Estudio TG-MS de la gasificación del carbonizado de la cáscara de Copoazú (Theobroma Glandiflorum)
Introduction− The use of exotic species as raw mate-rials in biorefineries can promote the sustainable de-velopment of regions such as the Amazon; however, it is considered pertinent to generate more previous ex-perimental studies to evaluate their technical potential, applied in this case specifica...
- Autores:
-
Santander Oliveros, Aderlis Liseth
Ortiz-Muñoz, Luis E.
Piñeres Ariza, Ismael Enrique
Ariza Barraza, Cindy Skarlett
Albis Arrieta, Alberto Ricardo
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2019
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/5629
- Acceso en línea:
- https://hdl.handle.net/11323/5629
https://doi.org/10.17981/ingecuc.15.1.2019.03
https://repositorio.cuc.edu.co/
- Palabra clave:
- Gasificación
Cáscara de Copoazú
TGMS
Modelo DAEM
Gasification
Copoazú peels
TG-MS
DAEM model
- Rights
- openAccess
- License
- CC0 1.0 Universal
id |
RCUC2_77820b96f98262174d2763e84dd533ad |
---|---|
oai_identifier_str |
oai:repositorio.cuc.edu.co:11323/5629 |
network_acronym_str |
RCUC2 |
network_name_str |
REDICUC - Repositorio CUC |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Estudio TG-MS de la gasificación del carbonizado de la cáscara de Copoazú (Theobroma Glandiflorum) |
dc.title.translated.spa.fl_str_mv |
Gasification study using TG-MS of carbonized Copoazú peel (Theobroma Glandiflorum) |
title |
Estudio TG-MS de la gasificación del carbonizado de la cáscara de Copoazú (Theobroma Glandiflorum) |
spellingShingle |
Estudio TG-MS de la gasificación del carbonizado de la cáscara de Copoazú (Theobroma Glandiflorum) Gasificación Cáscara de Copoazú TGMS Modelo DAEM Gasification Copoazú peels TG-MS DAEM model |
title_short |
Estudio TG-MS de la gasificación del carbonizado de la cáscara de Copoazú (Theobroma Glandiflorum) |
title_full |
Estudio TG-MS de la gasificación del carbonizado de la cáscara de Copoazú (Theobroma Glandiflorum) |
title_fullStr |
Estudio TG-MS de la gasificación del carbonizado de la cáscara de Copoazú (Theobroma Glandiflorum) |
title_full_unstemmed |
Estudio TG-MS de la gasificación del carbonizado de la cáscara de Copoazú (Theobroma Glandiflorum) |
title_sort |
Estudio TG-MS de la gasificación del carbonizado de la cáscara de Copoazú (Theobroma Glandiflorum) |
dc.creator.fl_str_mv |
Santander Oliveros, Aderlis Liseth Ortiz-Muñoz, Luis E. Piñeres Ariza, Ismael Enrique Ariza Barraza, Cindy Skarlett Albis Arrieta, Alberto Ricardo |
dc.contributor.author.spa.fl_str_mv |
Santander Oliveros, Aderlis Liseth Ortiz-Muñoz, Luis E. Piñeres Ariza, Ismael Enrique Ariza Barraza, Cindy Skarlett Albis Arrieta, Alberto Ricardo |
dc.subject.proposal.spa.fl_str_mv |
Gasificación Cáscara de Copoazú TGMS Modelo DAEM |
topic |
Gasificación Cáscara de Copoazú TGMS Modelo DAEM Gasification Copoazú peels TG-MS DAEM model |
dc.subject.proposal.eng.fl_str_mv |
Gasification Copoazú peels TG-MS DAEM model |
description |
Introduction− The use of exotic species as raw mate-rials in biorefineries can promote the sustainable de-velopment of regions such as the Amazon; however, it is considered pertinent to generate more previous ex-perimental studies to evaluate their technical potential, applied in this case specifically with the Copoazú peels. Objective−The aim of this article is to obtain the kinet-ic parameters of the gasification of Copoazú peels char. Methodology−In this work, the thermogravimetric analysis coupled to mass spectrometry (TG-MS), was used to study the kinetics of the gasification and product distribution of the char obtained as a sub-product of the pyrolysis of the Copoazú peels. Results− The kinetics parameters of the gasification process were obtained fitting data to three different models; results showed a good fitting to the DAEM model with three subsets of reactions. Conclusions−Results could be used to model the gas-ification of the char from Copoazu peels. Production kinetics of most of the molecules detected with high relative abundance could be linked to the kinetics of devolatilization reactions of Copoazú peels char accord-ing to DAEM. |
publishDate |
2019 |
dc.date.accessioned.none.fl_str_mv |
2019-11-13T14:26:50Z |
dc.date.available.none.fl_str_mv |
2019-11-13T14:26:50Z |
dc.date.issued.none.fl_str_mv |
2019-03-14 |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
acceptedVersion |
dc.identifier.citation.spa.fl_str_mv |
Aderlys Santander-Oliveros; Ever Ortiz-Muñoz; Ismael Piñeres-Ariza; Cindy Ariza-Barraza; Alberto Albis-Arrieta “Estudio TG-MS de la gasificación del carbonizado de la cáscara de Copoazú (Theobroma Glandiflorum)”, INGE CUC, vol. 15, no. 1, pp. 25-35, 2019. DOI: http:// doi.org/10.17981/ingecuc.15.1.2019.03 |
dc.identifier.uri.spa.fl_str_mv |
https://hdl.handle.net/11323/5629 |
dc.identifier.url.spa.fl_str_mv |
https://doi.org/10.17981/ingecuc.15.1.2019.03 |
dc.identifier.doi.spa.fl_str_mv |
10.17981/ingecuc.15.1.2019.03 |
dc.identifier.eissn.spa.fl_str_mv |
2382-4700 |
dc.identifier.instname.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.identifier.pissn.spa.fl_str_mv |
0122-6517 |
dc.identifier.reponame.spa.fl_str_mv |
REDICUC - Repositorio CUC |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.cuc.edu.co/ |
identifier_str_mv |
Aderlys Santander-Oliveros; Ever Ortiz-Muñoz; Ismael Piñeres-Ariza; Cindy Ariza-Barraza; Alberto Albis-Arrieta “Estudio TG-MS de la gasificación del carbonizado de la cáscara de Copoazú (Theobroma Glandiflorum)”, INGE CUC, vol. 15, no. 1, pp. 25-35, 2019. DOI: http:// doi.org/10.17981/ingecuc.15.1.2019.03 10.17981/ingecuc.15.1.2019.03 2382-4700 Corporación Universidad de la Costa 0122-6517 REDICUC - Repositorio CUC |
url |
https://hdl.handle.net/11323/5629 https://doi.org/10.17981/ingecuc.15.1.2019.03 https://repositorio.cuc.edu.co/ |
dc.language.iso.none.fl_str_mv |
spa |
language |
spa |
dc.relation.ispartofseries.spa.fl_str_mv |
INGE CUC; Vol. 15, Núm. 1 (2019) |
dc.relation.ispartofjournal.spa.fl_str_mv |
INGE CUC INGE CUC |
dc.relation.references.spa.fl_str_mv |
[1] A. V. Bridgwater, “The technical and economic feasibility of biomass gasification for power generation”, Fuel, vol. 74, no. 5, pp. 631–653, May. 1995. https://doi. org/10.1016/0016-2361(95)00001-L [2] Plan de energías renovables en España, 2011-2020, IDEA, [En línea] 2005. https://www.idae.es/tecnologias/energias-renovables/plan-de-energias-renovables-2011-2020 [3] Á. A. Orozco y C. E. Rodríguez, “El Copazú y los negocios inclusivos, una estrategia socioeconómica en FlorenciaCaqueta”, Cooperativismo & Desarrollo, vol. 25, no. 112, pp. 1–34, Jul. 2017. Disponible en https://dialnet.unirioja.es/descarga/articulo/6154342.pdf [4] A. A. González, J. Moncada, A. Idarraga, M. Rosenberg, and C. A. Cardona, “Potential of the amazonian exotic fruit for biorefineries: The Theobroma bicolor (Makambo) case”, Industrial Crops and Products, vol. 86, no. 1, pp. 58–67, Aug. 2016. https://doi.org/10.1016/j.indcrop.2016.02.015 [5] J. Pérez, “Modelado unidimensional del proceso de gasificación de biomasa lignocelulósica en lechos empacados en equicorriente. Validación experimental con gasificadores invertidos”, tesis doctoral, Facultad de Ingeniería, Universidad de Valladolid, España, 2007. [6] W. Groenewoud and W. De Jong, “The thermogravimetric analyser-coupled-Fourier transform infrared/mass spectrometry technique”, Thermochimica Acta, vol. 286, no.2, pp. 341–354, Sept. 1996. https://doi.org/10.1016/0040-6031(96)02940-1 [8] S. Wang, X. Guo, K. Wang and Z. Luo, “Influence of the interaction of components on the pyrolysis behavior of biomass”, Journal of Analytical and Applied Pyrolysis, vol. 91, no. 1, pp. 183–189, May. 2011. https://doi. org/10.1016/j.jaap.2011.02.006 [9] N. Worasuwannarak, T. Sonobe, and W. Tanthapanichakoon, “Pyrolysis behaviors of rice straw, rice husk, and corncob by TG-MS technique”, Journal of Analytical and Applied Pyrolysis, vol. 78, no. 2, pp. 265–271, Mar. 2007. https://doi.org/10.1016/j.jaap.2006.08.002 [10] E. Granada, P. Eguía, J. Comesaña, D. Patiño, J. Porteiro and J. Miguez, “Devolatilization behaviour and pyrolysis kinetic modelling of Spanish biomass fuels”, Journal of Thermal Analysis and Calorimetry, vol. 113, no. 2, pp. 569–578, Aug. 2013. https://doi.org/10.1007/ s10973-012-2747-y [11] A. Melgar, D. Borge y J. F. Pérez, “Estudio cinético del proceso de devolatilización de biomasa lignocelulósica mediante análisis termogravimétrico para tamaños de particula de 2 a 19 mm” Dyna, vol. 75, no. 155, pp. 123– 131, Jul. 2008. Disponible en https://revistas.unal.edu. co/index.php/dyna/article/view/1746/2405 [12] S. Nagy, P. Shaw and W. Wardowski, Fruits of tropical and subtropical origin: composition, properties and uses, Florida Science Source Inc., USA: Lake Alfred, 1990. [13] I. Cerón, J. Higuita and C. Cardona, “Analysis of a biorefinery based on Theobroma grandiflorum (copoazu) fruit”, Biomass Conversion and Biorefinery, vol. 5, no. 2, pp. 183–194, Jun. 2015. https://doi.org/10.1007/s13399- 014-0144-4 [14] M. Lapuerta, J. J. Hernández and J. n. Rodrıíguez, “Kinetics of devolatilisation of forestry wastes from thermogravimetric analysis”, Biomass and Bioenergy, vol. 27, no. 4, pp. 385–391, Oct. 2004. https://doi.org/10.1016/j.biombioe.2003.11.010 [15] S. Hu, A. Jess and M. Xu, “Kinetic study of Chinese biomass slow pyrolysis: comparison of different kinetic models”, Fuel, vol. 86, no. 17–18, pp. 2778-2788, Dec. 2007. https://doi.org/10.1016/j.fuel.2007.02.031 [16] G. Várhegyi, Z. Czégény, E. Jakab, K. McAdam and C. Liu, “Tobacco pyrolysis. Kinetic evaluation of thermogravimetric–mass spectrometric experiments”, Journal of Analytical and Applied Pyrolysis, vol. 86, no. 2, pp. 310–322, Nov. 2009. https://doi.org/10.1016/j. jaap.2009.08.008 [17] K. Açıkalın, “Pyrolytic characteristics and kinetics of pistachio shell by thermogravimetric analysis”, Journal of Thermal Anal and Calorimetry, vol. 109, no. 1, pp. 227–235, Jul. 2012. https://doi.org/10.1007/s10973-011- 1714-3 [18] G. Várhegyi, “Aims and methods in non-isothermal reaction kinetics”, Journal of Analytical and Applied Pyrolysis, vol. 79, no. 1, pp. 278–288, May 2007. https://doi.org/10.1016/j.jaap.2007.01.007 [19] G. Várhegyi, P. Szabó and M. J. Antal, “Kinetics of charcoal devolatilization” Energy & fuels, vol. 16, no. 3, pp. 724-731, Mar. 2002. https://doi.org/10.1021/ef010227v [20] E. Donskoi and D. L. S. McElwain, “Optimization of coal pyrolysis modeling” Combustion and flame, vol. 122, no. 3, pp. 359–367, Aug. 2000. https://doi.org/10.1016/S0010-2180(00)00115-2 [21] Y. F. Huang, W. H. Kuan, P. T. Chiueh and S. L. Lo, “Pyrolysis of biomass by thermal analysis–mass spectrometry (TA–MS)”, Bioresource Technology, vol. 102, no. 3, pp. 3527–3534, Feb. 2011. https://doi.org/10.1016/j.biortech.2010.11.049 [22] A. Albis, E. Ortiz, A. Suárez and I. Piñeres, “TG/MS study of the thermal devolatization of Copoazú peels (Theobroma grandiflorum)”, Therm Anal Calorim, pp. 275–283, Jan. 2014. https://doi.org/10.1007/s10973-013-3227-8 [23] K. G. Mansaray and A. E. Ghaly, “Determination of kinetic parameters of rice husks in oxygen using thermogravimetric analysis”, Biomass and Bioenergy, vol.17, no. 1, pp. 19–31, Jul. 1999. https://doi.org/10.1016/S0961-9534(99)00022-7 [24] R. Hurt, J.-K. Sun and M. Lunden, “A kinetic model of carbon burnout in pulverized coal combustion”, Combustion and flame, vol. 113, no. 1, pp. 181–197, Apr. 1998. https://doi.org/10.1016/S0010-2180(97)00240-X [25] M. V. Gil, D. Casal, C. Pevida, J. -J. Pis and F. Rubiera, “Thermal behaviour and kinetics of coal/biomass blends during co-combustion”, Bioresource Technology, vol. 101, no. 14, pp. 5601–5608, Jul. 2010. https://doi.org/10.1016/j.biortech.2010.02.008 [26] P. Garn, “An examination of the kinetic compensation effect”, Journal of Thermal Analysis and Calorimetry, vol. 7, no. 2, pp. 475-478, Apr. 1975. https://doi.org/10.1007/BF01911956 [27] M. -L. Chan, J. -M. Jones, M. Pourkashanian and A. Williams, “The oxidative reactivity of coal chars in relation to their structure”, Fuel, vol. 78, no. 13, pp. 1539–1552, Oct. 1999. https://doi.org/10.1016/S0016-2361(99)00074-5 |
dc.relation.references.none.fl_str_mv |
[7] T. Sonobe and N. Worasuwannarak, “Kinetic analyses of biomass pyrolysis using the distributed activation energy model”, Fuel, vol. 87, no. 3, pp. 414–421, Mar. 2008. https://doi.org/10.1016/j.fuel.2007.05.004 |
dc.relation.citationendpage.spa.fl_str_mv |
35 |
dc.relation.citationstartpage.spa.fl_str_mv |
25 |
dc.relation.citationissue.spa.fl_str_mv |
1 |
dc.relation.citationvolume.none.fl_str_mv |
15 |
dc.relation.ispartofjournalabbrev.spa.fl_str_mv |
INGE CUC |
dc.rights.spa.fl_str_mv |
CC0 1.0 Universal |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/publicdomain/zero/1.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
CC0 1.0 Universal http://creativecommons.org/publicdomain/zero/1.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
11 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.source.spa.fl_str_mv |
INGE CUC |
institution |
Corporación Universidad de la Costa |
dc.source.url.spa.fl_str_mv |
https://revistascientificas.cuc.edu.co/ingecuc/article/view/1851 |
bitstream.url.fl_str_mv |
https://repositorio.cuc.edu.co/bitstreams/89b22859-df3a-4ecf-b7de-6b2c5f391ae0/download https://repositorio.cuc.edu.co/bitstreams/d7999361-fedf-4e30-9aa0-6d4a6c27acbb/download https://repositorio.cuc.edu.co/bitstreams/c30d3963-5124-4aaa-88fb-d35f3f74ad5c/download https://repositorio.cuc.edu.co/bitstreams/ee5fe740-d85b-4976-8c99-f8354efdaadf/download https://repositorio.cuc.edu.co/bitstreams/829fbfe6-d4aa-4603-a2ef-ac4895b809f5/download |
bitstream.checksum.fl_str_mv |
4110db9d0b19ae856c377af4b6430e07 42fd4ad1e89814f5e4a476b409eb708c 8a4605be74aa9ea9d79846c1fba20a33 ad97ff1acd8a894818c4879f57326394 534ba7038429686cd207f9bc454db101 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad de la Costa CUC |
repository.mail.fl_str_mv |
repdigital@cuc.edu.co |
_version_ |
1828166833621958656 |
spelling |
Santander Oliveros, Aderlis LisethOrtiz-Muñoz, Luis E.Piñeres Ariza, Ismael EnriqueAriza Barraza, Cindy SkarlettAlbis Arrieta, Alberto Ricardo2019-11-13T14:26:50Z2019-11-13T14:26:50Z2019-03-14Aderlys Santander-Oliveros; Ever Ortiz-Muñoz; Ismael Piñeres-Ariza; Cindy Ariza-Barraza; Alberto Albis-Arrieta “Estudio TG-MS de la gasificación del carbonizado de la cáscara de Copoazú (Theobroma Glandiflorum)”, INGE CUC, vol. 15, no. 1, pp. 25-35, 2019. DOI: http:// doi.org/10.17981/ingecuc.15.1.2019.03https://hdl.handle.net/11323/5629https://doi.org/10.17981/ingecuc.15.1.2019.0310.17981/ingecuc.15.1.2019.032382-4700Corporación Universidad de la Costa0122-6517REDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/Introduction− The use of exotic species as raw mate-rials in biorefineries can promote the sustainable de-velopment of regions such as the Amazon; however, it is considered pertinent to generate more previous ex-perimental studies to evaluate their technical potential, applied in this case specifically with the Copoazú peels. Objective−The aim of this article is to obtain the kinet-ic parameters of the gasification of Copoazú peels char. Methodology−In this work, the thermogravimetric analysis coupled to mass spectrometry (TG-MS), was used to study the kinetics of the gasification and product distribution of the char obtained as a sub-product of the pyrolysis of the Copoazú peels. Results− The kinetics parameters of the gasification process were obtained fitting data to three different models; results showed a good fitting to the DAEM model with three subsets of reactions. Conclusions−Results could be used to model the gas-ification of the char from Copoazu peels. Production kinetics of most of the molecules detected with high relative abundance could be linked to the kinetics of devolatilization reactions of Copoazú peels char accord-ing to DAEM.Introducción: El uso de especies exóticas como materias primas en biorrefinerías puede impulsar el desarrollo sostenible de regiones como la Amazonía; sin embargo, se considera pertinente generar más estudios experimentales previos, que permitan evaluar su potencialidad técnica, aplicada en este caso específicamente con la cáscara de Copoazú. Objetivo: El objetivo de este artículo es determinar la cinética de gasificación del carbonizado resultado de la pirólisis de la cáscara de Copoazú. Metodología: En este trabajo se utilizó el análisis termogravimétrico acoplado a espectroscopía de masas (TGMS), para establecer la distribución de los productos de la gasificación y la cinética de la descomposición del carbonizado, subproducto de la pirólisis de las cáscaras de copoazú. La materia prima fue caracterizada por FTIR y se utilizaron tres velocidades de calentamiento diferentes para el proceso termoquímico. Resultados: Los parámetros cinéticos del proceso de gasificación se obtuvieron ajustando los datos experimentales con tres modelos diferentes, obteniéndose un buen ajuste al modelo DAEM con tres conjuntos de reacciones. Conclusiones: Los datos obtenidos pueden utilizarse para modelar las reacciones de gasificación del carbonizado de esta materia prima. La cinética de producción de la mayoría de las moléculas que se detectaron con una abundancia relativa alta se pudo relacionar con las reacciones de descomposición térmica del carbonizado de la cáscara de Copoazú, de acuerdo con el modelo DAEM.Santander Oliveros, Aderlis Liseth-0000-0002-5851-9193-600Ortiz-Muñoz, Luis E.-0000-0001-6449-2153-600Piñeres Ariza, Ismael Enrique-0000-0003-4871-6211-600Ariza Barraza, Cindy Skarlett-0000-0002-9326-2223-600Albis Arrieta, Alberto Ricardo-0000-0003-1758-1385-60011 páginasapplication/pdfspaCorporación Universidad de la CostaINGE CUC; Vol. 15, Núm. 1 (2019)INGE CUCINGE CUC[1] A. V. Bridgwater, “The technical and economic feasibility of biomass gasification for power generation”, Fuel, vol. 74, no. 5, pp. 631–653, May. 1995. https://doi. org/10.1016/0016-2361(95)00001-L[2] Plan de energías renovables en España, 2011-2020, IDEA, [En línea] 2005. https://www.idae.es/tecnologias/energias-renovables/plan-de-energias-renovables-2011-2020[3] Á. A. Orozco y C. E. Rodríguez, “El Copazú y los negocios inclusivos, una estrategia socioeconómica en FlorenciaCaqueta”, Cooperativismo & Desarrollo, vol. 25, no. 112, pp. 1–34, Jul. 2017. Disponible en https://dialnet.unirioja.es/descarga/articulo/6154342.pdf[4] A. A. González, J. Moncada, A. Idarraga, M. Rosenberg, and C. A. Cardona, “Potential of the amazonian exotic fruit for biorefineries: The Theobroma bicolor (Makambo) case”, Industrial Crops and Products, vol. 86, no. 1, pp. 58–67, Aug. 2016. https://doi.org/10.1016/j.indcrop.2016.02.015[5] J. Pérez, “Modelado unidimensional del proceso de gasificación de biomasa lignocelulósica en lechos empacados en equicorriente. Validación experimental con gasificadores invertidos”, tesis doctoral, Facultad de Ingeniería, Universidad de Valladolid, España, 2007.[6] W. Groenewoud and W. De Jong, “The thermogravimetric analyser-coupled-Fourier transform infrared/mass spectrometry technique”, Thermochimica Acta, vol. 286, no.2, pp. 341–354, Sept. 1996. https://doi.org/10.1016/0040-6031(96)02940-1[8] S. Wang, X. Guo, K. Wang and Z. Luo, “Influence of the interaction of components on the pyrolysis behavior of biomass”, Journal of Analytical and Applied Pyrolysis, vol. 91, no. 1, pp. 183–189, May. 2011. https://doi. org/10.1016/j.jaap.2011.02.006[9] N. Worasuwannarak, T. Sonobe, and W. Tanthapanichakoon, “Pyrolysis behaviors of rice straw, rice husk, and corncob by TG-MS technique”, Journal of Analytical and Applied Pyrolysis, vol. 78, no. 2, pp. 265–271, Mar. 2007. https://doi.org/10.1016/j.jaap.2006.08.002[10] E. Granada, P. Eguía, J. Comesaña, D. Patiño, J. Porteiro and J. Miguez, “Devolatilization behaviour and pyrolysis kinetic modelling of Spanish biomass fuels”, Journal of Thermal Analysis and Calorimetry, vol. 113, no. 2, pp. 569–578, Aug. 2013. https://doi.org/10.1007/ s10973-012-2747-y[11] A. Melgar, D. Borge y J. F. Pérez, “Estudio cinético del proceso de devolatilización de biomasa lignocelulósica mediante análisis termogravimétrico para tamaños de particula de 2 a 19 mm” Dyna, vol. 75, no. 155, pp. 123– 131, Jul. 2008. Disponible en https://revistas.unal.edu. co/index.php/dyna/article/view/1746/2405[12] S. Nagy, P. Shaw and W. Wardowski, Fruits of tropical and subtropical origin: composition, properties and uses, Florida Science Source Inc., USA: Lake Alfred, 1990.[13] I. Cerón, J. Higuita and C. Cardona, “Analysis of a biorefinery based on Theobroma grandiflorum (copoazu) fruit”, Biomass Conversion and Biorefinery, vol. 5, no. 2, pp. 183–194, Jun. 2015. https://doi.org/10.1007/s13399- 014-0144-4[14] M. Lapuerta, J. J. Hernández and J. n. Rodrıíguez, “Kinetics of devolatilisation of forestry wastes from thermogravimetric analysis”, Biomass and Bioenergy, vol. 27, no. 4, pp. 385–391, Oct. 2004. https://doi.org/10.1016/j.biombioe.2003.11.010[15] S. Hu, A. Jess and M. Xu, “Kinetic study of Chinese biomass slow pyrolysis: comparison of different kinetic models”, Fuel, vol. 86, no. 17–18, pp. 2778-2788, Dec. 2007. https://doi.org/10.1016/j.fuel.2007.02.031[16] G. Várhegyi, Z. Czégény, E. Jakab, K. McAdam and C. Liu, “Tobacco pyrolysis. Kinetic evaluation of thermogravimetric–mass spectrometric experiments”, Journal of Analytical and Applied Pyrolysis, vol. 86, no. 2, pp. 310–322, Nov. 2009. https://doi.org/10.1016/j. jaap.2009.08.008[17] K. Açıkalın, “Pyrolytic characteristics and kinetics of pistachio shell by thermogravimetric analysis”, Journal of Thermal Anal and Calorimetry, vol. 109, no. 1, pp. 227–235, Jul. 2012. https://doi.org/10.1007/s10973-011- 1714-3[18] G. Várhegyi, “Aims and methods in non-isothermal reaction kinetics”, Journal of Analytical and Applied Pyrolysis, vol. 79, no. 1, pp. 278–288, May 2007. https://doi.org/10.1016/j.jaap.2007.01.007[19] G. Várhegyi, P. Szabó and M. J. Antal, “Kinetics of charcoal devolatilization” Energy & fuels, vol. 16, no. 3, pp. 724-731, Mar. 2002. https://doi.org/10.1021/ef010227v[20] E. Donskoi and D. L. S. McElwain, “Optimization of coal pyrolysis modeling” Combustion and flame, vol. 122, no. 3, pp. 359–367, Aug. 2000. https://doi.org/10.1016/S0010-2180(00)00115-2[21] Y. F. Huang, W. H. Kuan, P. T. Chiueh and S. L. Lo, “Pyrolysis of biomass by thermal analysis–mass spectrometry (TA–MS)”, Bioresource Technology, vol. 102, no. 3, pp. 3527–3534, Feb. 2011. https://doi.org/10.1016/j.biortech.2010.11.049[22] A. Albis, E. Ortiz, A. Suárez and I. Piñeres, “TG/MS study of the thermal devolatization of Copoazú peels (Theobroma grandiflorum)”, Therm Anal Calorim, pp. 275–283, Jan. 2014. https://doi.org/10.1007/s10973-013-3227-8[23] K. G. Mansaray and A. E. Ghaly, “Determination of kinetic parameters of rice husks in oxygen using thermogravimetric analysis”, Biomass and Bioenergy, vol.17, no. 1, pp. 19–31, Jul. 1999. https://doi.org/10.1016/S0961-9534(99)00022-7[24] R. Hurt, J.-K. Sun and M. Lunden, “A kinetic model of carbon burnout in pulverized coal combustion”, Combustion and flame, vol. 113, no. 1, pp. 181–197, Apr. 1998. https://doi.org/10.1016/S0010-2180(97)00240-X[25] M. V. Gil, D. Casal, C. Pevida, J. -J. Pis and F. Rubiera, “Thermal behaviour and kinetics of coal/biomass blends during co-combustion”, Bioresource Technology, vol. 101, no. 14, pp. 5601–5608, Jul. 2010. https://doi.org/10.1016/j.biortech.2010.02.008[26] P. Garn, “An examination of the kinetic compensation effect”, Journal of Thermal Analysis and Calorimetry, vol. 7, no. 2, pp. 475-478, Apr. 1975. https://doi.org/10.1007/BF01911956[27] M. -L. Chan, J. -M. Jones, M. Pourkashanian and A. Williams, “The oxidative reactivity of coal chars in relation to their structure”, Fuel, vol. 78, no. 13, pp. 1539–1552, Oct. 1999. https://doi.org/10.1016/S0016-2361(99)00074-5[7] T. Sonobe and N. Worasuwannarak, “Kinetic analyses of biomass pyrolysis using the distributed activation energy model”, Fuel, vol. 87, no. 3, pp. 414–421, Mar. 2008. https://doi.org/10.1016/j.fuel.2007.05.0043525115INGE CUCCC0 1.0 Universalhttp://creativecommons.org/publicdomain/zero/1.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2INGE CUChttps://revistascientificas.cuc.edu.co/ingecuc/article/view/1851Estudio TG-MS de la gasificación del carbonizado de la cáscara de Copoazú (Theobroma Glandiflorum)Gasification study using TG-MS of carbonized Copoazú peel (Theobroma Glandiflorum)Artículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersionGasificaciónCáscara de CopoazúTGMSModelo DAEMGasificationCopoazú peelsTG-MSDAEM modelPublicationORIGINALEstudio TG-MS de la gasificación del carbonizado de la cáscara de Copoazú (Theobroma Glandiflorum).pdfEstudio TG-MS de la gasificación del carbonizado de la cáscara de Copoazú (Theobroma Glandiflorum).pdfapplication/pdf1298956https://repositorio.cuc.edu.co/bitstreams/89b22859-df3a-4ecf-b7de-6b2c5f391ae0/download4110db9d0b19ae856c377af4b6430e07MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8701https://repositorio.cuc.edu.co/bitstreams/d7999361-fedf-4e30-9aa0-6d4a6c27acbb/download42fd4ad1e89814f5e4a476b409eb708cMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.cuc.edu.co/bitstreams/c30d3963-5124-4aaa-88fb-d35f3f74ad5c/download8a4605be74aa9ea9d79846c1fba20a33MD53THUMBNAILEstudio TG-MS de la gasificación del carbonizado de la cáscara de Copoazú (Theobroma Glandiflorum).pdf.jpgEstudio TG-MS de la gasificación del carbonizado de la cáscara de Copoazú (Theobroma Glandiflorum).pdf.jpgimage/jpeg57821https://repositorio.cuc.edu.co/bitstreams/ee5fe740-d85b-4976-8c99-f8354efdaadf/downloadad97ff1acd8a894818c4879f57326394MD55TEXTEstudio TG-MS de la gasificación del carbonizado de la cáscara de Copoazú (Theobroma Glandiflorum).pdf.txtEstudio TG-MS de la gasificación del carbonizado de la cáscara de Copoazú (Theobroma Glandiflorum).pdf.txttext/plain44509https://repositorio.cuc.edu.co/bitstreams/829fbfe6-d4aa-4603-a2ef-ac4895b809f5/download534ba7038429686cd207f9bc454db101MD5611323/5629oai:repositorio.cuc.edu.co:11323/56292024-09-17 14:15:42.142http://creativecommons.org/publicdomain/zero/1.0/CC0 1.0 Universalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |