fkb3MgZW4gZXN0ZSBkb2N1bWVudG8uIE5vIGVzIHBvc2libGUgc3VibGljZW5jaWFyIGxhIE9icmEuIFVzdGVkIGRlYmUgbWFudGVuZXIgaW50YWN0b3MgdG9kb3MgbG9zIGF2aXNvcyBxdWUgaGFnYW4gcmVmZXJlbmNpYSBhIGVzdGEgTGljZW5jaWEgeSBhIGxhIGNsw6F1c3VsYSBkZSBsaW1pdGFjacOzbiBkZSBnYXJhbnTDrWFzLiBVc3RlZCBubyBwdWVkZSBkaXN0cmlidWlyLCBleGhpYmlyIHDDumJsaWNhbWVudGUsIGVqZWN1dGFyIHDDumJsaWNhbWVudGUsIG8gcG9uZXIgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBjb24gYWxndW5hIG1lZGlkYSB0ZWNub2zDs2dpY2EgcXVlIGNvbnRyb2xlIGVsIGFjY2VzbyBvIGxhIHV0aWxpemFjacOzbiBkZSBlbGxhIGRlIHVuYSBmb3JtYSBxdWUgc2VhIGluY29uc2lzdGVudGUgY29uIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLiBMbyBhbnRlcmlvciBzZSBhcGxpY2EgYSBsYSBPYnJhIGluY29ycG9yYWRhIGEgdW5hIE9icmEgQ29sZWN0aXZhLCBwZXJvIGVzdG8gbm8gZXhpZ2UgcXVlIGxhIE9icmEgQ29sZWN0aXZhIGFwYXJ0ZSBkZSBsYSBvYnJhIG1pc21hIHF1ZWRlIHN1amV0YSBhIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLiBTaSBVc3RlZCBjcmVhIHVuYSBPYnJhIENvbGVjdGl2YSwgcHJldmlvIGF2aXNvIGRlIGN1YWxxdWllciBMaWNlbmNpYW50ZSBkZWJlLCBlbiBsYSBtZWRpZGEgZGUgbG8gcG9zaWJsZSwgZWxpbWluYXIgZGUgbGEgT2JyYSBDb2xlY3RpdmEgY3VhbHF1aWVyIHJlZmVyZW5jaWEgYSBkaWNobyBMaWNlbmNpYW50ZSBvIGFsIEF1dG9yIE9yaWdpbmFsLCBzZWfDum4gbG8gc29saWNpdGFkbyBwb3IgZWwgTGljZW5jaWFudGUgeSBjb25mb3JtZSBsbyBleGlnZSBsYSBjbMOhdXN1bGEgNChjKS4KCmIuCVVzdGVkIG5vIHB1ZWRlIGVqZXJjZXIgbmluZ3VubyBkZSBsb3MgZGVyZWNob3MgcXVlIGxlIGhhbiBzaWRvIG90b3JnYWRvcyBlbiBsYSBTZWNjacOzbiAzIHByZWNlZGVudGUgZGUgbW9kbyBxdWUgZXN0w6luIHByaW5jaXBhbG1lbnRlIGRlc3RpbmFkb3MgbyBkaXJlY3RhbWVudGUgZGlyaWdpZG9zIGEgY29uc2VndWlyIHVuIHByb3ZlY2hvIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLiBFbCBpbnRlcmNhbWJpbyBkZSBsYSBPYnJhIHBvciBvdHJhcyBvYnJhcyBwcm90ZWdpZGFzIHBvciBkZXJlY2hvcyBkZSBhdXRvciwgeWEgc2VhIGEgdHJhdsOpcyBkZSB1biBzaXN0ZW1hIHBhcmEgY29tcGFydGlyIGFyY2hpdm9zIGRpZ2l0YWxlcyAoZGlnaXRhbCBmaWxlLXNoYXJpbmcpIG8gZGUgY3VhbHF1aWVyIG90cmEgbWFuZXJhIG5vIHNlcsOhIGNvbnNpZGVyYWRvIGNvbW8gZXN0YXIgZGVzdGluYWRvIHByaW5jaXBhbG1lbnRlIG8gZGlyaWdpZG8gZGlyZWN0YW1lbnRlIGEgY29uc2VndWlyIHVuIHByb3ZlY2hvIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLCBzaWVtcHJlIHF1ZSBubyBzZSByZWFsaWNlIHVuIHBhZ28gbWVkaWFudGUgdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIGVuIHJlbGFjacOzbiBjb24gZWwgaW50ZXJjYW1iaW8gZGUgb2JyYXMgcHJvdGVnaWRhcyBwb3IgZWwgZGVyZWNobyBkZSBhdXRvci4KCmMuCVNpIHVzdGVkIGRpc3RyaWJ1eWUsIGV4aGliZSBww7pibGljYW1lbnRlLCBlamVjdXRhIHDDumJsaWNhbWVudGUgbyBlamVjdXRhIHDDumJsaWNhbWVudGUgZW4gZm9ybWEgZGlnaXRhbCBsYSBPYnJhIG8gY3VhbHF1aWVyIE9icmEgRGVyaXZhZGEgdSBPYnJhIENvbGVjdGl2YSwgVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RhIHRvZGEgbGEgaW5mb3JtYWNpw7NuIGRlIGRlcmVjaG8gZGUgYXV0b3IgZGUgbGEgT2JyYSB5IHByb3BvcmNpb25hciwgZGUgZm9ybWEgcmF6b25hYmxlIHNlZ8O6biBlbCBtZWRpbyBvIG1hbmVyYSBxdWUgVXN0ZWQgZXN0w6kgdXRpbGl6YW5kbzogKGkpIGVsIG5vbWJyZSBkZWwgQXV0b3IgT3JpZ2luYWwgc2kgZXN0w6EgcHJvdmlzdG8gKG8gc2V1ZMOzbmltbywgc2kgZnVlcmUgYXBsaWNhYmxlKSwgeS9vIChpaSkgZWwgbm9tYnJlIGRlIGxhIHBhcnRlIG8gbGFzIHBhcnRlcyBxdWUgZWwgQXV0b3IgT3JpZ2luYWwgeS9vIGVsIExpY2VuY2lhbnRlIGh1YmllcmVuIGRlc2lnbmFkbyBwYXJhIGxhIGF0cmlidWNpw7NuICh2LmcuLCB1biBpbnN0aXR1dG8gcGF0cm9jaW5hZG9yLCBlZGl0b3JpYWwsIHB1YmxpY2FjacOzbikgZW4gbGEgaW5mb3JtYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZWwgTGljZW5jaWFudGUsIHTDqXJtaW5vcyBkZSBzZXJ2aWNpb3MgbyBkZSBvdHJhcyBmb3JtYXMgcmF6b25hYmxlczsgZWwgdMOtdHVsbyBkZSBsYSBPYnJhIHNpIGVzdMOhIHByb3Zpc3RvOyBlbiBsYSBtZWRpZGEgZGUgbG8gcmF6b25hYmxlbWVudGUgZmFjdGlibGUgeSwgc2kgZXN0w6EgcHJvdmlzdG8sIGVsIElkZW50aWZpY2Fkb3IgVW5pZm9ybWUgZGUgUmVjdXJzb3MgKFVuaWZvcm0gUmVzb3VyY2UgSWRlbnRpZmllcikgcXVlIGVsIExpY2VuY2lhbnRlIGVzcGVjaWZpY2EgcGFyYSBzZXIgYXNvY2lhZG8gY29uIGxhIE9icmEsIHNhbHZvIHF1ZSB0YWwgVVJJIG5vIHNlIHJlZmllcmEgYSBsYSBub3RhIHNvYnJlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBvIGEgbGEgaW5mb3JtYWNpw7NuIHNvYnJlIGVsIGxpY2VuY2lhbWllbnRvIGRlIGxhIE9icmE7IHkgZW4gZWwgY2FzbyBkZSB1bmEgT2JyYSBEZXJpdmFkYSwgYXRyaWJ1aXIgZWwgY3LDqWRpdG8gaWRlbnRpZmljYW5kbyBlbCB1c28gZGUgbGEgT2JyYSBlbiBsYSBPYnJhIERlcml2YWRhICh2LmcuLCAiVHJhZHVjY2nDs24gRnJhbmNlc2EgZGUgbGEgT2JyYSBkZWwgQXV0b3IgT3JpZ2luYWwsIiBvICJHdWnDs24gQ2luZW1hdG9ncsOhZmljbyBiYXNhZG8gZW4gbGEgT2JyYSBvcmlnaW5hbCBkZWwgQXV0b3IgT3JpZ2luYWwiKS4gVGFsIGNyw6lkaXRvIHB1ZWRlIHNlciBpbXBsZW1lbnRhZG8gZGUgY3VhbHF1aWVyIGZvcm1hIHJhem9uYWJsZTsgZW4gZWwgY2Fzbywgc2luIGVtYmFyZ28sIGRlIE9icmFzIERlcml2YWRhcyB1IE9icmFzIENvbGVjdGl2YXMsIHRhbCBjcsOpZGl0byBhcGFyZWNlcsOhLCBjb21vIG3DrW5pbW8sIGRvbmRlIGFwYXJlY2UgZWwgY3LDqWRpdG8gZGUgY3VhbHF1aWVyIG90cm8gYXV0b3IgY29tcGFyYWJsZSB5IGRlIHVuYSBtYW5lcmEsIGFsIG1lbm9zLCB0YW4gZGVzdGFjYWRhIGNvbW8gZWwgY3LDqWRpdG8gZGUgb3RybyBhdXRvciBjb21wYXJhYmxlLgoKZC4JUGFyYSBldml0YXIgdG9kYSBjb25mdXNpw7NuLCBlbCBMaWNlbmNpYW50ZSBhY2xhcmEgcXVlLCBjdWFuZG8gbGEgb2JyYSBlcyB1bmEgY29tcG9zaWNpw7NuIG11c2ljYWw6CgppLglSZWdhbMOtYXMgcG9yIGludGVycHJldGFjacOzbiB5IGVqZWN1Y2nDs24gYmFqbyBsaWNlbmNpYXMgZ2VuZXJhbGVzLiBFbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gZXhjbHVzaXZvIGRlIGF1dG9yaXphciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIG8gbGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGRlIGxhIG9icmEgeSBkZSByZWNvbGVjdGFyLCBzZWEgaW5kaXZpZHVhbG1lbnRlIG8gYSB0cmF2w6lzIGRlIHVuYSBzb2NpZWRhZCBkZSBnZXN0acOzbiBjb2xlY3RpdmEgZGUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIChwb3IgZWplbXBsbywgU0FZQ08pLCBsYXMgcmVnYWzDrWFzIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIG8gcG9yIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIChwb3IgZWplbXBsbyBXZWJjYXN0KSBsaWNlbmNpYWRhIGJham8gbGljZW5jaWFzIGdlbmVyYWxlcywgc2kgbGEgaW50ZXJwcmV0YWNpw7NuIG8gZWplY3VjacOzbiBkZSBsYSBvYnJhIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBvcmllbnRhZGEgcG9yIG8gZGlyaWdpZGEgYSBsYSBvYnRlbmNpw7NuIGRlIHVuYSB2ZW50YWphIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLgoKaWkuCVJlZ2Fsw61hcyBwb3IgRm9ub2dyYW1hcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSByZWNvbGVjdGFyLCBpbmRpdmlkdWFsbWVudGUgbyBhIHRyYXbDqXMgZGUgdW5hIHNvY2llZGFkIGRlIGdlc3Rpw7NuIGNvbGVjdGl2YSBkZSBkZXJlY2hvcyBkZSBhdXRvciB5IGRlcmVjaG9zIGNvbmV4b3MgKHBvciBlamVtcGxvLCBsb3MgY29uc2FncmFkb3MgcG9yIGxhIFNBWUNPKSwgdW5hIGFnZW5jaWEgZGUgZGVyZWNob3MgbXVzaWNhbGVzIG8gYWxnw7puIGFnZW50ZSBkZXNpZ25hZG8sIGxhcyByZWdhbMOtYXMgcG9yIGN1YWxxdWllciBmb25vZ3JhbWEgcXVlIFVzdGVkIGNyZWUgYSBwYXJ0aXIgZGUgbGEgb2JyYSAo4oCcdmVyc2nDs24gY292ZXLigJ0pIHkgZGlzdHJpYnV5YSwgZW4gbG9zIHTDqXJtaW5vcyBkZWwgcsOpZ2ltZW4gZGUgZGVyZWNob3MgZGUgYXV0b3IsIHNpIGxhIGNyZWFjacOzbiBvIGRpc3RyaWJ1Y2nDs24gZGUgZXNhIHZlcnNpw7NuIGNvdmVyIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkZXN0aW5hZGEgbyBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuCgplLglHZXN0acOzbiBkZSBEZXJlY2hvcyBkZSBBdXRvciBzb2JyZSBJbnRlcnByZXRhY2lvbmVzIHkgRWplY3VjaW9uZXMgRGlnaXRhbGVzIChXZWJDYXN0aW5nKS4gUGFyYSBldml0YXIgdG9kYSBjb25mdXNpw7NuLCBlbCBMaWNlbmNpYW50ZSBhY2xhcmEgcXVlLCBjdWFuZG8gbGEgb2JyYSBzZWEgdW4gZm9ub2dyYW1hLCBlbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gZXhjbHVzaXZvIGRlIGF1dG9yaXphciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8sIHdlYmNhc3QpIHkgZGUgcmVjb2xlY3RhciwgaW5kaXZpZHVhbG1lbnRlIG8gYSB0cmF2w6lzIGRlIHVuYSBzb2NpZWRhZCBkZSBnZXN0acOzbiBjb2xlY3RpdmEgZGUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIChwb3IgZWplbXBsbywgQUNJTlBSTyksIGxhcyByZWdhbMOtYXMgcG9yIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIChwb3IgZWplbXBsbywgd2ViY2FzdCksIHN1amV0YSBhIGxhcyBkaXNwb3NpY2lvbmVzIGFwbGljYWJsZXMgZGVsIHLDqWdpbWVuIGRlIERlcmVjaG8gZGUgQXV0b3IsIHNpIGVzdGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuCgo1LiBSZXByZXNlbnRhY2lvbmVzLCBHYXJhbnTDrWFzIHkgTGltaXRhY2lvbmVzIGRlIFJlc3BvbnNhYmlsaWRhZC4KQSBNRU5PUyBRVUUgTEFTIFBBUlRFUyBMTyBBQ09SREFSQU4gREUgT1RSQSBGT1JNQSBQT1IgRVNDUklUTywgRUwgTElDRU5DSUFOVEUgT0ZSRUNFIExBIE9CUkEgKEVOIEVMIEVTVEFETyBFTiBFTCBRVUUgU0UgRU5DVUVOVFJBKSDigJxUQUwgQ1VBTOKAnSwgU0lOIEJSSU5EQVIgR0FSQU5Uw41BUyBERSBDTEFTRSBBTEdVTkEgUkVTUEVDVE8gREUgTEEgT0JSQSwgWUEgU0VBIEVYUFJFU0EsIElNUEzDjUNJVEEsIExFR0FMIE8gQ1VBTFFVSUVSQSBPVFJBLCBJTkNMVVlFTkRPLCBTSU4gTElNSVRBUlNFIEEgRUxMQVMsIEdBUkFOVMONQVMgREUgVElUVUxBUklEQUQsIENPTUVSQ0lBQklMSURBRCwgQURBUFRBQklMSURBRCBPIEFERUNVQUNJw5NOIEEgUFJPUMOTU0lUTyBERVRFUk1JTkFETywgQVVTRU5DSUEgREUgSU5GUkFDQ0nDk04sIERFIEFVU0VOQ0lBIERFIERFRkVDVE9TIExBVEVOVEVTIE8gREUgT1RSTyBUSVBPLCBPIExBIFBSRVNFTkNJQSBPIEFVU0VOQ0lBIERFIEVSUk9SRVMsIFNFQU4gTyBOTyBERVNDVUJSSUJMRVMgKFBVRURBTiBPIE5PIFNFUiBFU1RPUyBERVNDVUJJRVJUT1MpLiBBTEdVTkFTIEpVUklTRElDQ0lPTkVTIE5PIFBFUk1JVEVOIExBIEVYQ0xVU0nDk04gREUgR0FSQU5Uw41BUyBJTVBMw41DSVRBUywgRU4gQ1VZTyBDQVNPIEVTVEEgRVhDTFVTScOTTiBQVUVERSBOTyBBUExJQ0FSU0UgQSBVU1RFRC4KCjYuIExpbWl0YWNpw7NuIGRlIHJlc3BvbnNhYmlsaWRhZC4KQSBNRU5PUyBRVUUgTE8gRVhJSkEgRVhQUkVTQU1FTlRFIExBIExFWSBBUExJQ0FCTEUsIEVMIExJQ0VOQ0lBTlRFIE5PIFNFUsOBIFJFU1BPTlNBQkxFIEFOVEUgVVNURUQgUE9SIERBw5FPIEFMR1VOTywgU0VBIFBPUiBSRVNQT05TQUJJTElEQUQgRVhUUkFDT05UUkFDVFVBTCwgUFJFQ09OVFJBQ1RVQUwgTyBDT05UUkFDVFVBTCwgT0JKRVRJVkEgTyBTVUJKRVRJVkEsIFNFIFRSQVRFIERFIERBw5FPUyBNT1JBTEVTIE8gUEFUUklNT05JQUxFUywgRElSRUNUT1MgTyBJTkRJUkVDVE9TLCBQUkVWSVNUT1MgTyBJTVBSRVZJU1RPUyBQUk9EVUNJRE9TIFBPUiBFTCBVU08gREUgRVNUQSBMSUNFTkNJQSBPIERFIExBIE9CUkEsIEFVTiBDVUFORE8gRUwgTElDRU5DSUFOVEUgSEFZQSBTSURPIEFEVkVSVElETyBERSBMQSBQT1NJQklMSURBRCBERSBESUNIT1MgREHDkU9TLiBBTEdVTkFTIExFWUVTIE5PIFBFUk1JVEVOIExBIEVYQ0xVU0nDk04gREUgQ0lFUlRBIFJFU1BPTlNBQklMSURBRCwgRU4gQ1VZTyBDQVNPIEVTVEEgRVhDTFVTScOTTiBQVUVERSBOTyBBUExJQ0FSU0UgQSBVU1RFRC4KCjcuIFTDqXJtaW5vLgoKYS4JRXN0YSBMaWNlbmNpYSB5IGxvcyBkZXJlY2hvcyBvdG9yZ2Fkb3MgZW4gdmlydHVkIGRlIGVsbGEgdGVybWluYXLDoW4gYXV0b23DoXRpY2FtZW50ZSBzaSBVc3RlZCBpbmZyaW5nZSBhbGd1bmEgY29uZGljacOzbiBlc3RhYmxlY2lkYSBlbiBlbGxhLiBTaW4gZW1iYXJnbywgbG9zIGluZGl2aWR1b3MgbyBlbnRpZGFkZXMgcXVlIGhhbiByZWNpYmlkbyBPYnJhcyBEZXJpdmFkYXMgbyBDb2xlY3RpdmFzIGRlIFVzdGVkIGRlIGNvbmZvcm1pZGFkIGNvbiBlc3RhIExpY2VuY2lhLCBubyB2ZXLDoW4gdGVybWluYWRhcyBzdXMgbGljZW5jaWFzLCBzaWVtcHJlIHF1ZSBlc3RvcyBpbmRpdmlkdW9zIG8gZW50aWRhZGVzIHNpZ2FuIGN1bXBsaWVuZG8gw61udGVncmFtZW50ZSBsYXMgY29uZGljaW9uZXMgZGUgZXN0YXMgbGljZW5jaWFzLiBMYXMgU2VjY2lvbmVzIDEsIDIsIDUsIDYsIDcsIHkgOCBzdWJzaXN0aXLDoW4gYSBjdWFscXVpZXIgdGVybWluYWNpw7NuIGRlIGVzdGEgTGljZW5jaWEuCgpiLglTdWpldGEgYSBsYXMgY29uZGljaW9uZXMgeSB0w6lybWlub3MgYW50ZXJpb3JlcywgbGEgbGljZW5jaWEgb3RvcmdhZGEgYXF1w60gZXMgcGVycGV0dWEgKGR1cmFudGUgZWwgcGVyw61vZG8gZGUgdmlnZW5jaWEgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGRlIGxhIG9icmEpLiBObyBvYnN0YW50ZSBsbyBhbnRlcmlvciwgZWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGEgcHVibGljYXIgeS9vIGVzdHJlbmFyIGxhIE9icmEgYmFqbyBjb25kaWNpb25lcyBkZSBsaWNlbmNpYSBkaWZlcmVudGVzIG8gYSBkZWphciBkZSBkaXN0cmlidWlybGEgZW4gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIExpY2VuY2lhIGVuIGN1YWxxdWllciBtb21lbnRvOyBlbiBlbCBlbnRlbmRpZG8sIHNpbiBlbWJhcmdvLCBxdWUgZXNhIGVsZWNjacOzbiBubyBzZXJ2aXLDoSBwYXJhIHJldm9jYXIgZXN0YSBsaWNlbmNpYSBvIHF1ZSBkZWJhIHNlciBvdG9yZ2FkYSAsIGJham8gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIGxpY2VuY2lhKSwgeSBlc3RhIGxpY2VuY2lhIGNvbnRpbnVhcsOhIGVuIHBsZW5vIHZpZ29yIHkgZWZlY3RvIGEgbWVub3MgcXVlIHNlYSB0ZXJtaW5hZGEgY29tbyBzZSBleHByZXNhIGF0csOhcy4gTGEgTGljZW5jaWEgcmV2b2NhZGEgY29udGludWFyw6Egc2llbmRvIHBsZW5hbWVudGUgdmlnZW50ZSB5IGVmZWN0aXZhIHNpIG5vIHNlIGxlIGRhIHTDqXJtaW5vIGVuIGxhcyBjb25kaWNpb25lcyBpbmRpY2FkYXMgYW50ZXJpb3JtZW50ZS4KCjguIFZhcmlvcy4KCmEuCUNhZGEgdmV6IHF1ZSBVc3RlZCBkaXN0cmlidXlhIG8gcG9uZ2EgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBvIHVuYSBPYnJhIENvbGVjdGl2YSwgZWwgTGljZW5jaWFudGUgb2ZyZWNlcsOhIGFsIGRlc3RpbmF0YXJpbyB1bmEgbGljZW5jaWEgZW4gbG9zIG1pc21vcyB0w6lybWlub3MgeSBjb25kaWNpb25lcyBxdWUgbGEgbGljZW5jaWEgb3RvcmdhZGEgYSBVc3RlZCBiYWpvIGVzdGEgTGljZW5jaWEuCgpiLglTaSBhbGd1bmEgZGlzcG9zaWNpw7NuIGRlIGVzdGEgTGljZW5jaWEgcmVzdWx0YSBpbnZhbGlkYWRhIG8gbm8gZXhpZ2libGUsIHNlZ8O6biBsYSBsZWdpc2xhY2nDs24gdmlnZW50ZSwgZXN0byBubyBhZmVjdGFyw6EgbmkgbGEgdmFsaWRleiBuaSBsYSBhcGxpY2FiaWxpZGFkIGRlbCByZXN0byBkZSBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhIHksIHNpbiBhY2Npw7NuIGFkaWNpb25hbCBwb3IgcGFydGUgZGUgbG9zIHN1amV0b3MgZGUgZXN0ZSBhY3VlcmRvLCBhcXXDqWxsYSBzZSBlbnRlbmRlcsOhIHJlZm9ybWFkYSBsbyBtw61uaW1vIG5lY2VzYXJpbyBwYXJhIGhhY2VyIHF1ZSBkaWNoYSBkaXNwb3NpY2nDs24gc2VhIHbDoWxpZGEgeSBleGlnaWJsZS4KCmMuCU5pbmfDum4gdMOpcm1pbm8gbyBkaXNwb3NpY2nDs24gZGUgZXN0YSBMaWNlbmNpYSBzZSBlc3RpbWFyw6EgcmVudW5jaWFkYSB5IG5pbmd1bmEgdmlvbGFjacOzbiBkZSBlbGxhIHNlcsOhIGNvbnNlbnRpZGEgYSBtZW5vcyBxdWUgZXNhIHJlbnVuY2lhIG8gY29uc2VudGltaWVudG8gc2VhIG90b3JnYWRvIHBvciBlc2NyaXRvIHkgZmlybWFkbyBwb3IgbGEgcGFydGUgcXVlIHJlbnVuY2llIG8gY29uc2llbnRhLgoKZC4JRXN0YSBMaWNlbmNpYSByZWZsZWphIGVsIGFjdWVyZG8gcGxlbm8gZW50cmUgbGFzIHBhcnRlcyByZXNwZWN0byBhIGxhIE9icmEgYXF1w60gbGljZW5jaWFkYS4gTm8gaGF5IGFycmVnbG9zLCBhY3VlcmRvcyBvIGRlY2xhcmFjaW9uZXMgcmVzcGVjdG8gYSBsYSBPYnJhIHF1ZSBubyBlc3TDqW4gZXNwZWNpZmljYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gRWwgTGljZW5jaWFudGUgbm8gc2UgdmVyw6EgbGltaXRhZG8gcG9yIG5pbmd1bmEgZGlzcG9zaWNpw7NuIGFkaWNpb25hbCBxdWUgcHVlZGEgc3VyZ2lyIGVuIGFsZ3VuYSBjb211bmljYWNpw7NuIGVtYW5hZGEgZGUgVXN0ZWQuIEVzdGEgTGljZW5jaWEgbm8gcHVlZGUgc2VyIG1vZGlmaWNhZGEgc2luIGVsIGNvbnNlbnRpbWllbnRvIG11dHVvIHBvciBlc2NyaXRvIGRlbCBMaWNlbmNpYW50ZSB5IFVzdGVkLgo=