Effective demagnetizing tensors in arrays of magnetic nanopillars
A model describing the effect of magnetic dipolar interactions on the susceptibility of magnetic nanopillars is presented. It is an extension of a recently reported model for three-dimensional randomlike dispersions of nearly spherical nanoparticles in equilibrium [Sánchez et al., Phys. Rev. B 95, 1...
- Autores:
-
Mendoza Zelis, P
Vega, Víctor V
Prida, V M
Costa Arzuza, Luis Carlos
Beron, Fanny
Pirota, Kleber Roberto
Lopez Ruiz, Roman
Sanchez, Francisco Homero
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2017
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/1161
- Acceso en línea:
- https://hdl.handle.net/11323/1161
https://repositorio.cuc.edu.co/
- Palabra clave:
- Magnetism
Nanoparticles
Nanopillars
Dipolar Interactions
Demagnetizing Factors
- Rights
- openAccess
- License
- Atribución – No comercial – Compartir igual
id |
RCUC2_78d2185e1eced421907b42cfe0d83162 |
---|---|
oai_identifier_str |
oai:repositorio.cuc.edu.co:11323/1161 |
network_acronym_str |
RCUC2 |
network_name_str |
REDICUC - Repositorio CUC |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Effective demagnetizing tensors in arrays of magnetic nanopillars |
title |
Effective demagnetizing tensors in arrays of magnetic nanopillars |
spellingShingle |
Effective demagnetizing tensors in arrays of magnetic nanopillars Magnetism Nanoparticles Nanopillars Dipolar Interactions Demagnetizing Factors |
title_short |
Effective demagnetizing tensors in arrays of magnetic nanopillars |
title_full |
Effective demagnetizing tensors in arrays of magnetic nanopillars |
title_fullStr |
Effective demagnetizing tensors in arrays of magnetic nanopillars |
title_full_unstemmed |
Effective demagnetizing tensors in arrays of magnetic nanopillars |
title_sort |
Effective demagnetizing tensors in arrays of magnetic nanopillars |
dc.creator.fl_str_mv |
Mendoza Zelis, P Vega, Víctor V Prida, V M Costa Arzuza, Luis Carlos Beron, Fanny Pirota, Kleber Roberto Lopez Ruiz, Roman Sanchez, Francisco Homero |
dc.contributor.author.spa.fl_str_mv |
Mendoza Zelis, P Vega, Víctor V Prida, V M Costa Arzuza, Luis Carlos Beron, Fanny Pirota, Kleber Roberto Lopez Ruiz, Roman Sanchez, Francisco Homero |
dc.subject.eng.fl_str_mv |
Magnetism Nanoparticles Nanopillars Dipolar Interactions Demagnetizing Factors |
topic |
Magnetism Nanoparticles Nanopillars Dipolar Interactions Demagnetizing Factors |
description |
A model describing the effect of magnetic dipolar interactions on the susceptibility of magnetic nanopillars is presented. It is an extension of a recently reported model for three-dimensional randomlike dispersions of nearly spherical nanoparticles in equilibrium [Sánchez et al., Phys. Rev. B 95, 134421 (2017)], to well-ordered arrays of nanoparticles out of equilibrium. To test it, a high-quality benchmark consisting of a two-dimensional hexagonal arrangement of quasi-identical parallel nickel nanopillars embedded in a porous alumina template was fabricated. This model is based on an effective demagnetizing tensor, which only depends on a few morphological parameters of the sample, as the nearest-neighbor distance between pillars and the volume fraction of pillars in the specimen. It allows us to obtain the nanopillar intrinsic susceptibility tensor from the magnetic response of the nanopillar ensemble. The values of the in-plane and normal-to-plane susceptibility of the sample are successfully predicted by the model. Furthermore, the model reproduces the susceptibility in the applied field direction, measured for different applied field angles. In this way, it provides a simple and accurate treatment to account for the complex magnetic effects produced by dipolar interactions. |
publishDate |
2017 |
dc.date.issued.none.fl_str_mv |
2017-11-21 |
dc.date.accessioned.none.fl_str_mv |
2018-11-16T21:02:49Z |
dc.date.available.none.fl_str_mv |
2018-11-16T21:02:49Z |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
acceptedVersion |
dc.identifier.issn.spa.fl_str_mv |
2469-9950 |
dc.identifier.uri.spa.fl_str_mv |
https://hdl.handle.net/11323/1161 |
dc.identifier.instname.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.identifier.reponame.spa.fl_str_mv |
REDICUC - Repositorio CUC |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.cuc.edu.co/ |
identifier_str_mv |
2469-9950 Corporación Universidad de la Costa REDICUC - Repositorio CUC |
url |
https://hdl.handle.net/11323/1161 https://repositorio.cuc.edu.co/ |
dc.relation.references.spa.fl_str_mv |
1 J.L. Dormann, D. Fiorani, and E. Tronc. Magnetic Relaxation in Fine-Particle Systems, volume 98 of Advances in Chemical Physics, pages 283–494. Edited by I. Prigogine and Stuart A. Rice (John Wiley & Sons, Inc.), 1997. 2 S. Bedanta and W. Kleemann. Supermagnetism. Journal of Physics D: Applied Physics, 42(1):013001, 2009. 3 R. L´opez-Ruiz, F. Luis, J. Ses´e, J. Bartolom´e, C. Deranlot, and F. Petroff. Zero-temperature spin-glass freezing in self-organized arrays of Co nanoparticles. EPL (Europhysics Letters), 89(6):67011, 2010. 4 G.A. Badini Confalonieri, V. Vega, A. Ebbing, D. Mishra, P. Szary, V.M. Prida, O. Petracic, and H. Zabel. Template-assisted self-assembly of individual and clusters of magnetic nanoparticles. Nanotechnology, 22(28):285608, 2011. 5 K. Nielsch, R.B. Wehrspohn, J. Barthel, J. Kirschner, U. Gosele, S.F. Fischer, and H. Kronmuller. Hexagonally ordered 100 nm period nickel nanowire arrays. Applied Physics Letters, 79(9):1360–1362, 2001. 6 H. He and N. J. Tao. Electrochemical Fabrication of Metal Nanowires, volume 2 of Encyclopedia of Nanoscience and Nanotechnology, chapter 34, pages 755–772. Edited by H. S. Nalwa (American Scientific, Valencia, CA), 2004. 7 J. Garc´ıa, V. Vega, L. Iglesias, V.M. Prida, B. Hernando, E.D. Barriga-Castro, R. MendozaRes´endez, C. Luna, D. G¨orlitz, and K. Nielsch. Template-assisted Co-Ni alloys and multisegmented nanowires with tuned magnetic anisotropy. physica status solidi (a), 211(5):n/a–n/a, 2014. 8 G. Kartopu, O. Yal¸cin, M. Es-Souni, and A.C. Basaran. Magnetization behavior of ordered and high density Co nanowire arrays with varying aspect ratio. Journal of Applied Physics, 103(9):093915, 2008. 9 P.M. Paulus, F. Luis, M. Kr¨oll, G. Schmid, and L.J. de Jongh. Low-temperature study of the magnetization reversal and magnetic anisotropy of Fe, Ni, and Co nanowires. Journal of Magnetism and Magnetic Materials, 224(2):180 – 196, 2001. 10 V. Vega, V.M. Prida, J.A. Garc´ıa, and M. V´azquez. Torque magnetometry analysis of magnetic anisotropy distribution in Ni nanowire arrays. physica status solidi (a), 208(3):553–558, 2011. 11 V. Vega, T. B¨ohnert, S. Martens, M. Waleczek, J.M. Montero-Moreno, D. G¨orlitz, V.M. Prida, and K. Nielsch. Tuning the magnetic anisotropy of Co-Ni nanowires: comparison between single nanowires and nanowire arrays in hard-anodic aluminum oxide membranes. Nanotechnology, 23(46):465709, 2012. 12 P. Sergelius, J. Garcia Fernandez, S. Martens, M. Zocher, T., V. Vega Martinez, V.M. Prida, D. G¨orlitz, and K. Nielsch. Statistical magnetometry on isolated NiCo nanowires and nanowire arrays: a comparative study. Journal of Physics D: Applied Physics, 49(14):145005, 2016. 13 N. Eibagi, J.J. Kan, F.E. Spada, and E.E. Fullerton. Role of dipolar interactions on the thermal stability of high-density bit-patterned media. IEEE Magnetics Letters, 3:4500204–4500204, 2012. 14 Gabriel T. Landi. Role of dipolar interaction in magnetic hyperthermia. Phys. Rev. B, 89:014403, 2014. 15 D.F Coral, P. Mendoza Z´elis, M. Marciello, M.P. Morales, A. Craievich, F.H. S´anchez, and M.B. Fern´andez van Raap. Effect of nanoclustering and dipolar interactions in heat generation for magnetic hyperthermia. Langmuir, 32(5):1201–1213, 2016. 16 J.M. Mart´ınez Huerta, J.De La Torre Medina, L. Piraux, and A. Encinas. Self consistent measurement and removal of the dipolar interaction field in magnetic particle assemblies and the determination of their intrinsic switching field distribution. Journal of Applied Physics, 111(8):083914, 2012. 17 A. Hillion, A. Tamion, F. Tournus, C. Albin, and V. Dupuis. From vanishing interaction to superferromagnetic dimerization: Experimental determination of interaction lengths for embedded co clusters. Phys. Rev. B, 95:134446, 2017. 18 Christopher R. Pike, Andrew P. Roberts, and Kenneth L. Verosub. Characterizing interactions in fine magnetic particle systems using first order reversal curves. Journal of Applied Physics, 85(9):6660–6667, 1999. 19 A.N. Dobrynin, T.R. Gao, N.M. Dempsey, and D. Givord. Experimental determination of the magnetization dependent part of the demagnetizing field in hard magnetic materials. Applied Physics Letters, 97(19):192506, 2010. 20 A. Berger, Y. Xu, B. Lengsfield, Y. Ikeda, and E. E. Fullerton. Delta;h(m, delta;m) method for the determination of intrinsic switching field distributions in perpendicular media. IEEE Transactions on Magnetics, 41(10):3178–3180, 2005. 21 I. Tagawa and Y. Nakamura. Relationships between high density recording performance and particle coercivity distribution. IEEE Transactions on Magnetics, 27(6):4975–4977, 1991. 22 T. Wang, Y. Wang, Y. Fu, T. Hasegawa, H. Oshima, K. Itoh, K. Nishio, H. Masuda, F.S. Li, H. Saito, and S. Ishio. Magnetic behavior in an ordered co nanorod array. Nanotechnology, 19(45):455703, 2008. 23 F.H. S´anchez, P. Mendoza Z´elis, M.L. Arciniegas, M.B. G.A. Pasquevich, and Fern´andez van Raap. Dipolar interaction and demagnetizing effects in magnetic nanoparticle dispersions: Introducing the mean-field interacting superparamagnet model. Physical Review B, 95:134421, 2017. 24 G.T. Landi, F.R. Arantes, D.R. Cornejo, A.F. Bakuzis, I. Andreu, and E. Natividad. Ac susceptibility as a tool to probe the dipolar interaction in magnetic nanoparticles. Journal of Magnetism and Magnetic Materials, 421(Supplement C):138 – 151, 2017. 25 P. Allia, M. Coisson, T. Paola, F. Vinai, M. Knobel, M. Novak, and W. Nunes. Granular Cu-Co alloys as interacting superparamagnets. Physical Review B, 64(14):144420, 2001. 26 H. Masuda and K. Fukuda. Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina. Science, 268(5216):1466–1468, 1995 27 M.P. Proen¸ca, C.T. Sousa, J. Ventura, M. V´azquez, and J. Araujo. Distinguishing nanowire and nanotube formation by the deposition current transients. Nanoscale Research Letters, 7(1):280, 2012. 28 R. L´opez-Ruiz, C. Mag´en, F. Luis, and J. Bartolom´e. High temperature finite-size effects in the magnetic properties of ni nanowires. Journal of Applied Physics, 112(7):073906, 2012. 29 J.M. Garc´ıa, A. Asenjo, J. Vel´azquez, D. Garc´ıa, M. V´azquez, P. Aranda, and E. Ruiz-Hitzky. Magnetic behavior of an array of cobalt nanowires. Journal of Applied Physics, 85(8):5480–5482, 1999. 30 J. Vel´azquez, C. Garc´ıa, M. V´azquez, and A. Hernando. Dynamic magnetostatic interaction between amorphous ferromagnetic wires. Physical Review B, 54:9903–9911, 1996. 31 J. Crangle and G.M. Goodman. The magnetization of pure iron and nickel. Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 321(1547):477– 491, 1971. 32 H. Sato and B.S. Chandrasekhar. Determination of the magnetic anisotropy constant K2 of cubic ferromagnetic substances. Journal of Physics and Chemistry of Solids, 1(4):228 – 233, 1957. 33 R.I. Joseph. Ballistic demagnetizing factor in uniformly magnetized cylinders. Journal of Applied Physics, 37(13):4639–4643, 1966. 34 C.A. Ross, M. Hwang, M. Shima, J.Y Cheng, M. Farhoud, T.A. Savas, H.I. Smith, W. Schwarzacher F.M Ross, M. Redjdal, and F.B. Humphrey. Micromagnetic behavior of electrodeposited cylinder arrays. Physical Review B, 65:144417, 2002. 35 E. C. Stoner and E. P. Wohlfarth. A mechanism of magnetic hysteresis in heterogeneous alloys. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 240(826):599–642, 1948. 36 R.P. Cowburn, A.O. Adeyeye, and M.E. Welland. Controlling magnetic ordering in coupled nanomagnet arrays. New Journal of Physics, 1(1):16, 1999 |
dc.rights.spa.fl_str_mv |
Atribución – No comercial – Compartir igual |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Atribución – No comercial – Compartir igual http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.publisher.spa.fl_str_mv |
Physical Review B |
institution |
Corporación Universidad de la Costa |
bitstream.url.fl_str_mv |
https://repositorio.cuc.edu.co/bitstreams/3bfa9371-4ee0-47db-9b85-f258e8228813/download https://repositorio.cuc.edu.co/bitstreams/80ce29e3-59d5-4db5-bb91-bdf00b425bc8/download https://repositorio.cuc.edu.co/bitstreams/560d7406-5009-4e49-a7eb-bd5f10b44221/download https://repositorio.cuc.edu.co/bitstreams/42a0557e-a3e5-4917-9ae0-31110c5ebf55/download |
bitstream.checksum.fl_str_mv |
bb9f833d138e6720ccb881dc5c4bcc9b 8a4605be74aa9ea9d79846c1fba20a33 54b23bcb51f158cfb43eef81d4ae1a29 f7c507f30740854a133abf07e5a7a52f |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad de la Costa CUC |
repository.mail.fl_str_mv |
repdigital@cuc.edu.co |
_version_ |
1811760738035826688 |
spelling |
Mendoza Zelis, PVega, Víctor VPrida, V MCosta Arzuza, Luis CarlosBeron, FannyPirota, Kleber RobertoLopez Ruiz, RomanSanchez, Francisco Homero2018-11-16T21:02:49Z2018-11-16T21:02:49Z2017-11-212469-9950https://hdl.handle.net/11323/1161Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/A model describing the effect of magnetic dipolar interactions on the susceptibility of magnetic nanopillars is presented. It is an extension of a recently reported model for three-dimensional randomlike dispersions of nearly spherical nanoparticles in equilibrium [Sánchez et al., Phys. Rev. B 95, 134421 (2017)], to well-ordered arrays of nanoparticles out of equilibrium. To test it, a high-quality benchmark consisting of a two-dimensional hexagonal arrangement of quasi-identical parallel nickel nanopillars embedded in a porous alumina template was fabricated. This model is based on an effective demagnetizing tensor, which only depends on a few morphological parameters of the sample, as the nearest-neighbor distance between pillars and the volume fraction of pillars in the specimen. It allows us to obtain the nanopillar intrinsic susceptibility tensor from the magnetic response of the nanopillar ensemble. The values of the in-plane and normal-to-plane susceptibility of the sample are successfully predicted by the model. Furthermore, the model reproduces the susceptibility in the applied field direction, measured for different applied field angles. In this way, it provides a simple and accurate treatment to account for the complex magnetic effects produced by dipolar interactions.Mendoza Zelis, P-aa932922-478c-4316-b658-a478cbf360dd-0Vega, Víctor V-8f99e25b-7da1-485d-a186-a767f67a340b-0Prida, V M-dd163228-a1ed-4968-9f34-f5bae0cf2fc4-0Costa Arzuza, Luis Carlos-0000-0003-0289-9155-600Beron, Fanny-bd2b20ff-1cc0-4105-be87-114824b14e4a-0Pirota, Kleber Roberto-7e46b8e9-b3f7-4677-9c08-cae6f8d1ecac-0Lopez Ruiz, Roman-e7947a79-bef3-4d13-b22d-56187121d1f0-0Sanchez, Francisco Homero-bf838d09-539d-4441-9b3f-814b6843f130-0Physical Review BAtribución – No comercial – Compartir igualinfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2MagnetismNanoparticlesNanopillarsDipolar InteractionsDemagnetizing FactorsEffective demagnetizing tensors in arrays of magnetic nanopillarsArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersion1 J.L. Dormann, D. Fiorani, and E. Tronc. Magnetic Relaxation in Fine-Particle Systems, volume 98 of Advances in Chemical Physics, pages 283–494. Edited by I. Prigogine and Stuart A. Rice (John Wiley & Sons, Inc.), 1997. 2 S. Bedanta and W. Kleemann. Supermagnetism. Journal of Physics D: Applied Physics, 42(1):013001, 2009. 3 R. L´opez-Ruiz, F. Luis, J. Ses´e, J. Bartolom´e, C. Deranlot, and F. Petroff. Zero-temperature spin-glass freezing in self-organized arrays of Co nanoparticles. EPL (Europhysics Letters), 89(6):67011, 2010. 4 G.A. Badini Confalonieri, V. Vega, A. Ebbing, D. Mishra, P. Szary, V.M. Prida, O. Petracic, and H. Zabel. Template-assisted self-assembly of individual and clusters of magnetic nanoparticles. Nanotechnology, 22(28):285608, 2011. 5 K. Nielsch, R.B. Wehrspohn, J. Barthel, J. Kirschner, U. Gosele, S.F. Fischer, and H. Kronmuller. Hexagonally ordered 100 nm period nickel nanowire arrays. Applied Physics Letters, 79(9):1360–1362, 2001. 6 H. He and N. J. Tao. Electrochemical Fabrication of Metal Nanowires, volume 2 of Encyclopedia of Nanoscience and Nanotechnology, chapter 34, pages 755–772. Edited by H. S. Nalwa (American Scientific, Valencia, CA), 2004. 7 J. Garc´ıa, V. Vega, L. Iglesias, V.M. Prida, B. Hernando, E.D. Barriga-Castro, R. MendozaRes´endez, C. Luna, D. G¨orlitz, and K. Nielsch. Template-assisted Co-Ni alloys and multisegmented nanowires with tuned magnetic anisotropy. physica status solidi (a), 211(5):n/a–n/a, 2014. 8 G. Kartopu, O. Yal¸cin, M. Es-Souni, and A.C. Basaran. Magnetization behavior of ordered and high density Co nanowire arrays with varying aspect ratio. Journal of Applied Physics, 103(9):093915, 2008. 9 P.M. Paulus, F. Luis, M. Kr¨oll, G. Schmid, and L.J. de Jongh. Low-temperature study of the magnetization reversal and magnetic anisotropy of Fe, Ni, and Co nanowires. Journal of Magnetism and Magnetic Materials, 224(2):180 – 196, 2001. 10 V. Vega, V.M. Prida, J.A. Garc´ıa, and M. V´azquez. Torque magnetometry analysis of magnetic anisotropy distribution in Ni nanowire arrays. physica status solidi (a), 208(3):553–558, 2011. 11 V. Vega, T. B¨ohnert, S. Martens, M. Waleczek, J.M. Montero-Moreno, D. G¨orlitz, V.M. Prida, and K. Nielsch. Tuning the magnetic anisotropy of Co-Ni nanowires: comparison between single nanowires and nanowire arrays in hard-anodic aluminum oxide membranes. Nanotechnology, 23(46):465709, 2012. 12 P. Sergelius, J. Garcia Fernandez, S. Martens, M. Zocher, T., V. Vega Martinez, V.M. Prida, D. G¨orlitz, and K. Nielsch. Statistical magnetometry on isolated NiCo nanowires and nanowire arrays: a comparative study. Journal of Physics D: Applied Physics, 49(14):145005, 2016. 13 N. Eibagi, J.J. Kan, F.E. Spada, and E.E. Fullerton. Role of dipolar interactions on the thermal stability of high-density bit-patterned media. IEEE Magnetics Letters, 3:4500204–4500204, 2012. 14 Gabriel T. Landi. Role of dipolar interaction in magnetic hyperthermia. Phys. Rev. B, 89:014403, 2014. 15 D.F Coral, P. Mendoza Z´elis, M. Marciello, M.P. Morales, A. Craievich, F.H. S´anchez, and M.B. Fern´andez van Raap. Effect of nanoclustering and dipolar interactions in heat generation for magnetic hyperthermia. Langmuir, 32(5):1201–1213, 2016. 16 J.M. Mart´ınez Huerta, J.De La Torre Medina, L. Piraux, and A. Encinas. Self consistent measurement and removal of the dipolar interaction field in magnetic particle assemblies and the determination of their intrinsic switching field distribution. Journal of Applied Physics, 111(8):083914, 2012. 17 A. Hillion, A. Tamion, F. Tournus, C. Albin, and V. Dupuis. From vanishing interaction to superferromagnetic dimerization: Experimental determination of interaction lengths for embedded co clusters. Phys. Rev. B, 95:134446, 2017. 18 Christopher R. Pike, Andrew P. Roberts, and Kenneth L. Verosub. Characterizing interactions in fine magnetic particle systems using first order reversal curves. Journal of Applied Physics, 85(9):6660–6667, 1999. 19 A.N. Dobrynin, T.R. Gao, N.M. Dempsey, and D. Givord. Experimental determination of the magnetization dependent part of the demagnetizing field in hard magnetic materials. Applied Physics Letters, 97(19):192506, 2010. 20 A. Berger, Y. Xu, B. Lengsfield, Y. Ikeda, and E. E. Fullerton. Delta;h(m, delta;m) method for the determination of intrinsic switching field distributions in perpendicular media. IEEE Transactions on Magnetics, 41(10):3178–3180, 2005. 21 I. Tagawa and Y. Nakamura. Relationships between high density recording performance and particle coercivity distribution. IEEE Transactions on Magnetics, 27(6):4975–4977, 1991. 22 T. Wang, Y. Wang, Y. Fu, T. Hasegawa, H. Oshima, K. Itoh, K. Nishio, H. Masuda, F.S. Li, H. Saito, and S. Ishio. Magnetic behavior in an ordered co nanorod array. Nanotechnology, 19(45):455703, 2008. 23 F.H. S´anchez, P. Mendoza Z´elis, M.L. Arciniegas, M.B. G.A. Pasquevich, and Fern´andez van Raap. Dipolar interaction and demagnetizing effects in magnetic nanoparticle dispersions: Introducing the mean-field interacting superparamagnet model. Physical Review B, 95:134421, 2017. 24 G.T. Landi, F.R. Arantes, D.R. Cornejo, A.F. Bakuzis, I. Andreu, and E. Natividad. Ac susceptibility as a tool to probe the dipolar interaction in magnetic nanoparticles. Journal of Magnetism and Magnetic Materials, 421(Supplement C):138 – 151, 2017. 25 P. Allia, M. Coisson, T. Paola, F. Vinai, M. Knobel, M. Novak, and W. Nunes. Granular Cu-Co alloys as interacting superparamagnets. Physical Review B, 64(14):144420, 2001. 26 H. Masuda and K. Fukuda. Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina. Science, 268(5216):1466–1468, 1995 27 M.P. Proen¸ca, C.T. Sousa, J. Ventura, M. V´azquez, and J. Araujo. Distinguishing nanowire and nanotube formation by the deposition current transients. Nanoscale Research Letters, 7(1):280, 2012. 28 R. L´opez-Ruiz, C. Mag´en, F. Luis, and J. Bartolom´e. High temperature finite-size effects in the magnetic properties of ni nanowires. Journal of Applied Physics, 112(7):073906, 2012. 29 J.M. Garc´ıa, A. Asenjo, J. Vel´azquez, D. Garc´ıa, M. V´azquez, P. Aranda, and E. Ruiz-Hitzky. Magnetic behavior of an array of cobalt nanowires. Journal of Applied Physics, 85(8):5480–5482, 1999. 30 J. Vel´azquez, C. Garc´ıa, M. V´azquez, and A. Hernando. Dynamic magnetostatic interaction between amorphous ferromagnetic wires. Physical Review B, 54:9903–9911, 1996. 31 J. Crangle and G.M. Goodman. The magnetization of pure iron and nickel. Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 321(1547):477– 491, 1971. 32 H. Sato and B.S. Chandrasekhar. Determination of the magnetic anisotropy constant K2 of cubic ferromagnetic substances. Journal of Physics and Chemistry of Solids, 1(4):228 – 233, 1957. 33 R.I. Joseph. Ballistic demagnetizing factor in uniformly magnetized cylinders. Journal of Applied Physics, 37(13):4639–4643, 1966. 34 C.A. Ross, M. Hwang, M. Shima, J.Y Cheng, M. Farhoud, T.A. Savas, H.I. Smith, W. Schwarzacher F.M Ross, M. Redjdal, and F.B. Humphrey. Micromagnetic behavior of electrodeposited cylinder arrays. Physical Review B, 65:144417, 2002. 35 E. C. Stoner and E. P. Wohlfarth. A mechanism of magnetic hysteresis in heterogeneous alloys. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 240(826):599–642, 1948. 36 R.P. Cowburn, A.O. Adeyeye, and M.E. Welland. Controlling magnetic ordering in coupled nanomagnet arrays. New Journal of Physics, 1(1):16, 1999PublicationORIGINALEffective demagnetizing tensors in arrays of magnetic nanopillars.pdfEffective demagnetizing tensors in arrays of magnetic nanopillars.pdfapplication/pdf2190121https://repositorio.cuc.edu.co/bitstreams/3bfa9371-4ee0-47db-9b85-f258e8228813/downloadbb9f833d138e6720ccb881dc5c4bcc9bMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.cuc.edu.co/bitstreams/80ce29e3-59d5-4db5-bb91-bdf00b425bc8/download8a4605be74aa9ea9d79846c1fba20a33MD52THUMBNAILEffective demagnetizing tensors in arrays of magnetic nanopillars.pdf.jpgEffective demagnetizing tensors in arrays of magnetic nanopillars.pdf.jpgimage/jpeg29702https://repositorio.cuc.edu.co/bitstreams/560d7406-5009-4e49-a7eb-bd5f10b44221/download54b23bcb51f158cfb43eef81d4ae1a29MD54TEXTEffective demagnetizing tensors in arrays of magnetic nanopillars.pdf.txtEffective demagnetizing tensors in arrays of magnetic nanopillars.pdf.txttext/plain38886https://repositorio.cuc.edu.co/bitstreams/42a0557e-a3e5-4917-9ae0-31110c5ebf55/downloadf7c507f30740854a133abf07e5a7a52fMD5511323/1161oai:repositorio.cuc.edu.co:11323/11612024-09-17 10:53:54.215open.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |