A meta-heuristic approach to a strategic mixed inventory-location model: formulation and application

In the present day, it is increasingly more important for the companies to have a distribution network that minimize the logistic costs without reducing the level of service to the customer (delivery time, enough inventory, etc.). To reach conciliation within these objectives that may look conflicti...

Full description

Autores:
Orozco-Fontalvo, Mauricio
Cantillo, Victor
Miranda, Pablo
Tipo de recurso:
Article of journal
Fecha de publicación:
2017
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/8745
Acceso en línea:
https://hdl.handle.net/11323/8745
https://repositorio.cuc.edu.co/
Palabra clave:
Distribution network
inventory location
distribution centers location
genetic algorithm
exhaustive revision
Rights
openAccess
License
Attribution-NonCommercial 4.0 International
id RCUC2_76776a4a3a8d43412bc46e57fd2a36ed
oai_identifier_str oai:repositorio.cuc.edu.co:11323/8745
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.spa.fl_str_mv A meta-heuristic approach to a strategic mixed inventory-location model: formulation and application
title A meta-heuristic approach to a strategic mixed inventory-location model: formulation and application
spellingShingle A meta-heuristic approach to a strategic mixed inventory-location model: formulation and application
Distribution network
inventory location
distribution centers location
genetic algorithm
exhaustive revision
title_short A meta-heuristic approach to a strategic mixed inventory-location model: formulation and application
title_full A meta-heuristic approach to a strategic mixed inventory-location model: formulation and application
title_fullStr A meta-heuristic approach to a strategic mixed inventory-location model: formulation and application
title_full_unstemmed A meta-heuristic approach to a strategic mixed inventory-location model: formulation and application
title_sort A meta-heuristic approach to a strategic mixed inventory-location model: formulation and application
dc.creator.fl_str_mv Orozco-Fontalvo, Mauricio
Cantillo, Victor
Miranda, Pablo
dc.contributor.author.spa.fl_str_mv Orozco-Fontalvo, Mauricio
Cantillo, Victor
Miranda, Pablo
dc.subject.spa.fl_str_mv Distribution network
inventory location
distribution centers location
genetic algorithm
exhaustive revision
topic Distribution network
inventory location
distribution centers location
genetic algorithm
exhaustive revision
description In the present day, it is increasingly more important for the companies to have a distribution network that minimize the logistic costs without reducing the level of service to the customer (delivery time, enough inventory, etc.). To reach conciliation within these objectives that may look conflicting requires developing some tools that allow decision-making. Having this in mind, the authors present a strategic inventory-location model, multiproduct and different with demand periods. This is a complex problem of integer mixed programming, that allow to determine the optimum distribution network given the fixed, transportation and inventory costs. The problem is illustrated by applying it to a real case of a steel company in Colombia, to resolve it, exhaustive revision and a genetic algorithm were used. The results obtained reveal the importance of the making joint strategic-tactic decisions, as well as the impact of each of the variables considered in the logistics costs.
publishDate 2017
dc.date.issued.none.fl_str_mv 2017
dc.date.accessioned.none.fl_str_mv 2021-09-22T19:55:13Z
dc.date.available.none.fl_str_mv 2021-09-22T19:55:13Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_6501
status_str acceptedVersion
dc.identifier.issn.spa.fl_str_mv 2352-1465
dc.identifier.uri.spa.fl_str_mv https://hdl.handle.net/11323/8745
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
identifier_str_mv 2352-1465
Corporación Universidad de la Costa
REDICUC - Repositorio CUC
url https://hdl.handle.net/11323/8745
https://repositorio.cuc.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.references.spa.fl_str_mv Ahuja, R. K., Magnanti, T. L. & Orlin, J. B., 1993. Network Flows: Theory, Algorithms, and applications. s.l.:Prentice Hall.
Balas, E. & Carrera, M., 1996. A Dynamic Subgradient-Based Branch-and-Bound Procedure for Set Covering. Operations research.
Berman, O., Krass, D. & Tajbakhsh, M., 2011. A cordinated inventory-location model. European Journal of Operational Research
Chopra, S., 2008. Administración de la cadena de suministro. Tercera ed. s.l.:Pearson
Church, R. & Revelle, C., 1974. The maximal covering location problem. Papers in regional science
Daskin, M. & Coullard, C., 2002. An inventory location model: Formulation, solution algorithm and computacional results. Annals of operational research
Daskin, M. & Susan, O. H., 1998. Strategic facility location: A review. European Journal of Operational Research.
Diabat, A., Richard, J. & Codrington, C., 2013. A Lagrangian relaxation approach to simultaneous strategic and tactical planning in supply chain design. Annals of operations research
Dooley, F., 2005. Logistics, Inventory Control, and Supply Chain Management. Choices.
Eppen, G. D., 1979. Effects of Centralization on Expected Costs in a Multi-Location Newsboy Problem. Management Science.
Farahani, Asgari, Heidari & Hosseininia, 2012. Covering Problems in Facility Location: A Review. Computer & Industrial Engineering, Volumen 62.
Fisher, M. L., 2004. The Lagrangian relaxation method for solving integer programming problems. Management science.
Goldberg, E., 1989. Genetic algorithms in search, optimization and machine learning. Addison-Wesley.
Holland, J. H., 1975. Adaptation in natural and artifitial systems. University of Michigan press
Kaya, O. & Urek, B., 2015. A mixed integer nonlinear programming model and heuristic solutions for location, inventory and pricing decisions in a closed loop supply chain. Computers & Operations Research.
Melo, M., Nickel, S. & Saldanha-da-Gama, F., 2009. Facility location and supply chain management. European Journal of Operational Research.
Miranda, P. & Garrido, R., 2006. A simultaneous inventory control and facility location model with stochastic capacity constraints. Networks and spatial economics, Volumen VI.
Miranda, P. & Rodrigo, G., 2004. Incorporating inventory location control decisions into a strategic distribution network desing model with stochastic demand. Transportation Research Part E.
Mousavi, S., Bahreininejad, A., Musa, S. & Yusof, F., 2014. A modified particle swarm optimization for solving the integrated location and inventory control problems in a two-echelon supply chain network. Journal of intelligent manufacturing.
Mousavi, S. & Hajipour, V., 2013. Optimizing multi-item multi-period inventory control system with discounted cash flow and inflation: Two calibrated meta-heristic algorithms. Applied mathematical modelling.
Pham, D. & Karaboga, D., 2000. Intelligent optimisation techniques. s.l.:Springer.
Rao, S. S., 2009. Engineering Optimization: Theory and practice. Cuarta ed. s.l.:John Wiley & Sons, Inc.
Saaty, T. L., 1990. How to make a decision: The analytic hierarchy process. European Journal of Operational Research.
Shen, Z.-j. M. & Coullard, C., 2003. A joint inventory location model. Transportation Science.
Shirley, C. & Winston, C., 2003. Firm inventory behavior and the returns from highway infrastructure investments. Journal of Urban Economics.
Soleimani, H. & Kannan, G., 2015. A hybrid particle swarm optimization and genetic algorithm for closed-loop supply chain network designs in large scale networks. Applied mathematical modelling.
Taha, H., 2007. Operations research: An introduction. Octava ed. s.l.:Prentice Hall.
Yalaoui, A. & Chehade, H., 2012. Optimization of logistics. s.l.:Wiley.
Zanakins, S. &. E. J., 1981. Heuristic "Optimization": Why when and how to use it". Interfaces, Volumen V
dc.rights.spa.fl_str_mv Attribution-NonCommercial 4.0 International
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Attribution-NonCommercial 4.0 International
http://creativecommons.org/licenses/by-nc/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Transportation Research Procedia
dc.source.spa.fl_str_mv World Conference on Transport Research - WCTR 2016 Shanghai
institution Corporación Universidad de la Costa
dc.source.url.spa.fl_str_mv https://reader.elsevier.com/reader/sd/pii/S2352146517307615?token=2374F4FA9D2D9650D87EFDD21B20824DA710A9992650C0B5BF14C88790A3E5180B3729C96563CAF3647F28B624CD1BEC&originRegion=us-east-1&originCreation=20210922192249
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/448f452a-0158-49b9-955a-12e31b6ef4a3/download
https://repositorio.cuc.edu.co/bitstreams/2f4998da-23e2-42e2-89ba-1088d0a28567/download
https://repositorio.cuc.edu.co/bitstreams/867f1fca-56ed-4b51-8076-4fe5de7c935d/download
https://repositorio.cuc.edu.co/bitstreams/b2dfe664-3a28-47ce-9193-d4455a3e6a22/download
https://repositorio.cuc.edu.co/bitstreams/550c463a-d350-4bfe-9ae0-5d686eae2622/download
bitstream.checksum.fl_str_mv eb74a225dd85c3134843f4b2d19221ad
24013099e9e6abb1575dc6ce0855efd5
e30e9215131d99561d40d6b0abbe9bad
e324e35b8bfd4e40417352a308c37219
1bb607118047afc5c385b82385dd931f
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1811760739933749248
spelling Orozco-Fontalvo, MauricioCantillo, VictorMiranda, Pablo2021-09-22T19:55:13Z2021-09-22T19:55:13Z20172352-1465https://hdl.handle.net/11323/8745Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/In the present day, it is increasingly more important for the companies to have a distribution network that minimize the logistic costs without reducing the level of service to the customer (delivery time, enough inventory, etc.). To reach conciliation within these objectives that may look conflicting requires developing some tools that allow decision-making. Having this in mind, the authors present a strategic inventory-location model, multiproduct and different with demand periods. This is a complex problem of integer mixed programming, that allow to determine the optimum distribution network given the fixed, transportation and inventory costs. The problem is illustrated by applying it to a real case of a steel company in Colombia, to resolve it, exhaustive revision and a genetic algorithm were used. The results obtained reveal the importance of the making joint strategic-tactic decisions, as well as the impact of each of the variables considered in the logistics costs.Orozco-Fontalvo, Mauricio-will be generated-orcid-0000-0003-0514-4647-600Cantillo, Victor-will be generated-orcid-0000-0003-1184-2580-600Miranda, Pabloapplication/pdfengTransportation Research ProcediaAttribution-NonCommercial 4.0 Internationalhttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2World Conference on Transport Research - WCTR 2016 Shanghaihttps://reader.elsevier.com/reader/sd/pii/S2352146517307615?token=2374F4FA9D2D9650D87EFDD21B20824DA710A9992650C0B5BF14C88790A3E5180B3729C96563CAF3647F28B624CD1BEC&originRegion=us-east-1&originCreation=20210922192249Distribution networkinventory locationdistribution centers locationgenetic algorithmexhaustive revisionA meta-heuristic approach to a strategic mixed inventory-location model: formulation and applicationArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersionAhuja, R. K., Magnanti, T. L. & Orlin, J. B., 1993. Network Flows: Theory, Algorithms, and applications. s.l.:Prentice Hall.Balas, E. & Carrera, M., 1996. A Dynamic Subgradient-Based Branch-and-Bound Procedure for Set Covering. Operations research.Berman, O., Krass, D. & Tajbakhsh, M., 2011. A cordinated inventory-location model. European Journal of Operational ResearchChopra, S., 2008. Administración de la cadena de suministro. Tercera ed. s.l.:PearsonChurch, R. & Revelle, C., 1974. The maximal covering location problem. Papers in regional scienceDaskin, M. & Coullard, C., 2002. An inventory location model: Formulation, solution algorithm and computacional results. Annals of operational researchDaskin, M. & Susan, O. H., 1998. Strategic facility location: A review. European Journal of Operational Research.Diabat, A., Richard, J. & Codrington, C., 