Numerical investigation of nanofluid mixed convection in a T-shaped cavity by considering a thermal barrier
In this study, the numerical investigation of Al2O3-Water nanofluid mixed convection in a T-shaped lid-driven cavity in the presence of a thermal barrier with positioning at different positions is investigated by the two-phase mixture model. Variable parameters in this study are the cavity aspect ra...
- Autores:
-
Xia, Simon
Mostafavi, Mohammad
Alghazali, Tawfeeq
sadi, sajad
Grimaldo Guerrero, John William
Suksatan, Wanich
toghraie, davood
Khan, Afrasyab
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2022
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/9116
- Acceso en línea:
- https://hdl.handle.net/11323/9116
https://doi.org/10.1016/j.aej.2022.01.009
https://repositorio.cuc.edu.co/
- Palabra clave:
- Heat transfer
Mixed convection
Nanofluid
Mixture model
Cavity
Richardson number
- Rights
- openAccess
- License
- Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
id |
RCUC2_7440d9af24d6e22a21651292244774eb |
---|---|
oai_identifier_str |
oai:repositorio.cuc.edu.co:11323/9116 |
network_acronym_str |
RCUC2 |
network_name_str |
REDICUC - Repositorio CUC |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Numerical investigation of nanofluid mixed convection in a T-shaped cavity by considering a thermal barrier |
title |
Numerical investigation of nanofluid mixed convection in a T-shaped cavity by considering a thermal barrier |
spellingShingle |
Numerical investigation of nanofluid mixed convection in a T-shaped cavity by considering a thermal barrier Heat transfer Mixed convection Nanofluid Mixture model Cavity Richardson number |
title_short |
Numerical investigation of nanofluid mixed convection in a T-shaped cavity by considering a thermal barrier |
title_full |
Numerical investigation of nanofluid mixed convection in a T-shaped cavity by considering a thermal barrier |
title_fullStr |
Numerical investigation of nanofluid mixed convection in a T-shaped cavity by considering a thermal barrier |
title_full_unstemmed |
Numerical investigation of nanofluid mixed convection in a T-shaped cavity by considering a thermal barrier |
title_sort |
Numerical investigation of nanofluid mixed convection in a T-shaped cavity by considering a thermal barrier |
dc.creator.fl_str_mv |
Xia, Simon Mostafavi, Mohammad Alghazali, Tawfeeq sadi, sajad Grimaldo Guerrero, John William Suksatan, Wanich toghraie, davood Khan, Afrasyab |
dc.contributor.author.spa.fl_str_mv |
Xia, Simon Mostafavi, Mohammad Alghazali, Tawfeeq sadi, sajad Grimaldo Guerrero, John William Suksatan, Wanich toghraie, davood Khan, Afrasyab |
dc.subject.proposal.eng.fl_str_mv |
Heat transfer Mixed convection Nanofluid Mixture model Cavity Richardson number |
topic |
Heat transfer Mixed convection Nanofluid Mixture model Cavity Richardson number |
description |
In this study, the numerical investigation of Al2O3-Water nanofluid mixed convection in a T-shaped lid-driven cavity in the presence of a thermal barrier with positioning at different positions is investigated by the two-phase mixture model. Variable parameters in this study are the cavity aspect ratio (AR), the volume fraction of nanoparticles (), Richardson numbers (Ri), and different thermal barrier placements in the cavity. The results indicated that the increase in the Richardson number leads to an increase in the local and average Nusselt number () and heat transfer. Increasing the also increases the heat transfer while increasing the aspect ratio decreases the heat transfer. Regarding the geometrical position of the thermal barrier, the results show that the geometrical position of the thermal barrier near the lid has the highest heat transfer and the Nusselt number. Numerical investigation of nanofluid mixed convection in a T-shaped cavity by considering a thermal barrier is the originality of this work. |
publishDate |
2022 |
dc.date.accessioned.none.fl_str_mv |
2022-04-05T12:50:01Z |
dc.date.available.none.fl_str_mv |
2022-04-05T12:50:01Z |
dc.date.issued.none.fl_str_mv |
2022 |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
acceptedVersion |
dc.identifier.issn.spa.fl_str_mv |
1110-0168 |
dc.identifier.uri.spa.fl_str_mv |
https://hdl.handle.net/11323/9116 |
dc.identifier.url.spa.fl_str_mv |
https://doi.org/10.1016/j.aej.2022.01.009 |
dc.identifier.doi.spa.fl_str_mv |
10.1016/j.aej.2022.01.009 |
dc.identifier.instname.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.identifier.reponame.spa.fl_str_mv |
REDICUC - Repositorio CUC |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.cuc.edu.co/ |
identifier_str_mv |
1110-0168 10.1016/j.aej.2022.01.009 Corporación Universidad de la Costa REDICUC - Repositorio CUC |
url |
https://hdl.handle.net/11323/9116 https://doi.org/10.1016/j.aej.2022.01.009 https://repositorio.cuc.edu.co/ |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartofjournal.spa.fl_str_mv |
Alexandria Engineering Journal |
dc.relation.references.spa.fl_str_mv |
[1] Y. Fu, H. Chen, R. Guo, Y. Huang, M.R. Toroghinejad Extraordinary strength-ductility in gradient amorphous structured Zr-based alloy J. Alloy. Compd., 888 (2021), p. 161507, 10.1016/j.jallcom.2021.161507 [2] Q. Zhong, J. Yang, K. Shi, S. Zhong, L. Zhixiong, et al. Event-Triggered H∞ Load Frequency Control for Multi-Area Nonlinear Power Systems Based on Non-Fragile Proportional Integral Control Strategy IEEE Transactions on Intelligent Transportation Systems. (2021), 10.1109/TTTS.2021.3110759 [3] P. Wang, S.-Z. Wang, Y.-R. Kang, Z.-S. Sun, X.-D. Wang, Y.u. Meng, M.-H. Hong, W.-F. Xie Cauliflower-shaped Bi2O3–ZnO heterojunction with superior sensing performance towards ethanol J. Alloy. Compd., 854 (2021), p. 157152, 10.1016/j.jallcom.2020.157152 [4] L. Hu, X. Huang, S. Zhang, X. Chen, X. Dong, H. Jin, et al. MoO.sub.3 structures transition from nanoflowers to nanorods and their sensing performances Journal of materials science. Materials in electronics, 32 (19) (2021), p. 23728, 10.1007/s10854-021-06464-7 [5] H. Wu, F. Zhang, Z. Zhang Droplet breakup and coalescence of an internal-mixing twin-fluid spray Phys. Fluids, 33 (1) (2021), p. 013317, 10.1063/5.0030777 [6] X. Zhang, Y. Tang, F. Zhang, C. Lee A Novel Aluminum-Graphite Dual-Ion Battery Adv. Energy Mater., 6 (11) (2016), p. 1502588, 10.1002/aenm.201502588 [7] X. Tong, F. Zhang, B. Ji, M. Sheng, Y. Tang Carbon-Coated Porous Aluminum Foil Anode for High-Rate, Long-Term Cycling Stability, and High Energy Density Dual-Ion Batteries Advanced materials (Weinheim), 28 (45) (2016), pp. 9979-9985, 10.1002/adma.201603735 [8] B. Ji, F. Zhang, X. Song, Y. Tang A Novel Potassium-Ion-Based Dual-Ion Battery Advanced materials (Weinheim), 29 (19) (2017), p. 1700519, 10.1002/adma.201700519 [9] X. Wang, C. Li, Y. Zhang, Z. Said, S. Debnath, S. Sharma, et al. Influence of texture shape and arrangement on nanofluid minimum quantity lubrication turning The International Journal of Advanced Manufacturing Technology (2021), 10.1007/s00170-021-08235-4 [10] Gorgani, Hamid Haghshenas, Peyman Maghsoudi, and Sadegh Sadeghi. “An innovative approach for study of thermal behavior of an unsteady nanofluid squeezing flow between two parallel plates utilizing artificial neural network.” European Journal of Sustainable Development Research 3, no. 1 (2019): em0069. https://doi.org/10.20897/ejosdr/3935 [11] Shahriari, Gholamreza, Peyman Maghsoudi, and Sadegh Sadeghi. “Impact of Viscous Dissipation on Temperature Distribution of a Two-dimensional Unsteady Graphene Oxide Nanofluid Flow between Two Moving Parallel Plates Employing Akbari-Ganji Method.” European Journal of Sustainable Development Research 2, no. 2 (2018): 24. https://doi.org/10.20897/ejosdr/81574 [12] F. Arslan LMS Algorithm for Adaptive Transversal Equalization of a Linear Dispersive Communication Channel Review of Computer Engineering Research, 7 (2) (2020), pp. 73-85, 10.18488/journal.76.2020.72.73.85 [13] A. Talavari, B. Ghanavati, A. Azimi, S. Sayyahi Pvdf/ Mwcnt Hollow Fiber Mixed Matrix Membranes for Gas Absorption by Al2o3 Nanofluid Progress in Chemical and Biochemical Research, 4 (2) (2021), pp. 177-190, 10.22034/pcbr.2021.270178.1177 [14] D. Sezavar, M. Miri Investigating Fluid Mixing in Electro-Osmotic Flow through Passive Micro-Mixers Having Square and Triangle Barriers Int. J. Adv. Biol. Biomed. Res., 2 (12) (2014), pp. 2940-2948 [15] A. Li, X. Mu, X. Zhao, J. Xu, M. Khayatnezhad, R. Lalehzari Developing the non‐dimensional framework for water distribution formulation to evaluate sprinkler irrigation* Irrig. and Drain., 70 (4) (2021), pp. 659-667 [16] Baghernejad, Bita, and Mostafa Rostami Harzevili. “Nano-Cerium Oxide/Aluminum Oxide: An Efficient and Useful Catalyst for the Synthesis of Tetrahydro[a]Xanthenes-11-One Derivatives.” Chemical Methodologies 5, no. 2 (2021): 90-95. DOI: 10.22034/chemm.2021.119641 [17] Krdžalić, Amina, and Lejla Hodžić. “Sustainable engineering challenges towards Industry 4.0: A comprehensive review.” Sustainable Engineering and Innovation, ISSN 2712-0562 1, no. 1 (2019): 1-23. [18] Y. Wang, B. Ruhani, M.A. Fazilati, S.M. Sajadi, A. Alizadeh, D. Toghraie Experimental analysis of hollow fiber membrane dehumidifier system with SiO2/CaCl2 aqueous desiccant solution Energy reports, 7 (2021), pp. 2821-2835 [19] M. Salehi, P. Heidari, B. Ruhani, A. Kheradmand, S. Purcar, S. Căprărescu Theoretical and Experimental Analysis of Surface Roughness and Adhesion Forces of MEMS Surfaces Using a Novel Method for Making a Compound Sputtering Target Coatings, 11 (12) (2021), p. 1551 [20] R. Ruhani, A. Abidi, A. Kadhim Hussein, O. Younis, M. Degani, M. Sharifpur Numerical simulation of the effect of battery distance and inlet and outlet length on the cooling of cylindrical lithium-ion batteries and overall performance of thermal management system J Energy Storage, 45 (2022), p. 103714 [21] M.F. Gözükızıl pH effect on structural, morphological and optical properties of ZnO thin films produced by chemical bath deposition method European Chemical Bulletin, 9 (10) (2020), pp. 335-338 [22] V. Bakhtadze, V. Mosidze, T. Machaladze, N. Kharabadze, D. Lochoshvili, M. Pajishvili, et al. Activity of Pd-MnOx/CORDIERITE (Mg, Fe) 2Al4Si5O18) catalyst for carbon monoxide oxidation European Chemical Bulletin, 9 (2) (2020), pp. 75-77 [23] M. Bashirzadeh Green synthesis of quinoxaline derivatives at room temperature in ethylene glycol with H2SO4/SiO2 catalyst European Chemical Bulletin, 9 (1) (2020), pp. 33-37 [24] S. Mirmasoumi, A. Behzadmehr Effect of nanoparticles mean diameter on mixed convection heat transfer of a nanofluid in a horizontal tube Int. J. heat fluid flow, 29 (2008), pp. 557-566 [25] S.M. Aminossadati, B. Ghasemi A numerical study of mixed convection in a horizontal channel with a discrete heat source in an open cavity Eur. J. Mech., 28 (4) (2009), pp. 590-598 [26] K.-C. Wong, N.H. Saeid Numerical study of mixed convection on jet impingement cooling in an open cavity filled with porous medium Int. Commun. Heat Mass Transf., 36 (2009), pp. 155-160 [27] E. Abu-Nada, A.J. Chamkha Mixed convection flow in a lid-driven inclined square enclosure filled with a nanofluid Eur. J. Mech., 29 (2010), pp. 472-482 [28] A.H. Mahmoudi, M. Shahi, A.M. Shahedin, N. Hemati Numerical modeling of natural convection in an open cavity with two vertical thin heat sources subjected to a nanofluid Int. Commun. Heat Mass Transf., 38 (2011), pp. 110-118 [29] M.M. Rahman, R. Saidur, N.A. Rahim Conjugated effect of joule heating and magneto-hydrodynamic on double-diffusive mixed convection in a horizontal channel with an open cavity Int. J. Heat Mass Transf., 54 (2011), pp. 3201-3213 [30] P. Barnoon, D. Toghraie, M. Salarnia, A. Karimipour Mixed thermomagnetic convection of ferrofluid in a porous cavity equipped with rotating cylinders: LTE and LTNE models J Therm Anal Calorim, 146 (1) (2021), pp. 187-226 [31] P. Barnoon, M. Ashkiyan Magnetic field generation due to the microwaves by an antenna connected to a power supply to destroy damaged tissue in the liver considering heat control J Magn Magn Mat, 513 (2020), p. 167245, 10.1016/j.jmmm.2020.167245 [32] M. Mahmoodi Numerical simulation of free convection of a nanofluid in L-shaped cavities Int. J. Therm. Sci., 50 (9) (2011), pp. 1731-1740 [33] G. Mahmoudi, B. Ghasemi, G. Mahmoudi, B. Ghasemi “Effect of a baffle on mixed convection heat transfer from an open cavity with heat sources Aerospace mechanics journal., 8 (2012), pp. 45-56 [34] S. Parvin, R. Nasrin Effects of Reynolds and Prandtl number on mixed convection in an octagonal channel with a heat-generating hollow cylinder J. Sci. Res., 4 (2) (2012), p. 337, 10.3329/jsr.v4i2.8142 [35] S. Mojumder, S. Saha, M. Rizwanur Rahman, M.M. Rahman, K.M. Rabbi, T.A. Ibrahim Numerical study on mixed convection heat transfer in a porous L-shaped cavity Eng. Sci. Technol. an Int. J., 20 (1) (2017), pp. 272-282 [36] S.M. Sebdani, M. Mahmoodi, S.M. Hashemi Effect of nanofluid variable properties on mixed convection in a square cavity Int. J. Therm. Sci., 52 (2012), pp. 112-126 [37] S. Parvin, R. Nasrin, M.A. Alim, N.F. Hossain Double diffusive natural convective flow characteristics in a cavity Procedia Eng., 56 (2013), pp. 480-488 [38] G.A. Sheikhzadeh, H. Ehteram, A. Aghaei Numerical study of natural convection in a nanofluid filled enclosure with central heat source and presenting correlations for Nusselt number Modares Mech. Eng., 13 (2013), pp. 62-74 [39] M.A. Mansour, A.Y. Bakier, M.A.Y. Bakier Natural convection of the localized heat sources of T-shaped nanofluid-filled enclosures Am. J. Eng. Res., 2 (2013), pp. 49-61 [40] A.A. Abbasian Arani, A.Z. Maghsoudi, A.H. Niroumand, S.M.E. Derakhshani Study of nanofluid natural convection in an inclined L-shaped cavity Sci. Iran., 20 (2013), pp. 2297-2305 [41] M. Sheikholeslami, M. Gorji-Bandpy, S. Soleimani Two phase simulation of nanofluid flow and heat transfer using heatline analysis Int. Commun. Heat Mass Transf., 47 (2013), pp. 73-81 [42] M.A.Y. Bakier Flow in open C-shaped cavities: How far does the change in boundaries affect nanofluid? Eng. Sci. Technol. an Int. J., 17 (2014), pp. 116-130 [43] R. Nasrin, M.A. Alim Heat transfer performance of nanofluid in a complicated cavity due to Prandtl number variation Procedia Eng., 90 (2014), pp. 377-382 [44] M.H. Esfe, M. Akbari, A. Karimipour, M. Afrand, O. Mahian, S. Wongwises Mixed-convection flow and heat transfer in an inclined cavity equipped to a hot obstacle using nanofluids considering temperature-dependent properties Int. J. Heat Mass Transf., 85 (2015), pp. 656-666 [45] Z. Naumann, L. Schiller A drag coefficient correlation Z Ver Deutsch Ing, 77 (1935), pp. 318-323 [46] E. Abu-Nada, Z. Masoud, A. Hijazi Natural convection heat transfer enhancement in horizontal concentric annuli using nanofluids Int. Commun. Heat Mass Transf., 35 (2008), pp. 657-665 [47] H.C. Brinkman The viscosity of concentrated suspensions and solutions J. Chem. Phys., 20 (1952), p. 571 [48] Alinia, D. D. Ganji, and M. Gorji-Bandpy, “Numerical study of mixed convection in an inclined two sided lid driven cavity filled with nanofluid using two-phase mixture model,” Int. Commun. Heat Mass Transf., 38 (2011) 1428–1435 [49] T. Tjahjono, M. Elveny, S. Chupradit, D. Bokov, H.T. Hoi, M. Pandey Role of cryogenic cycling rejuvenation on flow behavior of ZrCuAlNiAg metallic glass at relaxation temperature Trans Indian Inst Met, 74 (12) (2021), pp. 3241--3247 [50] J. Qaderi A brief review on the reaction mechanisms of CO2 hydrogenation into methanol Int j innov res. sci stud, 3 (2) (2020), pp. 33-40 [51] V.G. Shtamburg, V.V. Shtamburg, A.A. Anishchenko, S.V. Shishkina, I.S. Konovalova, A.V. Mazepa Interaction of ninhydrin with N-hydroxyurea and N-alkoxyureas in acetic acid European Chemical Bulletin, 9 (5) (2020), pp. 125-131 [52] A. Mezrhab, S. Amraqui, C. Abid Modelling of combined surface radiation and natural convection in a vented “T” form cavity Int J Heat and Fluid Flow, 31 (1) (2010), pp. 83-92 [53] A. Kasaeipoor, B. Ghasemi, S.M. Aminossadati Convection of Cu-water nanofluid in a vented T-shaped cavity in the presence of magnetic field Int J Therm Sci, 94 (2015), pp. 50-60 [54] F. Selimefendigil, H.F. Öztop Impact of a rotating cone on forced convection of Ag-MgO/water hybrid nanofluid in a 3D multiple vented T-shaped cavity considering magnetic field effects J Therm Analy Calor, 143 (2) (2021), pp. 1485-1501 [55] K. Zeng, K. Hachem, M. Kuznetsova, S. Chupradit, C.H. Su, H.C. Nguyen, et al. Molecular dynamic simulation and artificial intelligence of lead ions removal from aqueous solution using magnetic-ash-graphene oxide nanocomposite. Journal of Molecular Liquids J Mol Liquids, 118290 (2021) [56] Y. Shang, R.B. Dehkordi, S. Chupradit, D. Toghraie, A. Sevbitov, M. Hekmatifar, et al. The Computational Study of Microchannel Thickness Effects on H2O/CuO Nanofluid Flow with Molecular Dynamics Simulations J Mol Liq, 118240 (2021) [57] S. Chupradit, D.O. Bokov, W. Suksatan, M. Landowski, D. Fydrych, M.E. Abdullah, et al. Pin Angle Thermal Effects on Friction Stir Welding of AA5058 Aluminum Alloy: CFD Simulation and Experimental Validation Materials, 14 (24) (2021), p. 7565 [58] S. Chupradit, A.T. Jalil, Y. Enina, D.A. Neganov, M.S. Alhassan, S. Aravindhan, et al. Use of Organic and Copper-Based Nanoparticles on the Turbulator Installment in a Shell Tube Heat Exchanger: A CFD-Based Simulation Approach by Using Nanofluids J Nanomater (2021), Article 3250058 [59] S. Yang, S.A. Jasim, D. Bokov, S. Chupradit, A.T. Nakhjiri, A.S. El-Shafay Membrane distillation technology for molecular separation: a review on the fouling, wetting and transport phenomena J Mol Liq (2021), Article 118115 [60] Q.H. Pham, S. Chupradit, G. Widjaja, M.S. Alhassan, R. Magizov, Y.F. Mustafa, et al. The effects of Ni or Nb additions on the relaxation behavior of Zr55Cu35Al10 metallic glass Materials Today Communications, 29 (2021), p. 102909 [61] M.A. El-Shorbagy, F. Eslami, M. Ibrahim, P. Barnoon, W.F. Xia, D. Toghraie Numerical investigation of mixed convection of nanofluid flow in a trapezoidal channel with different aspect ratios in the presence of porous medium Case Studies in Therm Eng, 25 (2021), Article 100977 |
dc.relation.citationendpage.spa.fl_str_mv |
7415 |
dc.relation.citationstartpage.spa.fl_str_mv |
7393 |
dc.relation.citationissue.spa.fl_str_mv |
9 |
dc.relation.citationvolume.spa.fl_str_mv |
61 |
dc.rights.spa.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) |
dc.rights.uri.spa.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) https://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
23 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Alexandria University |
dc.publisher.place.spa.fl_str_mv |
Egypt |
institution |
Corporación Universidad de la Costa |
dc.source.url.spa.fl_str_mv |
https://www.sciencedirect.com/science/article/pii/S1110016822000114?via%3Dihub |
bitstream.url.fl_str_mv |
https://repositorio.cuc.edu.co/bitstreams/cb202b58-dd22-4415-a24a-cc6329434aaa/download https://repositorio.cuc.edu.co/bitstreams/ea5823aa-fc44-4f19-8be8-e67423967047/download https://repositorio.cuc.edu.co/bitstreams/385e5306-17cc-478a-9d3f-22bd03f3db90/download https://repositorio.cuc.edu.co/bitstreams/6f1e68fe-e948-4b78-9834-db089fe1f871/download |
bitstream.checksum.fl_str_mv |
e5be65cb814cb7aa44d78535c96dae76 e30e9215131d99561d40d6b0abbe9bad d0c3fdeae156035f5ea52be718215bb6 236f5848cc5b4bad0f49c85d79229062 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad de la Costa CUC |
repository.mail.fl_str_mv |
repdigital@cuc.edu.co |
_version_ |
1811760813937000448 |
spelling |
Xia, SimonMostafavi, MohammadAlghazali, Tawfeeqsadi, sajadGrimaldo Guerrero, John WilliamSuksatan, Wanichtoghraie, davoodKhan, Afrasyab2022-04-05T12:50:01Z2022-04-05T12:50:01Z20221110-0168https://hdl.handle.net/11323/9116https://doi.org/10.1016/j.aej.2022.01.00910.1016/j.aej.2022.01.009Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/In this study, the numerical investigation of Al2O3-Water nanofluid mixed convection in a T-shaped lid-driven cavity in the presence of a thermal barrier with positioning at different positions is investigated by the two-phase mixture model. Variable parameters in this study are the cavity aspect ratio (AR), the volume fraction of nanoparticles (), Richardson numbers (Ri), and different thermal barrier placements in the cavity. The results indicated that the increase in the Richardson number leads to an increase in the local and average Nusselt number () and heat transfer. Increasing the also increases the heat transfer while increasing the aspect ratio decreases the heat transfer. Regarding the geometrical position of the thermal barrier, the results show that the geometrical position of the thermal barrier near the lid has the highest heat transfer and the Nusselt number. Numerical investigation of nanofluid mixed convection in a T-shaped cavity by considering a thermal barrier is the originality of this work.23 páginasapplication/pdfengAlexandria UniversityEgyptAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)© 2022 THE AUTHORS. Published by Elsevier BV on behalf of Faculty of Engineering, Alexandria Universityhttps://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Numerical investigation of nanofluid mixed convection in a T-shaped cavity by considering a thermal barrierArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersionhttps://www.sciencedirect.com/science/article/pii/S1110016822000114?via%3DihubAlexandria Engineering Journal[1] Y. Fu, H. Chen, R. Guo, Y. Huang, M.R. Toroghinejad Extraordinary strength-ductility in gradient amorphous structured Zr-based alloy J. Alloy. Compd., 888 (2021), p. 161507, 10.1016/j.jallcom.2021.161507[2] Q. Zhong, J. Yang, K. Shi, S. Zhong, L. Zhixiong, et al. Event-Triggered H∞ Load Frequency Control for Multi-Area Nonlinear Power Systems Based on Non-Fragile Proportional Integral Control Strategy IEEE Transactions on Intelligent Transportation Systems. (2021), 10.1109/TTTS.2021.3110759[3] P. Wang, S.-Z. Wang, Y.-R. Kang, Z.-S. Sun, X.-D. Wang, Y.u. Meng, M.-H. Hong, W.-F. Xie Cauliflower-shaped Bi2O3–ZnO heterojunction with superior sensing performance towards ethanol J. Alloy. Compd., 854 (2021), p. 157152, 10.1016/j.jallcom.2020.157152[4] L. Hu, X. Huang, S. Zhang, X. Chen, X. Dong, H. Jin, et al. MoO.sub.3 structures transition from nanoflowers to nanorods and their sensing performances Journal of materials science. Materials in electronics, 32 (19) (2021), p. 23728, 10.1007/s10854-021-06464-7[5] H. Wu, F. Zhang, Z. Zhang Droplet breakup and coalescence of an internal-mixing twin-fluid spray Phys. Fluids, 33 (1) (2021), p. 013317, 10.1063/5.0030777[6] X. Zhang, Y. Tang, F. Zhang, C. Lee A Novel Aluminum-Graphite Dual-Ion Battery Adv. Energy Mater., 6 (11) (2016), p. 1502588, 10.1002/aenm.201502588[7] X. Tong, F. Zhang, B. Ji, M. Sheng, Y. Tang Carbon-Coated Porous Aluminum Foil Anode for High-Rate, Long-Term Cycling Stability, and High Energy Density Dual-Ion Batteries Advanced materials (Weinheim), 28 (45) (2016), pp. 9979-9985, 10.1002/adma.201603735[8] B. Ji, F. Zhang, X. Song, Y. Tang A Novel Potassium-Ion-Based Dual-Ion Battery Advanced materials (Weinheim), 29 (19) (2017), p. 1700519, 10.1002/adma.201700519[9] X. Wang, C. Li, Y. Zhang, Z. Said, S. Debnath, S. Sharma, et al. Influence of texture shape and arrangement on nanofluid minimum quantity lubrication turning The International Journal of Advanced Manufacturing Technology (2021), 10.1007/s00170-021-08235-4[10] Gorgani, Hamid Haghshenas, Peyman Maghsoudi, and Sadegh Sadeghi. “An innovative approach for study of thermal behavior of an unsteady nanofluid squeezing flow between two parallel plates utilizing artificial neural network.” European Journal of Sustainable Development Research 3, no. 1 (2019): em0069. https://doi.org/10.20897/ejosdr/3935[11] Shahriari, Gholamreza, Peyman Maghsoudi, and Sadegh Sadeghi. “Impact of Viscous Dissipation on Temperature Distribution of a Two-dimensional Unsteady Graphene Oxide Nanofluid Flow between Two Moving Parallel Plates Employing Akbari-Ganji Method.” European Journal of Sustainable Development Research 2, no. 2 (2018): 24. https://doi.org/10.20897/ejosdr/81574[12] F. Arslan LMS Algorithm for Adaptive Transversal Equalization of a Linear Dispersive Communication Channel Review of Computer Engineering Research, 7 (2) (2020), pp. 73-85, 10.18488/journal.76.2020.72.73.85[13] A. Talavari, B. Ghanavati, A. Azimi, S. Sayyahi Pvdf/ Mwcnt Hollow Fiber Mixed Matrix Membranes for Gas Absorption by Al2o3 Nanofluid Progress in Chemical and Biochemical Research, 4 (2) (2021), pp. 177-190, 10.22034/pcbr.2021.270178.1177[14] D. Sezavar, M. Miri Investigating Fluid Mixing in Electro-Osmotic Flow through Passive Micro-Mixers Having Square and Triangle Barriers Int. J. Adv. Biol. Biomed. Res., 2 (12) (2014), pp. 2940-2948[15] A. Li, X. Mu, X. Zhao, J. Xu, M. Khayatnezhad, R. Lalehzari Developing the non‐dimensional framework for water distribution formulation to evaluate sprinkler irrigation* Irrig. and Drain., 70 (4) (2021), pp. 659-667[16] Baghernejad, Bita, and Mostafa Rostami Harzevili. “Nano-Cerium Oxide/Aluminum Oxide: An Efficient and Useful Catalyst for the Synthesis of Tetrahydro[a]Xanthenes-11-One Derivatives.” Chemical Methodologies 5, no. 2 (2021): 90-95. DOI: 10.22034/chemm.2021.119641[17] Krdžalić, Amina, and Lejla Hodžić. “Sustainable engineering challenges towards Industry 4.0: A comprehensive review.” Sustainable Engineering and Innovation, ISSN 2712-0562 1, no. 1 (2019): 1-23.[18] Y. Wang, B. Ruhani, M.A. Fazilati, S.M. Sajadi, A. Alizadeh, D. Toghraie Experimental analysis of hollow fiber membrane dehumidifier system with SiO2/CaCl2 aqueous desiccant solution Energy reports, 7 (2021), pp. 2821-2835[19] M. Salehi, P. Heidari, B. Ruhani, A. Kheradmand, S. Purcar, S. Căprărescu Theoretical and Experimental Analysis of Surface Roughness and Adhesion Forces of MEMS Surfaces Using a Novel Method for Making a Compound Sputtering Target Coatings, 11 (12) (2021), p. 1551[20] R. Ruhani, A. Abidi, A. Kadhim Hussein, O. Younis, M. Degani, M. Sharifpur Numerical simulation of the effect of battery distance and inlet and outlet length on the cooling of cylindrical lithium-ion batteries and overall performance of thermal management system J Energy Storage, 45 (2022), p. 103714[21] M.F. Gözükızıl pH effect on structural, morphological and optical properties of ZnO thin films produced by chemical bath deposition method European Chemical Bulletin, 9 (10) (2020), pp. 335-338[22] V. Bakhtadze, V. Mosidze, T. Machaladze, N. Kharabadze, D. Lochoshvili, M. Pajishvili, et al. Activity of Pd-MnOx/CORDIERITE (Mg, Fe) 2Al4Si5O18) catalyst for carbon monoxide oxidation European Chemical Bulletin, 9 (2) (2020), pp. 75-77[23] M. Bashirzadeh Green synthesis of quinoxaline derivatives at room temperature in ethylene glycol with H2SO4/SiO2 catalyst European Chemical Bulletin, 9 (1) (2020), pp. 33-37[24] S. Mirmasoumi, A. Behzadmehr Effect of nanoparticles mean diameter on mixed convection heat transfer of a nanofluid in a horizontal tube Int. J. heat fluid flow, 29 (2008), pp. 557-566[25] S.M. Aminossadati, B. Ghasemi A numerical study of mixed convection in a horizontal channel with a discrete heat source in an open cavity Eur. J. Mech., 28 (4) (2009), pp. 590-598[26] K.-C. Wong, N.H. Saeid Numerical study of mixed convection on jet impingement cooling in an open cavity filled with porous medium Int. Commun. Heat Mass Transf., 36 (2009), pp. 155-160[27] E. Abu-Nada, A.J. Chamkha Mixed convection flow in a lid-driven inclined square enclosure filled with a nanofluid Eur. J. Mech., 29 (2010), pp. 472-482[28] A.H. Mahmoudi, M. Shahi, A.M. Shahedin, N. Hemati Numerical modeling of natural convection in an open cavity with two vertical thin heat sources subjected to a nanofluid Int. Commun. Heat Mass Transf., 38 (2011), pp. 110-118[29] M.M. Rahman, R. Saidur, N.A. Rahim Conjugated effect of joule heating and magneto-hydrodynamic on double-diffusive mixed convection in a horizontal channel with an open cavity Int. J. Heat Mass Transf., 54 (2011), pp. 3201-3213[30] P. Barnoon, D. Toghraie, M. Salarnia, A. Karimipour Mixed thermomagnetic convection of ferrofluid in a porous cavity equipped with rotating cylinders: LTE and LTNE models J Therm Anal Calorim, 146 (1) (2021), pp. 187-226[31] P. Barnoon, M. Ashkiyan Magnetic field generation due to the microwaves by an antenna connected to a power supply to destroy damaged tissue in the liver considering heat control J Magn Magn Mat, 513 (2020), p. 167245, 10.1016/j.jmmm.2020.167245[32] M. Mahmoodi Numerical simulation of free convection of a nanofluid in L-shaped cavities Int. J. Therm. Sci., 50 (9) (2011), pp. 1731-1740[33] G. Mahmoudi, B. Ghasemi, G. Mahmoudi, B. Ghasemi “Effect of a baffle on mixed convection heat transfer from an open cavity with heat sources Aerospace mechanics journal., 8 (2012), pp. 45-56[34] S. Parvin, R. Nasrin Effects of Reynolds and Prandtl number on mixed convection in an octagonal channel with a heat-generating hollow cylinder J. Sci. Res., 4 (2) (2012), p. 337, 10.3329/jsr.v4i2.8142[35] S. Mojumder, S. Saha, M. Rizwanur Rahman, M.M. Rahman, K.M. Rabbi, T.A. Ibrahim Numerical study on mixed convection heat transfer in a porous L-shaped cavity Eng. Sci. Technol. an Int. J., 20 (1) (2017), pp. 272-282[36] S.M. Sebdani, M. Mahmoodi, S.M. Hashemi Effect of nanofluid variable properties on mixed convection in a square cavity Int. J. Therm. Sci., 52 (2012), pp. 112-126[37] S. Parvin, R. Nasrin, M.A. Alim, N.F. Hossain Double diffusive natural convective flow characteristics in a cavity Procedia Eng., 56 (2013), pp. 480-488[38] G.A. Sheikhzadeh, H. Ehteram, A. Aghaei Numerical study of natural convection in a nanofluid filled enclosure with central heat source and presenting correlations for Nusselt number Modares Mech. Eng., 13 (2013), pp. 62-74[39] M.A. Mansour, A.Y. Bakier, M.A.Y. Bakier Natural convection of the localized heat sources of T-shaped nanofluid-filled enclosures Am. J. Eng. Res., 2 (2013), pp. 49-61[40] A.A. Abbasian Arani, A.Z. Maghsoudi, A.H. Niroumand, S.M.E. Derakhshani Study of nanofluid natural convection in an inclined L-shaped cavity Sci. Iran., 20 (2013), pp. 2297-2305[41] M. Sheikholeslami, M. Gorji-Bandpy, S. Soleimani Two phase simulation of nanofluid flow and heat transfer using heatline analysis Int. Commun. Heat Mass Transf., 47 (2013), pp. 73-81[42] M.A.Y. Bakier Flow in open C-shaped cavities: How far does the change in boundaries affect nanofluid? Eng. Sci. Technol. an Int. J., 17 (2014), pp. 116-130[43] R. Nasrin, M.A. Alim Heat transfer performance of nanofluid in a complicated cavity due to Prandtl number variation Procedia Eng., 90 (2014), pp. 377-382[44] M.H. Esfe, M. Akbari, A. Karimipour, M. Afrand, O. Mahian, S. Wongwises Mixed-convection flow and heat transfer in an inclined cavity equipped to a hot obstacle using nanofluids considering temperature-dependent properties Int. J. Heat Mass Transf., 85 (2015), pp. 656-666[45] Z. Naumann, L. Schiller A drag coefficient correlation Z Ver Deutsch Ing, 77 (1935), pp. 318-323[46] E. Abu-Nada, Z. Masoud, A. Hijazi Natural convection heat transfer enhancement in horizontal concentric annuli using nanofluids Int. Commun. Heat Mass Transf., 35 (2008), pp. 657-665[47] H.C. Brinkman The viscosity of concentrated suspensions and solutions J. Chem. Phys., 20 (1952), p. 571[48] Alinia, D. D. Ganji, and M. Gorji-Bandpy, “Numerical study of mixed convection in an inclined two sided lid driven cavity filled with nanofluid using two-phase mixture model,” Int. Commun. Heat Mass Transf., 38 (2011) 1428–1435[49] T. Tjahjono, M. Elveny, S. Chupradit, D. Bokov, H.T. Hoi, M. Pandey Role of cryogenic cycling rejuvenation on flow behavior of ZrCuAlNiAg metallic glass at relaxation temperature Trans Indian Inst Met, 74 (12) (2021), pp. 3241--3247[50] J. Qaderi A brief review on the reaction mechanisms of CO2 hydrogenation into methanol Int j innov res. sci stud, 3 (2) (2020), pp. 33-40[51] V.G. Shtamburg, V.V. Shtamburg, A.A. Anishchenko, S.V. Shishkina, I.S. Konovalova, A.V. Mazepa Interaction of ninhydrin with N-hydroxyurea and N-alkoxyureas in acetic acid European Chemical Bulletin, 9 (5) (2020), pp. 125-131[52] A. Mezrhab, S. Amraqui, C. Abid Modelling of combined surface radiation and natural convection in a vented “T” form cavity Int J Heat and Fluid Flow, 31 (1) (2010), pp. 83-92[53] A. Kasaeipoor, B. Ghasemi, S.M. Aminossadati Convection of Cu-water nanofluid in a vented T-shaped cavity in the presence of magnetic field Int J Therm Sci, 94 (2015), pp. 50-60[54] F. Selimefendigil, H.F. Öztop Impact of a rotating cone on forced convection of Ag-MgO/water hybrid nanofluid in a 3D multiple vented T-shaped cavity considering magnetic field effects J Therm Analy Calor, 143 (2) (2021), pp. 1485-1501[55] K. Zeng, K. Hachem, M. Kuznetsova, S. Chupradit, C.H. Su, H.C. Nguyen, et al. Molecular dynamic simulation and artificial intelligence of lead ions removal from aqueous solution using magnetic-ash-graphene oxide nanocomposite. Journal of Molecular Liquids J Mol Liquids, 118290 (2021)[56] Y. Shang, R.B. Dehkordi, S. Chupradit, D. Toghraie, A. Sevbitov, M. Hekmatifar, et al. The Computational Study of Microchannel Thickness Effects on H2O/CuO Nanofluid Flow with Molecular Dynamics Simulations J Mol Liq, 118240 (2021)[57] S. Chupradit, D.O. Bokov, W. Suksatan, M. Landowski, D. Fydrych, M.E. Abdullah, et al. Pin Angle Thermal Effects on Friction Stir Welding of AA5058 Aluminum Alloy: CFD Simulation and Experimental Validation Materials, 14 (24) (2021), p. 7565[58] S. Chupradit, A.T. Jalil, Y. Enina, D.A. Neganov, M.S. Alhassan, S. Aravindhan, et al. Use of Organic and Copper-Based Nanoparticles on the Turbulator Installment in a Shell Tube Heat Exchanger: A CFD-Based Simulation Approach by Using Nanofluids J Nanomater (2021), Article 3250058[59] S. Yang, S.A. Jasim, D. Bokov, S. Chupradit, A.T. Nakhjiri, A.S. El-Shafay Membrane distillation technology for molecular separation: a review on the fouling, wetting and transport phenomena J Mol Liq (2021), Article 118115[60] Q.H. Pham, S. Chupradit, G. Widjaja, M.S. Alhassan, R. Magizov, Y.F. Mustafa, et al. The effects of Ni or Nb additions on the relaxation behavior of Zr55Cu35Al10 metallic glass Materials Today Communications, 29 (2021), p. 102909[61] M.A. El-Shorbagy, F. Eslami, M. Ibrahim, P. Barnoon, W.F. Xia, D. Toghraie Numerical investigation of mixed convection of nanofluid flow in a trapezoidal channel with different aspect ratios in the presence of porous medium Case Studies in Therm Eng, 25 (2021), Article 10097774157393961Heat transferMixed convectionNanofluidMixture modelCavityRichardson numberPublicationORIGINALNumerical investigation of nanofluid mixed convection in a T-shaped cavity by considering a thermal barrier.pdfNumerical investigation of nanofluid mixed convection in a T-shaped cavity by considering a thermal barrier.pdfapplication/pdf7524307https://repositorio.cuc.edu.co/bitstreams/cb202b58-dd22-4415-a24a-cc6329434aaa/downloade5be65cb814cb7aa44d78535c96dae76MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/ea5823aa-fc44-4f19-8be8-e67423967047/downloade30e9215131d99561d40d6b0abbe9badMD52TEXTNumerical investigation of nanofluid mixed convection in a T-shaped cavity by considering a thermal barrier.pdf.txtNumerical investigation of nanofluid mixed convection in a T-shaped cavity by considering a thermal barrier.pdf.txttext/plain54002https://repositorio.cuc.edu.co/bitstreams/385e5306-17cc-478a-9d3f-22bd03f3db90/downloadd0c3fdeae156035f5ea52be718215bb6MD53THUMBNAILNumerical investigation of nanofluid mixed convection in a T-shaped cavity by considering a thermal barrier.pdf.jpgNumerical investigation of nanofluid mixed convection in a T-shaped cavity by considering a thermal barrier.pdf.jpgimage/jpeg15031https://repositorio.cuc.edu.co/bitstreams/6f1e68fe-e948-4b78-9834-db089fe1f871/download236f5848cc5b4bad0f49c85d79229062MD5411323/9116oai:repositorio.cuc.edu.co:11323/91162024-09-17 12:48:53.047https://creativecommons.org/licenses/by-nc-nd/4.0/Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)open.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA== |