On λ D − R0 And λ D − R1 Spaces

In this paper we introduce the new types of separation axioms called λ D − R0 and λ D − R1 spaces, by using λ D-open set. The notion λ D − R0 and λ D − R1 spaces are introduced and some of their properties are investigated.

Autores:
namiq, sarhad
ROSAS, ENNIS
Tipo de recurso:
Article of journal
Fecha de publicación:
2020
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/7483
Acceso en línea:
https://hdl.handle.net/11323/7483
https://repositorio.cuc.edu.co/
Palabra clave:
λ D−open set
λ D − R0
D − R1
Rights
openAccess
License
CC0 1.0 Universal
id RCUC2_75364c6f0302a743c46b0d7a2374c8d2
oai_identifier_str oai:repositorio.cuc.edu.co:11323/7483
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.spa.fl_str_mv On λ D − R0 And λ D − R1 Spaces
title On λ D − R0 And λ D − R1 Spaces
spellingShingle On λ D − R0 And λ D − R1 Spaces
λ D−open set
λ D − R0
D − R1
title_short On λ D − R0 And λ D − R1 Spaces
title_full On λ D − R0 And λ D − R1 Spaces
title_fullStr On λ D − R0 And λ D − R1 Spaces
title_full_unstemmed On λ D − R0 And λ D − R1 Spaces
title_sort On λ D − R0 And λ D − R1 Spaces
dc.creator.fl_str_mv namiq, sarhad
ROSAS, ENNIS
dc.contributor.author.spa.fl_str_mv namiq, sarhad
ROSAS, ENNIS
dc.subject.spa.fl_str_mv λ D−open set
λ D − R0
D − R1
topic λ D−open set
λ D − R0
D − R1
description In this paper we introduce the new types of separation axioms called λ D − R0 and λ D − R1 spaces, by using λ D-open set. The notion λ D − R0 and λ D − R1 spaces are introduced and some of their properties are investigated.
publishDate 2020
dc.date.accessioned.none.fl_str_mv 2020-11-25T15:39:05Z
dc.date.available.none.fl_str_mv 2020-11-25T15:39:05Z
dc.date.issued.none.fl_str_mv 2020
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_6501
status_str acceptedVersion
dc.identifier.issn.spa.fl_str_mv 1844-6094
2066-7752
dc.identifier.uri.spa.fl_str_mv https://hdl.handle.net/11323/7483
dc.identifier.doi.spa.fl_str_mv DOI: 10.2478/ausm-2020-0022
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
identifier_str_mv 1844-6094
2066-7752
DOI: 10.2478/ausm-2020-0022
Corporación Universidad de la Costa
REDICUC - Repositorio CUC
url https://hdl.handle.net/11323/7483
https://repositorio.cuc.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.references.spa.fl_str_mv [1] Alias B. Khalaf and Sarhad F. Namiq, New types of continuity and separation axiom based operation in topological spaces, M. Sc. Thesis, University of Sulaimani (2011).
[2] Alias B. Khalaf, Sarhad F. Namiq, Generalized λ−Closed Sets and (λ, γ) D−Continuous Functions, International Journal of Scientific & Engineering Research, Volume 3, Issue 12, December-2012 1 ISSN 2229–5518.
[3] A. S. Davis, Indexed systems of neighborhoods for general topologi-cal spaces, Amer. Math. Monthly, 68 (1961), 886–893.
[4] N. Levine, Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly, 70 (1) (1963), 36–41.
[5] Sarhad F. Namiq, Some Properties of λ D−Open Sets in Topological Spaces (submit).
[6] N. A. Shanin, On separation in topological spaces, Dokl. Akad. Nauk. SSSR,. 38 (1943), 110–113.
[7] J. N. Sharma and J. P. Chauhan, Topology (General and Algebraic), Krishna Prakashna Media, India. (2011).
dc.rights.spa.fl_str_mv CC0 1.0 Universal
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/publicdomain/zero/1.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv CC0 1.0 Universal
http://creativecommons.org/publicdomain/zero/1.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Corporación Universidad de la Costa
dc.source.spa.fl_str_mv Acta Universitatis Sapientiae, Mathematica
institution Corporación Universidad de la Costa
dc.source.url.spa.fl_str_mv http://www.acta.sapientia.ro/acta-math/C12-2/math122-08.pdf
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/db8782d8-8830-4c7b-bfd8-488c70d4675c/download
https://repositorio.cuc.edu.co/bitstreams/4a24a91f-4985-49b0-a301-851978e79cc8/download
https://repositorio.cuc.edu.co/bitstreams/ce415ad8-1b88-4c12-83c1-0d865e7afc07/download
https://repositorio.cuc.edu.co/bitstreams/ee30ac97-2c80-450d-a027-518711f07278/download
https://repositorio.cuc.edu.co/bitstreams/14dab611-c2cc-4272-8dd2-6ffea873d824/download
bitstream.checksum.fl_str_mv dcf8f5b0b721fab68949f0d52c141d56
42fd4ad1e89814f5e4a476b409eb708c
e30e9215131d99561d40d6b0abbe9bad
d77cfd288a876190cf646f7c77e7d4ed
4e2adccc4a2d3288333bde1eb6682a2a
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1811760722368004096
spelling namiq, sarhadROSAS, ENNIS2020-11-25T15:39:05Z2020-11-25T15:39:05Z20201844-60942066-7752https://hdl.handle.net/11323/7483DOI: 10.2478/ausm-2020-0022Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/In this paper we introduce the new types of separation axioms called λ D − R0 and λ D − R1 spaces, by using λ D-open set. The notion λ D − R0 and λ D − R1 spaces are introduced and some of their properties are investigated.namiq, sarhad-will be generated-orcid-0000-0001-8747-2542-600ROSAS, ENNIS-will be generated-orcid-0000-0001-8123-9344-600application/pdfengCorporación Universidad de la CostaCC0 1.0 Universalhttp://creativecommons.org/publicdomain/zero/1.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Acta Universitatis Sapientiae, Mathematicahttp://www.acta.sapientia.ro/acta-math/C12-2/math122-08.pdfλ D−open setλ D − R0D − R1On λ D − R0 And λ D − R1 SpacesArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersion[1] Alias B. Khalaf and Sarhad F. Namiq, New types of continuity and separation axiom based operation in topological spaces, M. Sc. Thesis, University of Sulaimani (2011).[2] Alias B. Khalaf, Sarhad F. Namiq, Generalized λ−Closed Sets and (λ, γ) D−Continuous Functions, International Journal of Scientific & Engineering Research, Volume 3, Issue 12, December-2012 1 ISSN 2229–5518.[3] A. S. Davis, Indexed systems of neighborhoods for general topologi-cal spaces, Amer. Math. Monthly, 68 (1961), 886–893.[4] N. Levine, Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly, 70 (1) (1963), 36–41.[5] Sarhad F. Namiq, Some Properties of λ D−Open Sets in Topological Spaces (submit).[6] N. A. Shanin, On separation in topological spaces, Dokl. Akad. Nauk. SSSR,. 38 (1943), 110–113.[7] J. N. Sharma and J. P. Chauhan, Topology (General and Algebraic), Krishna Prakashna Media, India. (2011).PublicationORIGINALOn λ.pdfOn λ.pdfapplication/pdf264861https://repositorio.cuc.edu.co/bitstreams/db8782d8-8830-4c7b-bfd8-488c70d4675c/downloaddcf8f5b0b721fab68949f0d52c141d56MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8701https://repositorio.cuc.edu.co/bitstreams/4a24a91f-4985-49b0-a301-851978e79cc8/download42fd4ad1e89814f5e4a476b409eb708cMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/ce415ad8-1b88-4c12-83c1-0d865e7afc07/downloade30e9215131d99561d40d6b0abbe9badMD53THUMBNAILOn λ.pdf.jpgOn λ.pdf.jpgimage/jpeg32935https://repositorio.cuc.edu.co/bitstreams/ee30ac97-2c80-450d-a027-518711f07278/downloadd77cfd288a876190cf646f7c77e7d4edMD54TEXTOn λ.pdf.txtOn λ.pdf.txttext/plain18174https://repositorio.cuc.edu.co/bitstreams/14dab611-c2cc-4272-8dd2-6ffea873d824/download4e2adccc4a2d3288333bde1eb6682a2aMD5511323/7483oai:repositorio.cuc.edu.co:11323/74832024-09-17 10:48:25.88http://creativecommons.org/publicdomain/zero/1.0/CC0 1.0 Universalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA==