Performance assessment and economic perspectives of integrated PEM fuel cell and PEM electrolyzer for electric power generation
The study presents a complete one-dimensional model to evaluate the parameters that describe the operation of a Proton Exchange Membrane (PEM) electrolyzer and PEM fuel cell. The mathematical modeling is implemented in Matlab/Simulink® software to evaluate the influence of parameters such as tempera...
- Autores:
-
Escobar Yonoff, Rony
Maestre Cambronel, Daniel Esteban
Charry, Sebastián
Rincón Montenegro, Adriana
Portnoy, Ivan
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2021
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/8362
- Acceso en línea:
- https://hdl.handle.net/11323/8362
https://doi.org/10.1016/j.heliyon.2021.e06506
https://repositorio.cuc.edu.co/
- Palabra clave:
- Electrolyzer
Fuel cell
Economic assessment
Proton exchange membrane
Electric power generation
- Rights
- openAccess
- License
- CC0 1.0 Universal
id |
RCUC2_74d2746903512fe276baf9972427ab8a |
---|---|
oai_identifier_str |
oai:repositorio.cuc.edu.co:11323/8362 |
network_acronym_str |
RCUC2 |
network_name_str |
REDICUC - Repositorio CUC |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Performance assessment and economic perspectives of integrated PEM fuel cell and PEM electrolyzer for electric power generation |
title |
Performance assessment and economic perspectives of integrated PEM fuel cell and PEM electrolyzer for electric power generation |
spellingShingle |
Performance assessment and economic perspectives of integrated PEM fuel cell and PEM electrolyzer for electric power generation Electrolyzer Fuel cell Economic assessment Proton exchange membrane Electric power generation |
title_short |
Performance assessment and economic perspectives of integrated PEM fuel cell and PEM electrolyzer for electric power generation |
title_full |
Performance assessment and economic perspectives of integrated PEM fuel cell and PEM electrolyzer for electric power generation |
title_fullStr |
Performance assessment and economic perspectives of integrated PEM fuel cell and PEM electrolyzer for electric power generation |
title_full_unstemmed |
Performance assessment and economic perspectives of integrated PEM fuel cell and PEM electrolyzer for electric power generation |
title_sort |
Performance assessment and economic perspectives of integrated PEM fuel cell and PEM electrolyzer for electric power generation |
dc.creator.fl_str_mv |
Escobar Yonoff, Rony Maestre Cambronel, Daniel Esteban Charry, Sebastián Rincón Montenegro, Adriana Portnoy, Ivan |
dc.contributor.author.spa.fl_str_mv |
Escobar Yonoff, Rony Maestre Cambronel, Daniel Esteban Charry, Sebastián Rincón Montenegro, Adriana Portnoy, Ivan |
dc.subject.eng.fl_str_mv |
Electrolyzer Fuel cell Economic assessment Proton exchange membrane Electric power generation |
topic |
Electrolyzer Fuel cell Economic assessment Proton exchange membrane Electric power generation |
description |
The study presents a complete one-dimensional model to evaluate the parameters that describe the operation of a Proton Exchange Membrane (PEM) electrolyzer and PEM fuel cell. The mathematical modeling is implemented in Matlab/Simulink® software to evaluate the influence of parameters such as temperature, pressure, and overpotentials on the overall performance. The models are further merged into an integrated electrolyzer-fuel cell system for electrical power generation. The operational description of the integrated system focuses on estimating the overall efficiency as a novel indicator. Additionally, the study presents an economic assessment to evaluate the cost-effectiveness based on different economic metrics such as capital cost, electricity cost, and payback period. The parametric analysis showed that as the temperature rises from 30 to 70 °C in both devices, the efficiency is improved between 5-20%. In contrast, pressure differences feature less relevance on the overall performance. Ohmic and activation overpotentials are highlighted for the highest impact on the generated and required voltage. Overall, the current density exhibited an inverse relation with the efficiency of both devices. The economic evaluation revealed that the integrated system can operate at variable load conditions while maintaining an electricity cost between 0.3-0.45 $/kWh. Also, the capital cost can be reduced up to 25% while operating at a low current density and maximum temperature. The payback period varies between 6-10 years for an operational temperature of 70 °C, which reinforces the viability of the system. Overall, hydrogen-powered systems stand as a promising technology to overcome energy transition as they provide robust operation from both energetic and economic viewpoints. |
publishDate |
2021 |
dc.date.accessioned.none.fl_str_mv |
2021-06-09T16:07:48Z |
dc.date.available.none.fl_str_mv |
2021-06-09T16:07:48Z |
dc.date.issued.none.fl_str_mv |
2021 |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
acceptedVersion |
dc.identifier.issn.spa.fl_str_mv |
2405-8440 |
dc.identifier.uri.spa.fl_str_mv |
https://hdl.handle.net/11323/8362 |
dc.identifier.doi.spa.fl_str_mv |
https://doi.org/10.1016/j.heliyon.2021.e06506 |
dc.identifier.instname.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.identifier.reponame.spa.fl_str_mv |
REDICUC - Repositorio CUC |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.cuc.edu.co/ |
identifier_str_mv |
2405-8440 Corporación Universidad de la Costa REDICUC - Repositorio CUC |
url |
https://hdl.handle.net/11323/8362 https://doi.org/10.1016/j.heliyon.2021.e06506 https://repositorio.cuc.edu.co/ |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.references.spa.fl_str_mv |
[1] G. Abu-Rumman, A.I. Khdair, S.I. Khdair, Current status and future investment potential in renewable energy in Jordan: an overview, Heliyon 6 (2) (2020), e03346. [2] G.V. Ochoa, C. Isaza-Roldan, J. Duarte Forero, Economic and exergo-advance analysis of a waste heat recovery system based on regenerative organic rankine cycle under organic fluids with low global warming potential, Energies 13 (6) (2020) 1317. [3] A. Ursúa, P. Sanchis, Static–dynamic modelling of the electrical behaviour of a commercial advanced alkaline water electrolyser, Int. J. Hydrogen Energy 37 (24) (2012) 18598–18614. [4] K. Zeng, D. Zhang, Recent progress in alkaline water electrolysis for hydrogen production and applications, Prog. Energy Combust. Sci. 36 (3) (2010) 307–326. [5] G. Amador, et al., Characteristics of auto-ignition in internal combustion engines operated with gaseous fuels of variable methane number, J. Energy Resour. Technol. 139 (2017). [6] J. Duarte Forero, G. Valencia Ochoa, J. Piero Rojas, Effect of the geometric profile of top ring on the tribological characteristics of a low-displacement diesel engine, Lubricants 8 (8) (2020) 83. [7] G. Valencia, C. Penaloza, J. Forero, Thermo-economic assessment of a gas ~ microturbine-absorption chiller trigeneration system under different compressor inlet air temperatures, Energies 12 (2019) 4643. [8] F. Guti errez-Martín, L. Amodio, M. Pagano, Hydrogen production by water electrolysis and off-grid solar PV, Int. J. Hydrogen Energy xxxx (2020). [9] M.H.S. Bargal, M.A.A. Abdelkareem, Q. Tao, J. Li, J. Shi, Y. Wang, Liquid cooling techniques in proton exchange membrane fuel cell stacks: a detailed survey, Alexandria Eng. J. 59 (2) (2020) 635–655. [10] R.E. Yonoff, G.V. Ochoa, Y. Cardenas-Escorcia, J.I. Silva-Ortega, L. Merino-Stand, ~ Research trends in proton exchange membrane fuel cells during 2008–2018: a bibliometric analysis, Heliyon 5 (5) (2019), e01724. [11] M. Abdollahzadeh, P. Ribeirinha, M. Boaventura, A. Mendes, Three-dimensional modeling of PEMFC with contaminated anode fuel, Energy 152 (2018) 939–959. [12] M. Sahraoui, Y. Bichiou, K. Halouani, Three-dimensional modeling of water transport in PEMFC, Int. J. Hydrogen Energy 38 (2012). [13] J.-P. Kone, X. Zhang, Y. Yan, G. Hu, G. Ahmadi, Three-dimensional multiphase flow computational fluid dynamics models for proton exchange membrane fuel cell: a theoretical development, J. Comput. Multiph. Flows 9 (2017), 1757482X1769234. [14] K. Shekhar, An Investigation into the Minimum Dimensionality Required for Accurate Simulation of Proton Exchange Membrane Fuel Cells by the Comparison between 1- and 3-dimension Models, 2013. [15] Z. Abdin, C.J. Webb, E.M. Gray, PEM fuel cell model and simulation in Matlab–Simulink based on physical parameters, Energy 116 (2016) 1131–1144. [16] S.L. Chavan, D.B. Talange, Modeling and performance evaluation of PEM fuel cell by controlling its input parameters, Energy 138 (2017) 437–445. [17] T. Yigit, O.F. Selamet, Mathematical modeling and dynamic Simulink simulation of high-pressure PEM electrolyzer system, Int. J. Hydrogen Energy 41 (32) (2016) 13901–13914. [18] Z. Abdin, C.J. Webb, E.M. Gray, Modelling and simulation of an alkaline electrolyser cell, Energy 138 (2017) 316–331. [19] B. Han, S.M. Steen, J. Mo, F.-Y. Zhang, Electrochemical performance modeling of a proton exchange membrane electrolyzer cell for hydrogen energy, Int. J. Hydrogen Energy 40 (22) (2015) 7006–7016. [20] M. Alibaba, R. Pourdarbani, M.H.K. Manesh, G.V. Ochoa, J.D. Forero, Thermodynamic, exergo-economic and exergo-environmental analysis of hybrid geothermal-solar power plant based on ORC cycle using emergy concept, Heliyon 6 (4) (2020), e03758. [21] K. Moorthy, N. Patwa, Y. Gupta, et al., Breaking barriers in deployment of renewable energy, Heliyon 5 (1) (2019), e01166. [22] F. Alshehri, V.G. Su arez, J.L. Rueda Torres, A. Perilla, M.A.M.M. van der Meijden, Modelling and evaluation of PEM hydrogen technologies for frequency ancillary services in future multi-energy sustainable power systems, Heliyon 5 (4) (2019), e01396. [23] C.A. Frangopoulos, L.G. Nakos, Development of a model for thermoeconomic design and operation optimization of a PEM fuel cell system, Energy 31 (10–11) (2006) 1501–1519. [24] A.A. AlZahrani, I. Dincer, Exergoeconomic analysis of hydrogen production using a standalone high-temperature electrolyzer, Int. J. Hydrogen Energy xxxx (2020). [25] T. Taner, S.A.H. Naqvi, M. Ozkaymak, Techno-economic analysis of a more efficient hydrogen generation system prototype: a case study of PEM electrolyzer with Cr-C coated SS304 bipolar plates, Fuel Cells 19 (1) (2019) 19–26. [26] E.I. Zoulias, N. Lymberopoulos, Techno-economic analysis of the integration of hydrogen energy technologies in renewable energy-based stand-alone power systems, Renew. Energy 32 (4) (2007) 680–696. [27] M. Thema, F. Bauer, M. Sterner, Power-to-Gas: electrolysis and methanation status review, Renew. Sustain. Energy Rev. 112 (Sep-2019) 775–787. Elsevier Ltd. [28] H. Steeb, W. Seeger, H. Aba Oud, Hysolar: an overview on the German-Saudi Arabian programme on solar hydrogen, Int. J. Hydrogen Energy 19 (8) (1994) 683–686. [29] T. Lepage, M. Kammoun, Q. Schmetz, A. Richel, Biomass-to-hydrogen: a review of main routes production, processes evaluation and techno-economical assessment, Biomass Bioenergy 144 (Jan-2021) 105920. Elsevier Ltd. [30] D. Milani, A. Kiani, R. McNaughton, Renewable-powered hydrogen economy from Australia’s perspective, Int. J. Hydrogen Energy 45 (46) (2020) 24125–24145. [31] I. Dincer, C. Acar, Review and evaluation of hydrogen production methods for better sustainability, Int. J. Hydrogen Energy 40 (34) (2014) 11094–11111. [32] K.K.T. Thanapalan, J.G. Williams, G.P. Liu, D. Rees, Modelling OF a PEM fuel cell system, IFAC Proc. Vol. 41 (2) (2008) 4636–4641. [33] T. Mennola, et al., Mass transport in the cathode of a free-breathing polymer electrolyte membrane fuel cell, J. Appl. Electrochem. 33 (11) (2003) 979–987. [34] H. Pukrushpan, T. Jay, Anna G. Stefanopoulou, Peng, Control of Fuel Cell Power Systems, Springer, 2004. [35] J.H. Nam, M. Kaviany, Effective diffusivity and water-saturation distribution in single- and two-layer PEMFC diffusion medium, Int. J. Heat Mass Tran. 46 (24) (2003) 4595–4611. [36] R. García-Valverde, N. Espinosa, A. Urbina, Simple PEM water electrolyser model and experimental validation, Int. J. Hydrogen Energy 37 (2) (2012) 1927–1938. [37] H. Gorgün, Dynamic modelling of a proton exchange membrane (PEM) electrolyzer, € Int. J. Hydrogen Energy 31 (1) (2006) 29–38. [38] K.S. V Santhanam, R.J. Press, M.J. Miri, A. V Bailey, G.A. Takacs, Introduction to Hydrogen Technology, Wiley, 2017. [39] C. Vallieres, D. Winkelmann, D. Roizard, E. Favre, P. Scharfer, M. Kind, On Schroeder’s paradox, J. Membr. Sci. 278 (1) (2006) 357–364. [40] L. Onishi, J. Prausnitz, WaterNafion equilibria. Absence of Schroeder’s paradox, J. Phys. Chem. B 111 (2007) 10166–10173. [41] T.A. Zawodzinski, M. Neeman, L.O. Sillerud, S. Gottesfeld, Determination of water diffusion coefficients in perfluorosulfonate ionomeric membranes, J. Phys. Chem. 95 (15) (1991) 6040–6044. [42] F. Marangio, M. Santarelli, M. Calì, Theoretical model and experimental analysis of a high pressure PEM water electrolyser for hydrogen production, Int. J. Hydrogen Energy 34 (3) (2009) 1143–1158. [43] D.J. Kim, M.J. Jo, S.Y. Nam, A review of polymer–nanocomposite electrolyte membranes for fuel cell application, J. Ind. Eng. Chem. 21 (2015) 36–52. [44] J. Qi, Y. Zhai, J. St-Pierre, Effect of contaminant mixtures in air on proton exchange membrane fuel cell performance, J. Power Sources 413 (2019) 86–97. [45] J. Milewski, G. Guandalini, S. Campanari, Modeling an alkaline electrolysis cell through reduced-order and loss-estimate approaches, J. Power Sources 269 (2014) 203–211. [46] P.D. Beattie, V.I. Basura, S. Holdcroft, Temperature and pressure dependence of O2 reduction at Pt∣Nafion® 117 and Pt∣BAM® 407 interfaces, J. Electroanal. Chem. 468 (2) (1999) 180–192. [47] N.M. Markovi c, B.N. Grgur, P.N. Ross, Temperature-dependent hydrogen electrochemistry on platinum low-index single-crystal surfaces in acid solutions, J. Phys. Chem. B 101 (27) (1997) 5405–5413. [48] M.G. Santarelli, M.F. Torchio, P. Cochis, Parameters estimation of a PEM fuel cell polarization curve and analysis of their behavior with temperature, J. Power Sources 159 (2) (2006) 824–835. [49] T.E. Springer, T.A. Zawodzinski, S. Gottesfeld, Polymer electrolyte fuel cell model, J. Electrochem. Soc. 138 (8) (1991) 2334–2342. [50] F. Barbir, Fuel cell electrochemistry, in: PEM Fuel Cells: Theory and Practice, Academic Press, Burlington, 2005, pp. 33–72. [51] R.M. Dell, P.T. Moseley, D.A.J. Rand, Hydrogen, fuel cells and fuel cell vehicles, in: Towards sustainable road transport, Academic Press, Boston, 2014, pp. 260–295. [52] F. Barbir, T. Gomez, Ef ficiency and economics of proton exchange membrane (PEM) fuel cells, Int. J. Hydrogen Energy 22 (10–11) (1997) 1027–1037. [53] F. Barbir, Fuel cell applications, in: F. Barbir (Ed.), PEM Fuel Cells, second ed., Academic Press, Boston, 2013, pp. 373–434. [54] L. Zhou, Progress and problems in hydrogen storage methods, Renew. Sustain. Energy Rev. 9 (4) (Aug-2005) 395–408. Elsevier Ltd. [55] S.K. Kamarudin, W.R.W. Daud, A. Md. Som, M.S. Takriff, A.W. Mohammad, Technical design and economic evaluation of a PEM fuel cell system, J. Power Sources 157 (2) (2006) 641–649. [56] S. Rahimi, M. Meratizaman, S. Monadizadeh, M. Amidpour, Techno-economic analysis of wind turbine-PEM (polymer electrolyte membrane) fuel cell hybrid system in standalone area, Energy 67 (2014) 381–396. [57] A. Mayyas, et al., Manufacturing cost analysis for proton exchange membrane water electrolyzers manufacturing cost analysis for proton exchange membrane water electrolyzers, Natl. Renew. Energy Lab. (2019) 65. August. [58] R. Yukesh Kannah, et al., Techno-economic assessment of various hydrogen production methods – A review, Bioresour. Technol. 319 (Jan-2021) 124175. Elsevier Ltd. [59] G. Valencia Ochoa, C. Acevedo Penaloza, J. Duarte Forero, Thermoeconomic ~ optimization with PSO algorithm of waste heat recovery systems based on organic rankine cycle system for a natural gas engine, Energies 12 (21) (2019) 4165. [60] F. Consuegra, A. Bula, W. Guillín, J. S anchez, J. Duarte Forero, Instantaneous incylinder volume considering deformation and clearance due to lubricating film in reciprocating internal combustion engines, Energies 12 (8) (2019) 1437. [61] G. Valencia Ochoa, J. C ardenas Gutierrez, J. Duarte Forero, Exergy, economic, and life-cycle assessment of ORC system for waste heat recovery in a natural gas internal combustion engine, Resources 9 (1) (2020) 2. [62] Z. Zhang, X. Wang, X. Zhang, L. Jia, Optimizing the performance of a single PEM fuel cell, J. Fuel Cell Sci. Technol. 5 (3) (2008). [63] A. Fontalvo, J. Solano, C. Pedraza, A. Bula, A. Gonzalez Quiroga, R. Vasquez Padilla, Energy, exergy and economic evaluation comparison of small-scale single and dual pressure organic rankine cycles integrated with low-grade heat sources, Entropy 19 (10) (2017) 476. |
dc.rights.spa.fl_str_mv |
CC0 1.0 Universal |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/publicdomain/zero/1.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
CC0 1.0 Universal http://creativecommons.org/publicdomain/zero/1.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.source.spa.fl_str_mv |
Heliyon |
institution |
Corporación Universidad de la Costa |
dc.source.url.spa.fl_str_mv |
https://www.sciencedirect.com/science/article/pii/S2405844021006095?via%3Dihub |
bitstream.url.fl_str_mv |
https://repositorio.cuc.edu.co/bitstreams/94124f75-97cb-4e2b-996f-dc6206a530ab/download https://repositorio.cuc.edu.co/bitstreams/dff04a24-585b-4f59-914d-7d0872640841/download https://repositorio.cuc.edu.co/bitstreams/8b40e446-0d47-41f3-ac6a-ea9aa108109b/download https://repositorio.cuc.edu.co/bitstreams/3dbf70ba-569b-4889-b747-f74ff4388862/download https://repositorio.cuc.edu.co/bitstreams/16f40937-2a73-4eb0-8148-daddf03f66d7/download |
bitstream.checksum.fl_str_mv |
2156e0296442c475d4181cf54a4819be 42fd4ad1e89814f5e4a476b409eb708c e30e9215131d99561d40d6b0abbe9bad 2bfc333415704dd14f5592973a5cf310 28ff31b818413e907e4b00d1e6069012 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad de la Costa CUC |
repository.mail.fl_str_mv |
repdigital@cuc.edu.co |
_version_ |
1811760761060458496 |
spelling |
Escobar Yonoff, RonyMaestre Cambronel, Daniel EstebanCharry, SebastiánRincón Montenegro, AdrianaPortnoy, Ivan2021-06-09T16:07:48Z2021-06-09T16:07:48Z20212405-8440https://hdl.handle.net/11323/8362https://doi.org/10.1016/j.heliyon.2021.e06506Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/The study presents a complete one-dimensional model to evaluate the parameters that describe the operation of a Proton Exchange Membrane (PEM) electrolyzer and PEM fuel cell. The mathematical modeling is implemented in Matlab/Simulink® software to evaluate the influence of parameters such as temperature, pressure, and overpotentials on the overall performance. The models are further merged into an integrated electrolyzer-fuel cell system for electrical power generation. The operational description of the integrated system focuses on estimating the overall efficiency as a novel indicator. Additionally, the study presents an economic assessment to evaluate the cost-effectiveness based on different economic metrics such as capital cost, electricity cost, and payback period. The parametric analysis showed that as the temperature rises from 30 to 70 °C in both devices, the efficiency is improved between 5-20%. In contrast, pressure differences feature less relevance on the overall performance. Ohmic and activation overpotentials are highlighted for the highest impact on the generated and required voltage. Overall, the current density exhibited an inverse relation with the efficiency of both devices. The economic evaluation revealed that the integrated system can operate at variable load conditions while maintaining an electricity cost between 0.3-0.45 $/kWh. Also, the capital cost can be reduced up to 25% while operating at a low current density and maximum temperature. The payback period varies between 6-10 years for an operational temperature of 70 °C, which reinforces the viability of the system. Overall, hydrogen-powered systems stand as a promising technology to overcome energy transition as they provide robust operation from both energetic and economic viewpoints.Escobar Yonoff, Rony-will be generated-orcid-0000-0002-7214-8974-600Maestre Cambronel, Daniel Esteban-will be generated-orcid-0000-0002-0390-1555-600Charry, SebastiánRincón Montenegro, Adriana-will be generated-orcid-0000-0002-1324-9740-600Portnoy, Ivan-will be generated-orcid-0000-0002-7334-7596-600application/pdfengCorporación Universidad de la CostaCC0 1.0 Universalhttp://creativecommons.org/publicdomain/zero/1.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Heliyonhttps://www.sciencedirect.com/science/article/pii/S2405844021006095?via%3DihubElectrolyzerFuel cellEconomic assessmentProton exchange membraneElectric power generationPerformance assessment and economic perspectives of integrated PEM fuel cell and PEM electrolyzer for electric power generationArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersion[1] G. Abu-Rumman, A.I. Khdair, S.I. Khdair, Current status and future investment potential in renewable energy in Jordan: an overview, Heliyon 6 (2) (2020), e03346.[2] G.V. Ochoa, C. Isaza-Roldan, J. Duarte Forero, Economic and exergo-advance analysis of a waste heat recovery system based on regenerative organic rankine cycle under organic fluids with low global warming potential, Energies 13 (6) (2020) 1317.[3] A. Ursúa, P. Sanchis, Static–dynamic modelling of the electrical behaviour of a commercial advanced alkaline water electrolyser, Int. J. Hydrogen Energy 37 (24) (2012) 18598–18614.[4] K. Zeng, D. Zhang, Recent progress in alkaline water electrolysis for hydrogen production and applications, Prog. Energy Combust. Sci. 36 (3) (2010) 307–326.[5] G. Amador, et al., Characteristics of auto-ignition in internal combustion engines operated with gaseous fuels of variable methane number, J. Energy Resour. Technol. 139 (2017).[6] J. Duarte Forero, G. Valencia Ochoa, J. Piero Rojas, Effect of the geometric profile of top ring on the tribological characteristics of a low-displacement diesel engine, Lubricants 8 (8) (2020) 83.[7] G. Valencia, C. Penaloza, J. Forero, Thermo-economic assessment of a gas ~ microturbine-absorption chiller trigeneration system under different compressor inlet air temperatures, Energies 12 (2019) 4643.[8] F. Guti errez-Martín, L. Amodio, M. Pagano, Hydrogen production by water electrolysis and off-grid solar PV, Int. J. Hydrogen Energy xxxx (2020).[9] M.H.S. Bargal, M.A.A. Abdelkareem, Q. Tao, J. Li, J. Shi, Y. Wang, Liquid cooling techniques in proton exchange membrane fuel cell stacks: a detailed survey, Alexandria Eng. J. 59 (2) (2020) 635–655.[10] R.E. Yonoff, G.V. Ochoa, Y. Cardenas-Escorcia, J.I. Silva-Ortega, L. Merino-Stand, ~ Research trends in proton exchange membrane fuel cells during 2008–2018: a bibliometric analysis, Heliyon 5 (5) (2019), e01724.[11] M. Abdollahzadeh, P. Ribeirinha, M. Boaventura, A. Mendes, Three-dimensional modeling of PEMFC with contaminated anode fuel, Energy 152 (2018) 939–959.[12] M. Sahraoui, Y. Bichiou, K. Halouani, Three-dimensional modeling of water transport in PEMFC, Int. J. Hydrogen Energy 38 (2012).[13] J.-P. Kone, X. Zhang, Y. Yan, G. Hu, G. Ahmadi, Three-dimensional multiphase flow computational fluid dynamics models for proton exchange membrane fuel cell: a theoretical development, J. Comput. Multiph. Flows 9 (2017), 1757482X1769234.[14] K. Shekhar, An Investigation into the Minimum Dimensionality Required for Accurate Simulation of Proton Exchange Membrane Fuel Cells by the Comparison between 1- and 3-dimension Models, 2013.[15] Z. Abdin, C.J. Webb, E.M. Gray, PEM fuel cell model and simulation in Matlab–Simulink based on physical parameters, Energy 116 (2016) 1131–1144.[16] S.L. Chavan, D.B. Talange, Modeling and performance evaluation of PEM fuel cell by controlling its input parameters, Energy 138 (2017) 437–445.[17] T. Yigit, O.F. Selamet, Mathematical modeling and dynamic Simulink simulation of high-pressure PEM electrolyzer system, Int. J. Hydrogen Energy 41 (32) (2016) 13901–13914.[18] Z. Abdin, C.J. Webb, E.M. Gray, Modelling and simulation of an alkaline electrolyser cell, Energy 138 (2017) 316–331.[19] B. Han, S.M. Steen, J. Mo, F.-Y. Zhang, Electrochemical performance modeling of a proton exchange membrane electrolyzer cell for hydrogen energy, Int. J. Hydrogen Energy 40 (22) (2015) 7006–7016.[20] M. Alibaba, R. Pourdarbani, M.H.K. Manesh, G.V. Ochoa, J.D. Forero, Thermodynamic, exergo-economic and exergo-environmental analysis of hybrid geothermal-solar power plant based on ORC cycle using emergy concept, Heliyon 6 (4) (2020), e03758.[21] K. Moorthy, N. Patwa, Y. Gupta, et al., Breaking barriers in deployment of renewable energy, Heliyon 5 (1) (2019), e01166.[22] F. Alshehri, V.G. Su arez, J.L. Rueda Torres, A. Perilla, M.A.M.M. van der Meijden, Modelling and evaluation of PEM hydrogen technologies for frequency ancillary services in future multi-energy sustainable power systems, Heliyon 5 (4) (2019), e01396.[23] C.A. Frangopoulos, L.G. Nakos, Development of a model for thermoeconomic design and operation optimization of a PEM fuel cell system, Energy 31 (10–11) (2006) 1501–1519.[24] A.A. AlZahrani, I. Dincer, Exergoeconomic analysis of hydrogen production using a standalone high-temperature electrolyzer, Int. J. Hydrogen Energy xxxx (2020).[25] T. Taner, S.A.H. Naqvi, M. Ozkaymak, Techno-economic analysis of a more efficient hydrogen generation system prototype: a case study of PEM electrolyzer with Cr-C coated SS304 bipolar plates, Fuel Cells 19 (1) (2019) 19–26.[26] E.I. Zoulias, N. Lymberopoulos, Techno-economic analysis of the integration of hydrogen energy technologies in renewable energy-based stand-alone power systems, Renew. Energy 32 (4) (2007) 680–696.[27] M. Thema, F. Bauer, M. Sterner, Power-to-Gas: electrolysis and methanation status review, Renew. Sustain. Energy Rev. 112 (Sep-2019) 775–787. Elsevier Ltd.[28] H. Steeb, W. Seeger, H. Aba Oud, Hysolar: an overview on the German-Saudi Arabian programme on solar hydrogen, Int. J. Hydrogen Energy 19 (8) (1994) 683–686.[29] T. Lepage, M. Kammoun, Q. Schmetz, A. Richel, Biomass-to-hydrogen: a review of main routes production, processes evaluation and techno-economical assessment, Biomass Bioenergy 144 (Jan-2021) 105920. Elsevier Ltd.[30] D. Milani, A. Kiani, R. McNaughton, Renewable-powered hydrogen economy from Australia’s perspective, Int. J. Hydrogen Energy 45 (46) (2020) 24125–24145.[31] I. Dincer, C. Acar, Review and evaluation of hydrogen production methods for better sustainability, Int. J. Hydrogen Energy 40 (34) (2014) 11094–11111.[32] K.K.T. Thanapalan, J.G. Williams, G.P. Liu, D. Rees, Modelling OF a PEM fuel cell system, IFAC Proc. Vol. 41 (2) (2008) 4636–4641.[33] T. Mennola, et al., Mass transport in the cathode of a free-breathing polymer electrolyte membrane fuel cell, J. Appl. Electrochem. 33 (11) (2003) 979–987.[34] H. Pukrushpan, T. Jay, Anna G. Stefanopoulou, Peng, Control of Fuel Cell Power Systems, Springer, 2004.[35] J.H. Nam, M. Kaviany, Effective diffusivity and water-saturation distribution in single- and two-layer PEMFC diffusion medium, Int. J. Heat Mass Tran. 46 (24) (2003) 4595–4611.[36] R. García-Valverde, N. Espinosa, A. Urbina, Simple PEM water electrolyser model and experimental validation, Int. J. Hydrogen Energy 37 (2) (2012) 1927–1938.[37] H. Gorgün, Dynamic modelling of a proton exchange membrane (PEM) electrolyzer, € Int. J. Hydrogen Energy 31 (1) (2006) 29–38.[38] K.S. V Santhanam, R.J. Press, M.J. Miri, A. V Bailey, G.A. Takacs, Introduction to Hydrogen Technology, Wiley, 2017.[39] C. Vallieres, D. Winkelmann, D. Roizard, E. Favre, P. Scharfer, M. Kind, On Schroeder’s paradox, J. Membr. Sci. 278 (1) (2006) 357–364.[40] L. Onishi, J. Prausnitz, WaterNafion equilibria. Absence of Schroeder’s paradox, J. Phys. Chem. B 111 (2007) 10166–10173.[41] T.A. Zawodzinski, M. Neeman, L.O. Sillerud, S. Gottesfeld, Determination of water diffusion coefficients in perfluorosulfonate ionomeric membranes, J. Phys. Chem. 95 (15) (1991) 6040–6044.[42] F. Marangio, M. Santarelli, M. Calì, Theoretical model and experimental analysis of a high pressure PEM water electrolyser for hydrogen production, Int. J. Hydrogen Energy 34 (3) (2009) 1143–1158.[43] D.J. Kim, M.J. Jo, S.Y. Nam, A review of polymer–nanocomposite electrolyte membranes for fuel cell application, J. Ind. Eng. Chem. 21 (2015) 36–52.[44] J. Qi, Y. Zhai, J. St-Pierre, Effect of contaminant mixtures in air on proton exchange membrane fuel cell performance, J. Power Sources 413 (2019) 86–97.[45] J. Milewski, G. Guandalini, S. Campanari, Modeling an alkaline electrolysis cell through reduced-order and loss-estimate approaches, J. Power Sources 269 (2014) 203–211.[46] P.D. Beattie, V.I. Basura, S. Holdcroft, Temperature and pressure dependence of O2 reduction at Pt∣Nafion® 117 and Pt∣BAM® 407 interfaces, J. Electroanal. Chem. 468 (2) (1999) 180–192.[47] N.M. Markovi c, B.N. Grgur, P.N. Ross, Temperature-dependent hydrogen electrochemistry on platinum low-index single-crystal surfaces in acid solutions, J. Phys. Chem. B 101 (27) (1997) 5405–5413.[48] M.G. Santarelli, M.F. Torchio, P. Cochis, Parameters estimation of a PEM fuel cell polarization curve and analysis of their behavior with temperature, J. Power Sources 159 (2) (2006) 824–835.[49] T.E. Springer, T.A. Zawodzinski, S. Gottesfeld, Polymer electrolyte fuel cell model, J. Electrochem. Soc. 138 (8) (1991) 2334–2342.[50] F. Barbir, Fuel cell electrochemistry, in: PEM Fuel Cells: Theory and Practice, Academic Press, Burlington, 2005, pp. 33–72.[51] R.M. Dell, P.T. Moseley, D.A.J. Rand, Hydrogen, fuel cells and fuel cell vehicles, in: Towards sustainable road transport, Academic Press, Boston, 2014, pp. 260–295.[52] F. Barbir, T. Gomez, Ef ficiency and economics of proton exchange membrane (PEM) fuel cells, Int. J. Hydrogen Energy 22 (10–11) (1997) 1027–1037.[53] F. Barbir, Fuel cell applications, in: F. Barbir (Ed.), PEM Fuel Cells, second ed., Academic Press, Boston, 2013, pp. 373–434.[54] L. Zhou, Progress and problems in hydrogen storage methods, Renew. Sustain. Energy Rev. 9 (4) (Aug-2005) 395–408. Elsevier Ltd.[55] S.K. Kamarudin, W.R.W. Daud, A. Md. Som, M.S. Takriff, A.W. Mohammad, Technical design and economic evaluation of a PEM fuel cell system, J. Power Sources 157 (2) (2006) 641–649.[56] S. Rahimi, M. Meratizaman, S. Monadizadeh, M. Amidpour, Techno-economic analysis of wind turbine-PEM (polymer electrolyte membrane) fuel cell hybrid system in standalone area, Energy 67 (2014) 381–396.[57] A. Mayyas, et al., Manufacturing cost analysis for proton exchange membrane water electrolyzers manufacturing cost analysis for proton exchange membrane water electrolyzers, Natl. Renew. Energy Lab. (2019) 65. August.[58] R. Yukesh Kannah, et al., Techno-economic assessment of various hydrogen production methods – A review, Bioresour. Technol. 319 (Jan-2021) 124175. Elsevier Ltd.[59] G. Valencia Ochoa, C. Acevedo Penaloza, J. Duarte Forero, Thermoeconomic ~ optimization with PSO algorithm of waste heat recovery systems based on organic rankine cycle system for a natural gas engine, Energies 12 (21) (2019) 4165.[60] F. Consuegra, A. Bula, W. Guillín, J. S anchez, J. Duarte Forero, Instantaneous incylinder volume considering deformation and clearance due to lubricating film in reciprocating internal combustion engines, Energies 12 (8) (2019) 1437.[61] G. Valencia Ochoa, J. C ardenas Gutierrez, J. Duarte Forero, Exergy, economic, and life-cycle assessment of ORC system for waste heat recovery in a natural gas internal combustion engine, Resources 9 (1) (2020) 2.[62] Z. Zhang, X. Wang, X. Zhang, L. Jia, Optimizing the performance of a single PEM fuel cell, J. Fuel Cell Sci. Technol. 5 (3) (2008).[63] A. Fontalvo, J. Solano, C. Pedraza, A. Bula, A. Gonzalez Quiroga, R. Vasquez Padilla, Energy, exergy and economic evaluation comparison of small-scale single and dual pressure organic rankine cycles integrated with low-grade heat sources, Entropy 19 (10) (2017) 476.PublicationORIGINALPerformance assessment and economic perspectives of integrated PEM fuel cell and PEM electrolyzer for electric power generation.pdfPerformance assessment and economic perspectives of integrated PEM fuel cell and PEM electrolyzer for electric power generation.pdfapplication/pdf3834056https://repositorio.cuc.edu.co/bitstreams/94124f75-97cb-4e2b-996f-dc6206a530ab/download2156e0296442c475d4181cf54a4819beMD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8701https://repositorio.cuc.edu.co/bitstreams/dff04a24-585b-4f59-914d-7d0872640841/download42fd4ad1e89814f5e4a476b409eb708cMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/8b40e446-0d47-41f3-ac6a-ea9aa108109b/downloade30e9215131d99561d40d6b0abbe9badMD53THUMBNAILPerformance assessment and economic perspectives of integrated PEM fuel cell and PEM electrolyzer for electric power generation.pdf.jpgPerformance assessment and economic perspectives of integrated PEM fuel cell and PEM electrolyzer for electric power generation.pdf.jpgimage/jpeg62838https://repositorio.cuc.edu.co/bitstreams/3dbf70ba-569b-4889-b747-f74ff4388862/download2bfc333415704dd14f5592973a5cf310MD54TEXTPerformance assessment and economic perspectives of integrated PEM fuel cell and PEM electrolyzer for electric power generation.pdf.txtPerformance assessment and economic perspectives of integrated PEM fuel cell and PEM electrolyzer for electric power generation.pdf.txttext/plain76526https://repositorio.cuc.edu.co/bitstreams/16f40937-2a73-4eb0-8148-daddf03f66d7/download28ff31b818413e907e4b00d1e6069012MD5511323/8362oai:repositorio.cuc.edu.co:11323/83622024-09-17 11:01:51.139http://creativecommons.org/publicdomain/zero/1.0/CC0 1.0 Universalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA== |