Estudio TG-MS de la gasificación del carbonizado de la cáscara de Copoazú (Theobroma Glandiflorum)

Introduction− The use of exotic species as raw mate-rials in biorefineries can promote the sustainable de-velopment of regions such as the Amazon; however, it is considered pertinent to generate more previous ex-perimental studies to evaluate their technical potential, applied in this case specifica...

Full description

Autores:
Santander Oliveros, Aderlis Liseth
Ortiz-Muñoz, Luis E.
Piñeres Ariza, Ismael Enrique
Ariza Barraza, Cindy Skarlett
Albis Arrieta, Alberto Ricardo
Tipo de recurso:
Article of journal
Fecha de publicación:
2019
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
spa
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/5629
Acceso en línea:
https://hdl.handle.net/11323/5629
https://doi.org/10.17981/ingecuc.15.1.2019.03
https://repositorio.cuc.edu.co/
Palabra clave:
Gasificación
Cáscara de Copoazú
TGMS
Modelo DAEM
Gasification
Copoazú peels
TG-MS
DAEM model
Rights
openAccess
License
CC0 1.0 Universal
id RCUC2_77820b96f98262174d2763e84dd533ad
oai_identifier_str oai:repositorio.cuc.edu.co:11323/5629
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.spa.fl_str_mv Estudio TG-MS de la gasificación del carbonizado de la cáscara de Copoazú (Theobroma Glandiflorum)
dc.title.translated.spa.fl_str_mv Gasification study using TG-MS of carbonized Copoazú peel (Theobroma Glandiflorum)
title Estudio TG-MS de la gasificación del carbonizado de la cáscara de Copoazú (Theobroma Glandiflorum)
spellingShingle Estudio TG-MS de la gasificación del carbonizado de la cáscara de Copoazú (Theobroma Glandiflorum)
Gasificación
Cáscara de Copoazú
TGMS
Modelo DAEM
Gasification
Copoazú peels
TG-MS
DAEM model
title_short Estudio TG-MS de la gasificación del carbonizado de la cáscara de Copoazú (Theobroma Glandiflorum)
title_full Estudio TG-MS de la gasificación del carbonizado de la cáscara de Copoazú (Theobroma Glandiflorum)
title_fullStr Estudio TG-MS de la gasificación del carbonizado de la cáscara de Copoazú (Theobroma Glandiflorum)
title_full_unstemmed Estudio TG-MS de la gasificación del carbonizado de la cáscara de Copoazú (Theobroma Glandiflorum)
title_sort Estudio TG-MS de la gasificación del carbonizado de la cáscara de Copoazú (Theobroma Glandiflorum)
dc.creator.fl_str_mv Santander Oliveros, Aderlis Liseth
Ortiz-Muñoz, Luis E.
Piñeres Ariza, Ismael Enrique
Ariza Barraza, Cindy Skarlett
Albis Arrieta, Alberto Ricardo
dc.contributor.author.spa.fl_str_mv Santander Oliveros, Aderlis Liseth
Ortiz-Muñoz, Luis E.
Piñeres Ariza, Ismael Enrique
Ariza Barraza, Cindy Skarlett
Albis Arrieta, Alberto Ricardo
dc.subject.proposal.spa.fl_str_mv Gasificación
Cáscara de Copoazú
TGMS
Modelo DAEM
topic Gasificación
Cáscara de Copoazú
TGMS
Modelo DAEM
Gasification
Copoazú peels
TG-MS
DAEM model
dc.subject.proposal.eng.fl_str_mv Gasification
Copoazú peels
TG-MS
DAEM model
description Introduction− The use of exotic species as raw mate-rials in biorefineries can promote the sustainable de-velopment of regions such as the Amazon; however, it is considered pertinent to generate more previous ex-perimental studies to evaluate their technical potential, applied in this case specifically with the Copoazú peels. Objective−The aim of this article is to obtain the kinet-ic parameters of the gasification of Copoazú peels char. Methodology−In this work, the thermogravimetric analysis coupled to mass spectrometry (TG-MS), was used to study the kinetics of the gasification and product distribution of the char obtained as a sub-product of the pyrolysis of the Copoazú peels. Results− The kinetics parameters of the gasification process were obtained fitting data to three different models; results showed a good fitting to the DAEM model with three subsets of reactions. Conclusions−Results could be used to model the gas-ification of the char from Copoazu peels. Production kinetics of most of the molecules detected with high relative abundance could be linked to the kinetics of devolatilization reactions of Copoazú peels char accord-ing to DAEM.
publishDate 2019
dc.date.accessioned.none.fl_str_mv 2019-11-13T14:26:50Z
dc.date.available.none.fl_str_mv 2019-11-13T14:26:50Z
dc.date.issued.none.fl_str_mv 2019-03-14
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_6501
status_str acceptedVersion
dc.identifier.citation.spa.fl_str_mv Aderlys Santander-Oliveros; Ever Ortiz-Muñoz; Ismael Piñeres-Ariza; Cindy Ariza-Barraza; Alberto Albis-Arrieta “Estudio TG-MS de la gasificación del carbonizado de la cáscara de Copoazú (Theobroma Glandiflorum)”, INGE CUC, vol. 15, no. 1, pp. 25-35, 2019. DOI: http:// doi.org/10.17981/ingecuc.15.1.2019.03
dc.identifier.uri.spa.fl_str_mv https://hdl.handle.net/11323/5629
dc.identifier.url.spa.fl_str_mv https://doi.org/10.17981/ingecuc.15.1.2019.03
dc.identifier.doi.spa.fl_str_mv 10.17981/ingecuc.15.1.2019.03
dc.identifier.eissn.spa.fl_str_mv 2382-4700
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.pissn.spa.fl_str_mv 0122-6517
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
identifier_str_mv Aderlys Santander-Oliveros; Ever Ortiz-Muñoz; Ismael Piñeres-Ariza; Cindy Ariza-Barraza; Alberto Albis-Arrieta “Estudio TG-MS de la gasificación del carbonizado de la cáscara de Copoazú (Theobroma Glandiflorum)”, INGE CUC, vol. 15, no. 1, pp. 25-35, 2019. DOI: http:// doi.org/10.17981/ingecuc.15.1.2019.03
10.17981/ingecuc.15.1.2019.03
2382-4700
Corporación Universidad de la Costa
0122-6517
REDICUC - Repositorio CUC
url https://hdl.handle.net/11323/5629
https://doi.org/10.17981/ingecuc.15.1.2019.03
https://repositorio.cuc.edu.co/
dc.language.iso.none.fl_str_mv spa
language spa
dc.relation.ispartofseries.spa.fl_str_mv INGE CUC; Vol. 15, Núm. 1 (2019)
dc.relation.ispartofjournal.spa.fl_str_mv INGE CUC
INGE CUC
dc.relation.references.spa.fl_str_mv [1] A. V. Bridgwater, “The technical and economic feasibility of biomass gasification for power generation”, Fuel, vol. 74, no. 5, pp. 631–653, May. 1995. https://doi. org/10.1016/0016-2361(95)00001-L
[2] Plan de energías renovables en España, 2011-2020, IDEA, [En línea] 2005. https://www.idae.es/tecnologias/energias-renovables/plan-de-energias-renovables-2011-2020
[3] Á. A. Orozco y C. E. Rodríguez, “El Copazú y los negocios inclusivos, una estrategia socioeconómica en FlorenciaCaqueta”, Cooperativismo & Desarrollo, vol. 25, no. 112, pp. 1–34, Jul. 2017. Disponible en https://dialnet.unirioja.es/descarga/articulo/6154342.pdf
[4] A. A. González, J. Moncada, A. Idarraga, M. Rosenberg, and C. A. Cardona, “Potential of the amazonian exotic fruit for biorefineries: The Theobroma bicolor (Makambo) case”, Industrial Crops and Products, vol. 86, no. 1, pp. 58–67, Aug. 2016. https://doi.org/10.1016/j.indcrop.2016.02.015
[5] J. Pérez, “Modelado unidimensional del proceso de gasificación de biomasa lignocelulósica en lechos empacados en equicorriente. Validación experimental con gasificadores invertidos”, tesis doctoral, Facultad de Ingeniería, Universidad de Valladolid, España, 2007.
[6] W. Groenewoud and W. De Jong, “The thermogravimetric analyser-coupled-Fourier transform infrared/mass spectrometry technique”, Thermochimica Acta, vol. 286, no.2, pp. 341–354, Sept. 1996. https://doi.org/10.1016/0040-6031(96)02940-1
[8] S. Wang, X. Guo, K. Wang and Z. Luo, “Influence of the interaction of components on the pyrolysis behavior of biomass”, Journal of Analytical and Applied Pyrolysis, vol. 91, no. 1, pp. 183–189, May. 2011. https://doi. org/10.1016/j.jaap.2011.02.006
[9] N. Worasuwannarak, T. Sonobe, and W. Tanthapanichakoon, “Pyrolysis behaviors of rice straw, rice husk, and corncob by TG-MS technique”, Journal of Analytical and Applied Pyrolysis, vol. 78, no. 2, pp. 265–271, Mar. 2007. https://doi.org/10.1016/j.jaap.2006.08.002
[10] E. Granada, P. Eguía, J. Comesaña, D. Patiño, J. Porteiro and J. Miguez, “Devolatilization behaviour and pyrolysis kinetic modelling of Spanish biomass fuels”, Journal of Thermal Analysis and Calorimetry, vol. 113, no. 2, pp. 569–578, Aug. 2013. https://doi.org/10.1007/ s10973-012-2747-y
[11] A. Melgar, D. Borge y J. F. Pérez, “Estudio cinético del proceso de devolatilización de biomasa lignocelulósica mediante análisis termogravimétrico para tamaños de particula de 2 a 19 mm” Dyna, vol. 75, no. 155, pp. 123– 131, Jul. 2008. Disponible en https://revistas.unal.edu. co/index.php/dyna/article/view/1746/2405
[12] S. Nagy, P. Shaw and W. Wardowski, Fruits of tropical and subtropical origin: composition, properties and uses, Florida Science Source Inc., USA: Lake Alfred, 1990.
[13] I. Cerón, J. Higuita and C. Cardona, “Analysis of a biorefinery based on Theobroma grandiflorum (copoazu) fruit”, Biomass Conversion and Biorefinery, vol. 5, no. 2, pp. 183–194, Jun. 2015. https://doi.org/10.1007/s13399- 014-0144-4
[14] M. Lapuerta, J. J. Hernández and J. n. Rodrıíguez, “Kinetics of devolatilisation of forestry wastes from thermogravimetric analysis”, Biomass and Bioenergy, vol. 27, no. 4, pp. 385–391, Oct. 2004. https://doi.org/10.1016/j.biombioe.2003.11.010
[15] S. Hu, A. Jess and M. Xu, “Kinetic study of Chinese biomass slow pyrolysis: comparison of different kinetic models”, Fuel, vol. 86, no. 17–18, pp. 2778-2788, Dec. 2007. https://doi.org/10.1016/j.fuel.2007.02.031
[16] G. Várhegyi, Z. Czégény, E. Jakab, K. McAdam and C. Liu, “Tobacco pyrolysis. Kinetic evaluation of thermogravimetric–mass spectrometric experiments”, Journal of Analytical and Applied Pyrolysis, vol. 86, no. 2, pp. 310–322, Nov. 2009. https://doi.org/10.1016/j. jaap.2009.08.008
[17] K. Açıkalın, “Pyrolytic characteristics and kinetics of pistachio shell by thermogravimetric analysis”, Journal of Thermal Anal and Calorimetry, vol. 109, no. 1, pp. 227–235, Jul. 2012. https://doi.org/10.1007/s10973-011- 1714-3
[18] G. Várhegyi, “Aims and methods in non-isothermal reaction kinetics”, Journal of Analytical and Applied Pyrolysis, vol. 79, no. 1, pp. 278–288, May 2007. https://doi.org/10.1016/j.jaap.2007.01.007
[19] G. Várhegyi, P. Szabó and M. J. Antal, “Kinetics of charcoal devolatilization” Energy & fuels, vol. 16, no. 3, pp. 724-731, Mar. 2002. https://doi.org/10.1021/ef010227v
[20] E. Donskoi and D. L. S. McElwain, “Optimization of coal pyrolysis modeling” Combustion and flame, vol. 122, no. 3, pp. 359–367, Aug. 2000. https://doi.org/10.1016/S0010-2180(00)00115-2
[21] Y. F. Huang, W. H. Kuan, P. T. Chiueh and S. L. Lo, “Pyrolysis of biomass by thermal analysis–mass spectrometry (TA–MS)”, Bioresource Technology, vol. 102, no. 3, pp. 3527–3534, Feb. 2011. https://doi.org/10.1016/j.biortech.2010.11.049
[22] A. Albis, E. Ortiz, A. Suárez and I. Piñeres, “TG/MS study of the thermal devolatization of Copoazú peels (Theobroma grandiflorum)”, Therm Anal Calorim, pp. 275–283, Jan. 2014. https://doi.org/10.1007/s10973-013-3227-8
[23] K. G. Mansaray and A. E. Ghaly, “Determination of kinetic parameters of rice husks in oxygen using thermogravimetric analysis”, Biomass and Bioenergy, vol.17, no. 1, pp. 19–31, Jul. 1999. https://doi.org/10.1016/S0961-9534(99)00022-7
[24] R. Hurt, J.-K. Sun and M. Lunden, “A kinetic model of carbon burnout in pulverized coal combustion”, Combustion and flame, vol. 113, no. 1, pp. 181–197, Apr. 1998. https://doi.org/10.1016/S0010-2180(97)00240-X
[25] M. V. Gil, D. Casal, C. Pevida, J. -J. Pis and F. Rubiera, “Thermal behaviour and kinetics of coal/biomass blends during co-combustion”, Bioresource Technology, vol. 101, no. 14, pp. 5601–5608, Jul. 2010. https://doi.org/10.1016/j.biortech.2010.02.008
[26] P. Garn, “An examination of the kinetic compensation effect”, Journal of Thermal Analysis and Calorimetry, vol. 7, no. 2, pp. 475-478, Apr. 1975. https://doi.org/10.1007/BF01911956
[27] M. -L. Chan, J. -M. Jones, M. Pourkashanian and A. Williams, “The oxidative reactivity of coal chars in relation to their structure”, Fuel, vol. 78, no. 13, pp. 1539–1552, Oct. 1999. https://doi.org/10.1016/S0016-2361(99)00074-5
dc.relation.references.none.fl_str_mv [7] T. Sonobe and N. Worasuwannarak, “Kinetic analyses of biomass pyrolysis using the distributed activation energy model”, Fuel, vol. 87, no. 3, pp. 414–421, Mar. 2008. https://doi.org/10.1016/j.fuel.2007.05.004
dc.relation.citationendpage.spa.fl_str_mv 35
dc.relation.citationstartpage.spa.fl_str_mv 25
dc.relation.citationissue.spa.fl_str_mv 1
dc.relation.citationvolume.none.fl_str_mv 15
dc.relation.ispartofjournalabbrev.spa.fl_str_mv INGE CUC
dc.rights.spa.fl_str_mv CC0 1.0 Universal
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/publicdomain/zero/1.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv CC0 1.0 Universal
http://creativecommons.org/publicdomain/zero/1.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 11 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Corporación Universidad de la Costa
dc.source.spa.fl_str_mv INGE CUC
institution Corporación Universidad de la Costa
dc.source.url.spa.fl_str_mv https://revistascientificas.cuc.edu.co/ingecuc/article/view/1851
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/89b22859-df3a-4ecf-b7de-6b2c5f391ae0/download
https://repositorio.cuc.edu.co/bitstreams/d7999361-fedf-4e30-9aa0-6d4a6c27acbb/download
https://repositorio.cuc.edu.co/bitstreams/c30d3963-5124-4aaa-88fb-d35f3f74ad5c/download
https://repositorio.cuc.edu.co/bitstreams/ee5fe740-d85b-4976-8c99-f8354efdaadf/download
https://repositorio.cuc.edu.co/bitstreams/829fbfe6-d4aa-4603-a2ef-ac4895b809f5/download
bitstream.checksum.fl_str_mv 4110db9d0b19ae856c377af4b6430e07
42fd4ad1e89814f5e4a476b409eb708c
8a4605be74aa9ea9d79846c1fba20a33
ad97ff1acd8a894818c4879f57326394
534ba7038429686cd207f9bc454db101
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1828166833621958656
spelling Santander Oliveros, Aderlis LisethOrtiz-Muñoz, Luis E.Piñeres Ariza, Ismael EnriqueAriza Barraza, Cindy SkarlettAlbis Arrieta, Alberto Ricardo2019-11-13T14:26:50Z2019-11-13T14:26:50Z2019-03-14Aderlys Santander-Oliveros; Ever Ortiz-Muñoz; Ismael Piñeres-Ariza; Cindy Ariza-Barraza; Alberto Albis-Arrieta “Estudio TG-MS de la gasificación del carbonizado de la cáscara de Copoazú (Theobroma Glandiflorum)”, INGE CUC, vol. 15, no. 1, pp. 25-35, 2019. DOI: http:// doi.org/10.17981/ingecuc.15.1.2019.03https://hdl.handle.net/11323/5629https://doi.org/10.17981/ingecuc.15.1.2019.0310.17981/ingecuc.15.1.2019.032382-4700Corporación Universidad de la Costa0122-6517REDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/Introduction− The use of exotic species as raw mate-rials in biorefineries can promote the sustainable de-velopment of regions such as the Amazon; however, it is considered pertinent to generate more previous ex-perimental studies to evaluate their technical potential, applied in this case specifically with the Copoazú peels. Objective−The aim of this article is to obtain the kinet-ic parameters of the gasification of Copoazú peels char. Methodology−In this work, the thermogravimetric analysis coupled to mass spectrometry (TG-MS), was used to study the kinetics of the gasification and product distribution of the char obtained as a sub-product of the pyrolysis of the Copoazú peels. Results− The kinetics parameters of the gasification process were obtained fitting data to three different models; results showed a good fitting to the DAEM model with three subsets of reactions. Conclusions−Results could be used to model the gas-ification of the char from Copoazu peels. Production kinetics of most of the molecules detected with high relative abundance could be linked to the kinetics of devolatilization reactions of Copoazú peels char accord-ing to DAEM.Introducción: El uso de especies exóticas como materias primas en biorrefinerías puede impulsar el desarrollo sostenible de regiones como la Amazonía; sin embargo, se considera pertinente generar más estudios experimentales previos, que permitan evaluar su potencialidad técnica, aplicada en este caso específicamente con la cáscara de Copoazú. Objetivo: El objetivo de este artículo es determinar la cinética de gasificación del carbonizado resultado de la pirólisis de la cáscara de Copoazú. Metodología: En este trabajo se utilizó el análisis termogravimétrico acoplado a espectroscopía de masas (TGMS), para establecer la distribución de los productos de la gasificación y la cinética de la descomposición del carbonizado, subproducto de la pirólisis de las cáscaras de copoazú. La materia prima fue caracterizada por FTIR y se utilizaron tres velocidades de calentamiento diferentes para el proceso termoquímico. Resultados: Los parámetros cinéticos del proceso de gasificación se obtuvieron ajustando los datos experimentales con tres modelos diferentes, obteniéndose un buen ajuste al modelo DAEM con tres conjuntos de reacciones. Conclusiones: Los datos obtenidos pueden utilizarse para modelar las reacciones de gasificación del carbonizado de esta materia prima. La cinética de producción de la mayoría de las moléculas que se detectaron con una abundancia relativa alta se pudo relacionar con las reacciones de descomposición térmica del carbonizado de la cáscara de Copoazú, de acuerdo con el modelo DAEM.Santander Oliveros, Aderlis Liseth-0000-0002-5851-9193-600Ortiz-Muñoz, Luis E.-0000-0001-6449-2153-600Piñeres Ariza, Ismael Enrique-0000-0003-4871-6211-600Ariza Barraza, Cindy Skarlett-0000-0002-9326-2223-600Albis Arrieta, Alberto Ricardo-0000-0003-1758-1385-60011 páginasapplication/pdfspaCorporación Universidad de la CostaINGE CUC; Vol. 15, Núm. 1 (2019)INGE CUCINGE CUC[1] A. V. Bridgwater, “The technical and economic feasibility of biomass gasification for power generation”, Fuel, vol. 74, no. 5, pp. 631–653, May. 1995. https://doi. org/10.1016/0016-2361(95)00001-L[2] Plan de energías renovables en España, 2011-2020, IDEA, [En línea] 2005. https://www.idae.es/tecnologias/energias-renovables/plan-de-energias-renovables-2011-2020[3] Á. A. Orozco y C. E. Rodríguez, “El Copazú y los negocios inclusivos, una estrategia socioeconómica en FlorenciaCaqueta”, Cooperativismo & Desarrollo, vol. 25, no. 112, pp. 1–34, Jul. 2017. Disponible en https://dialnet.unirioja.es/descarga/articulo/6154342.pdf[4] A. A. González, J. Moncada, A. Idarraga, M. Rosenberg, and C. A. Cardona, “Potential of the amazonian exotic fruit for biorefineries: The Theobroma bicolor (Makambo) case”, Industrial Crops and Products, vol. 86, no. 1, pp. 58–67, Aug. 2016. https://doi.org/10.1016/j.indcrop.2016.02.015[5] J. Pérez, “Modelado unidimensional del proceso de gasificación de biomasa lignocelulósica en lechos empacados en equicorriente. Validación experimental con gasificadores invertidos”, tesis doctoral, Facultad de Ingeniería, Universidad de Valladolid, España, 2007.[6] W. Groenewoud and W. De Jong, “The thermogravimetric analyser-coupled-Fourier transform infrared/mass spectrometry technique”, Thermochimica Acta, vol. 286, no.2, pp. 341–354, Sept. 1996. https://doi.org/10.1016/0040-6031(96)02940-1[8] S. Wang, X. Guo, K. Wang and Z. Luo, “Influence of the interaction of components on the pyrolysis behavior of biomass”, Journal of Analytical and Applied Pyrolysis, vol. 91, no. 1, pp. 183–189, May. 2011. https://doi. org/10.1016/j.jaap.2011.02.006[9] N. Worasuwannarak, T. Sonobe, and W. Tanthapanichakoon, “Pyrolysis behaviors of rice straw, rice husk, and corncob by TG-MS technique”, Journal of Analytical and Applied Pyrolysis, vol. 78, no. 2, pp. 265–271, Mar. 2007. https://doi.org/10.1016/j.jaap.2006.08.002[10] E. Granada, P. Eguía, J. Comesaña, D. Patiño, J. Porteiro and J. Miguez, “Devolatilization behaviour and pyrolysis kinetic modelling of Spanish biomass fuels”, Journal of Thermal Analysis and Calorimetry, vol. 113, no. 2, pp. 569–578, Aug. 2013. https://doi.org/10.1007/ s10973-012-2747-y[11] A. Melgar, D. Borge y J. F. Pérez, “Estudio cinético del proceso de devolatilización de biomasa lignocelulósica mediante análisis termogravimétrico para tamaños de particula de 2 a 19 mm” Dyna, vol. 75, no. 155, pp. 123– 131, Jul. 2008. Disponible en https://revistas.unal.edu. co/index.php/dyna/article/view/1746/2405[12] S. Nagy, P. Shaw and W. Wardowski, Fruits of tropical and subtropical origin: composition, properties and uses, Florida Science Source Inc., USA: Lake Alfred, 1990.[13] I. Cerón, J. Higuita and C. Cardona, “Analysis of a biorefinery based on Theobroma grandiflorum (copoazu) fruit”, Biomass Conversion and Biorefinery, vol. 5, no. 2, pp. 183–194, Jun. 2015. https://doi.org/10.1007/s13399- 014-0144-4[14] M. Lapuerta, J. J. Hernández and J. n. Rodrıíguez, “Kinetics of devolatilisation of forestry wastes from thermogravimetric analysis”, Biomass and Bioenergy, vol. 27, no. 4, pp. 385–391, Oct. 2004. https://doi.org/10.1016/j.biombioe.2003.11.010[15] S. Hu, A. Jess and M. Xu, “Kinetic study of Chinese biomass slow pyrolysis: comparison of different kinetic models”, Fuel, vol. 86, no. 17–18, pp. 2778-2788, Dec. 2007. https://doi.org/10.1016/j.fuel.2007.02.031[16] G. Várhegyi, Z. Czégény, E. Jakab, K. McAdam and C. Liu, “Tobacco pyrolysis. Kinetic evaluation of thermogravimetric–mass spectrometric experiments”, Journal of Analytical and Applied Pyrolysis, vol. 86, no. 2, pp. 310–322, Nov. 2009. https://doi.org/10.1016/j. jaap.2009.08.008[17] K. Açıkalın, “Pyrolytic characteristics and kinetics of pistachio shell by thermogravimetric analysis”, Journal of Thermal Anal and Calorimetry, vol. 109, no. 1, pp. 227–235, Jul. 2012. https://doi.org/10.1007/s10973-011- 1714-3[18] G. Várhegyi, “Aims and methods in non-isothermal reaction kinetics”, Journal of Analytical and Applied Pyrolysis, vol. 79, no. 1, pp. 278–288, May 2007. https://doi.org/10.1016/j.jaap.2007.01.007[19] G. Várhegyi, P. Szabó and M. J. Antal, “Kinetics of charcoal devolatilization” Energy & fuels, vol. 16, no. 3, pp. 724-731, Mar. 2002. https://doi.org/10.1021/ef010227v[20] E. Donskoi and D. L. S. McElwain, “Optimization of coal pyrolysis modeling” Combustion and flame, vol. 122, no. 3, pp. 359–367, Aug. 2000. https://doi.org/10.1016/S0010-2180(00)00115-2[21] Y. F. Huang, W. H. Kuan, P. T. Chiueh and S. L. Lo, “Pyrolysis of biomass by thermal analysis–mass spectrometry (TA–MS)”, Bioresource Technology, vol. 102, no. 3, pp. 3527–3534, Feb. 2011. https://doi.org/10.1016/j.biortech.2010.11.049[22] A. Albis, E. Ortiz, A. Suárez and I. Piñeres, “TG/MS study of the thermal devolatization of Copoazú peels (Theobroma grandiflorum)”, Therm Anal Calorim, pp. 275–283, Jan. 2014. https://doi.org/10.1007/s10973-013-3227-8[23] K. G. Mansaray and A. E. Ghaly, “Determination of kinetic parameters of rice husks in oxygen using thermogravimetric analysis”, Biomass and Bioenergy, vol.17, no. 1, pp. 19–31, Jul. 1999. https://doi.org/10.1016/S0961-9534(99)00022-7[24] R. Hurt, J.-K. Sun and M. Lunden, “A kinetic model of carbon burnout in pulverized coal combustion”, Combustion and flame, vol. 113, no. 1, pp. 181–197, Apr. 1998. https://doi.org/10.1016/S0010-2180(97)00240-X[25] M. V. Gil, D. Casal, C. Pevida, J. -J. Pis and F. Rubiera, “Thermal behaviour and kinetics of coal/biomass blends during co-combustion”, Bioresource Technology, vol. 101, no. 14, pp. 5601–5608, Jul. 2010. https://doi.org/10.1016/j.biortech.2010.02.008[26] P. Garn, “An examination of the kinetic compensation effect”, Journal of Thermal Analysis and Calorimetry, vol. 7, no. 2, pp. 475-478, Apr. 1975. https://doi.org/10.1007/BF01911956[27] M. -L. Chan, J. -M. Jones, M. Pourkashanian and A. Williams, “The oxidative reactivity of coal chars in relation to their structure”, Fuel, vol. 78, no. 13, pp. 1539–1552, Oct. 1999. https://doi.org/10.1016/S0016-2361(99)00074-5[7] T. Sonobe and N. Worasuwannarak, “Kinetic analyses of biomass pyrolysis using the distributed activation energy model”, Fuel, vol. 87, no. 3, pp. 414–421, Mar. 2008. https://doi.org/10.1016/j.fuel.2007.05.0043525115INGE CUCCC0 1.0 Universalhttp://creativecommons.org/publicdomain/zero/1.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2INGE CUChttps://revistascientificas.cuc.edu.co/ingecuc/article/view/1851Estudio TG-MS de la gasificación del carbonizado de la cáscara de Copoazú (Theobroma Glandiflorum)Gasification study using TG-MS of carbonized Copoazú peel (Theobroma Glandiflorum)Artículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersionGasificaciónCáscara de CopoazúTGMSModelo DAEMGasificationCopoazú peelsTG-MSDAEM modelPublicationORIGINALEstudio TG-MS de la gasificación del carbonizado de la cáscara de Copoazú (Theobroma Glandiflorum).pdfEstudio TG-MS de la gasificación del carbonizado de la cáscara de Copoazú (Theobroma Glandiflorum).pdfapplication/pdf1298956https://repositorio.cuc.edu.co/bitstreams/89b22859-df3a-4ecf-b7de-6b2c5f391ae0/download4110db9d0b19ae856c377af4b6430e07MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8701https://repositorio.cuc.edu.co/bitstreams/d7999361-fedf-4e30-9aa0-6d4a6c27acbb/download42fd4ad1e89814f5e4a476b409eb708cMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.cuc.edu.co/bitstreams/c30d3963-5124-4aaa-88fb-d35f3f74ad5c/download8a4605be74aa9ea9d79846c1fba20a33MD53THUMBNAILEstudio TG-MS de la gasificación del carbonizado de la cáscara de Copoazú (Theobroma Glandiflorum).pdf.jpgEstudio TG-MS de la gasificación del carbonizado de la cáscara de Copoazú (Theobroma Glandiflorum).pdf.jpgimage/jpeg57821https://repositorio.cuc.edu.co/bitstreams/ee5fe740-d85b-4976-8c99-f8354efdaadf/downloadad97ff1acd8a894818c4879f57326394MD55TEXTEstudio TG-MS de la gasificación del carbonizado de la cáscara de Copoazú (Theobroma Glandiflorum).pdf.txtEstudio TG-MS de la gasificación del carbonizado de la cáscara de Copoazú (Theobroma Glandiflorum).pdf.txttext/plain44509https://repositorio.cuc.edu.co/bitstreams/829fbfe6-d4aa-4603-a2ef-ac4895b809f5/download534ba7038429686cd207f9bc454db101MD5611323/5629oai:repositorio.cuc.edu.co:11323/56292024-09-17 14:15:42.142http://creativecommons.org/publicdomain/zero/1.0/CC0 1.0 Universalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=