2013. A Lagrangian relaxation approach to simultaneous strategic and tactical planning in supply chain design. Annals of operations researchDooley, F., 2005. Logistics, Inventory Control, and Supply Chain Management. Choices.Eppen, G. D., 1979. Effects of Centralization on Expected Costs in a Multi-Location Newsboy Problem. Management Science.Farahani, Asgari, Heidari & Hosseininia, 2012. Covering Problems in Facility Location: A Review. Computer & Industrial Engineering, Volumen 62.Fisher, M. L., 2004. The Lagrangian relaxation method for solving integer programming problems. Management science.Goldberg, E., 1989. Genetic algorithms in search, optimization and machine learning. Addison-Wesley.Holland, J. H., 1975. Adaptation in natural and artifitial systems. University of Michigan pressKaya, O. & Urek, B., 2015. A mixed integer nonlinear programming model and heuristic solutions for location, inventory and pricing decisions in a closed loop supply chain. Computers & Operations Research.Melo, M., Nickel, S. & Saldanha-da-Gama, F., 2009. Facility location and supply chain management. European Journal of Operational Research.Miranda, P. & Garrido, R., 2006. A simultaneous inventory control and facility location model with stochastic capacity constraints. Networks and spatial economics, Volumen VI.Miranda, P. & Rodrigo, G., 2004. Incorporating inventory location control decisions into a strategic distribution network desing model with stochastic demand. Transportation Research Part E.Mousavi, S., Bahreininejad, A., Musa, S. & Yusof, F., 2014. A modified particle swarm optimization for solving the integrated location and inventory control problems in a two-echelon supply chain network. Journal of intelligent manufacturing.Mousavi, S. & Hajipour, V., 2013. Optimizing multi-item multi-period inventory control system with discounted cash flow and inflation: Two calibrated meta-heristic algorithms. Applied mathematical modelling.Pham, D. & Karaboga, D., 2000. Intelligent optimisation techniques. s.l.:Springer.Rao, S. S., 2009. Engineering Optimization: Theory and practice. Cuarta ed. s.l.:John Wiley & Sons, Inc.Saaty, T. L., 1990. How to make a decision: The analytic hierarchy process. European Journal of Operational Research.Shen, Z.-j. M. & Coullard, C., 2003. A joint inventory location model. Transportation Science.Shirley, C. & Winston, C., 2003. Firm inventory behavior and the returns from highway infrastructure investments. Journal of Urban Economics.Soleimani, H. & Kannan, G., 2015. A hybrid particle swarm optimization and genetic algorithm for closed-loop supply chain network designs in large scale networks. Applied mathematical modelling.Taha, H., 2007. Operations research: An introduction. Octava ed. s.l.:Prentice Hall.Yalaoui, A. & Chehade, H., 2012. Optimization of logistics. s.l.:Wiley.Zanakins, S. &. E. J., 1981. Heuristic "Optimization": Why when and how to use it". Interfaces, Volumen VPublicationORIGINALA meta-heuristic approach to strategic mixed inventory location.pdfA meta-heuristic approach to strategic mixed inventory location.pdfapplication/pdf4974673https://repositorio.cuc.edu.co/bitstreams/448f452a-0158-49b9-955a-12e31b6ef4a3/downloadeb74a225dd85c3134843f4b2d19221adMD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8914https://repositorio.cuc.edu.co/bitstreams/2f4998da-23e2-42e2-89ba-1088d0a28567/download24013099e9e6abb1575dc6ce0855efd5MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/867f1fca-56ed-4b51-8076-4fe5de7c935d/downloade30e9215131d99561d40d6b0abbe9badMD53THUMBNAILA meta-heuristic approach to strategic mixed inventory location.pdf.jpgA meta-heuristic approach to strategic mixed inventory location.pdf.jpgimage/jpeg51756https://repositorio.cuc.edu.co/bitstreams/b2dfe664-3a28-47ce-9193-d4455a3e6a22/downloade324e35b8bfd4e40417352a308c37219MD54TEXTA meta-heuristic approach to strategic mixed inventory location.pdf.txtA meta-heuristic approach to strategic mixed inventory location.pdf.txttext/plain18https://repositorio.cuc.edu.co/bitstreams/550c463a-d350-4bfe-9ae0-5d686eae2622/download1bb607118047afc5c385b82385dd931fMD5511323/8745oai:repositorio.cuc.edu.co:11323/87452024-09-17 10:54:37.413http://creativecommons.org/licenses/by-nc/4.0/Attribution-NonCommercial 4.0 Internationalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA==