Artificial techniques applied to the improvement of the previous signals in the power amplifiers

A rapid evolution in electronic systems has been experienced in recent years, and one of the fields where this development has been notorious is the telecommunication systems in which users demand more and better services and with higher data transfer speeds. This has generated the need to develop n...

Full description

Autores:
amelec, viloria
Lizardo Zelaya, Nelson Alberto
Mercado Caruso, Nohora Nubia
Tipo de recurso:
Article of journal
Fecha de publicación:
2020
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/7693
Acceso en línea:
https://hdl.handle.net/11323/7693
https://doi.org/10.1016/j.procs.2020.07.091
https://repositorio.cuc.edu.co/
Palabra clave:
Comparative study
Neural networks
Digital pre-distortion
RF amplifiers
Rights
openAccess
License
CC0 1.0 Universal
id RCUC2_7439a3b86d71cd886f99d1f18ea2e639
oai_identifier_str oai:repositorio.cuc.edu.co:11323/7693
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.spa.fl_str_mv Artificial techniques applied to the improvement of the previous signals in the power amplifiers
title Artificial techniques applied to the improvement of the previous signals in the power amplifiers
spellingShingle Artificial techniques applied to the improvement of the previous signals in the power amplifiers
Comparative study
Neural networks
Digital pre-distortion
RF amplifiers
title_short Artificial techniques applied to the improvement of the previous signals in the power amplifiers
title_full Artificial techniques applied to the improvement of the previous signals in the power amplifiers
title_fullStr Artificial techniques applied to the improvement of the previous signals in the power amplifiers
title_full_unstemmed Artificial techniques applied to the improvement of the previous signals in the power amplifiers
title_sort Artificial techniques applied to the improvement of the previous signals in the power amplifiers
dc.creator.fl_str_mv amelec, viloria
Lizardo Zelaya, Nelson Alberto
Mercado Caruso, Nohora Nubia
dc.contributor.author.spa.fl_str_mv amelec, viloria
Lizardo Zelaya, Nelson Alberto
Mercado Caruso, Nohora Nubia
dc.subject.spa.fl_str_mv Comparative study
Neural networks
Digital pre-distortion
RF amplifiers
topic Comparative study
Neural networks
Digital pre-distortion
RF amplifiers
description A rapid evolution in electronic systems has been experienced in recent years, and one of the fields where this development has been notorious is the telecommunication systems in which users demand more and better services and with higher data transfer speeds. This has generated the need to develop new devices, algorithms and systems that manage to satisfy the requirements demanded y new technologies. An example of the above is the front-end of telecommunication systems. Systems need to be more efficient, but some elements of the systems, as the power amplifier, present nonlinearity when operating in its most efficient region, causing that it has to make a commitment between efficiency and linearity. This paper presents a comparison of different artificial neural network architectures, as a behavioral modeling method, to perform digital predistortion of power amplifiers.
publishDate 2020
dc.date.issued.none.fl_str_mv 2020
dc.date.accessioned.none.fl_str_mv 2021-01-15T14:14:56Z
dc.date.available.none.fl_str_mv 2021-01-15T14:14:56Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_6501
status_str acceptedVersion
dc.identifier.issn.spa.fl_str_mv 1877-0509
dc.identifier.uri.spa.fl_str_mv https://hdl.handle.net/11323/7693
dc.identifier.doi.spa.fl_str_mv https://doi.org/10.1016/j.procs.2020.07.091
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
identifier_str_mv 1877-0509
Corporación Universidad de la Costa
REDICUC - Repositorio CUC
url https://hdl.handle.net/11323/7693
https://doi.org/10.1016/j.procs.2020.07.091
https://repositorio.cuc.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.references.spa.fl_str_mv [1] Liu, T., Ye, Y., Yin, S., Chen, H., Xu, G., Lu, Y., & Chen, Y. (2019, May). Digital Predistortion Linearization with Deep Neural Networks for 5G Power Amplifiers. In 2019 European Microwave Conference in Central Europe (EuMCE) (pp. 216-219). IEEE.
[2] Phartiyal, D., & Rawat, M. (2019, February). LSTM-Deep Neural Networks based Predistortion Linearizer for High Power Amplifiers. In 2019 National Conference on Communications (NCC) (pp. 1-5). IEEE.
[3] Viloria, A., Hernández Palma, H., Gamboa Suarez, R., Niebles Núẽz, W., & Solórzano Movilla, J. (2020). Intelligent Model for Electric Power Management: Patterns. In Journal of Physics: Conference Series (Vol. 1432). Institute of Physics Publishing. https://doi.org/10.1088/1742-6596/1432/1/012032.
[4] Sun, J., Wang, J., Guo, L., Yang, J., & Gui, G. (2020). Adaptive deep learning aided digital predistorter considering dynamic envelope. IEEE Transactions on Vehicular Technology.
[5] Tripathi, G. C., Rawat, M., & Rawat, K. (2019, October). Swish Activation Based Deep Neural Network Predistorter for RF-PA. In TENCON 2019-2019 IEEE Region 10 Conference (TENCON) (pp. 1239-1242). IEEE.
[6] Tripathi, G. C., Rawat, M., & Rawat, K. (2019, October). Swish Activation Based Deep Neural Network Predistorter for RF-PA. In TENCON 2019-2019 IEEE Region 10 Conference (TENCON) (pp. 1239-1242). IEEE.
[7] Cioba, A., Chua, A., Shiu, D. S., Kuo, T. H., & Peng, C. S. (2020). Efficient attention guided 5G power amplifier digital predistortion. arXiv preprint arXiv:2003.13361.
[8] Rawat, M., Rawat, K., & Ghannouchi, F. M. (2009). Adaptive digital predistortion of wireless power amplifiers/transmitters using dynamic real-valued focused time-delay line neural networks. IEEE Transactions on Microwave Theory and Techniques, 58(1), 95-104.
[9] Isaksson, M. (2007). Radio Frequency Power Amplifiers: Behavioral Modeling, Parameter-Reduction, and Digital Predistortion (Doctoral dissertation, Royal Institute of Technology).
[10] Xiang, T. and Wang, G. Doherty power amplifier with feedforward linearization, 2009 Asia Pacific Microwave Conference, Singapore, 2009, pp. 1621-1624
[11] Watkins, B. E., North, R., & Tummala, M. (1995, November). Neural network based adaptive predistortion for the linearization of nonlinear RF amplifiers. In Proceedings of MILCOM'95 (Vol. 1, pp. 145-149). IEEE.
[12] Watkins, B. E., & North, R. (1996, October). Predistortion of nonlinear amplifiers using neural networks. In Proceedings of MILCOM'96 IEEE Military Communications Conference (Vol. 1, pp. 316-320). IEEE.
[13] Viloria, A., Senior Naveda, A., Hernández Palma, H., Niebles Núẽz, W., & Niebles Núẽz, L. (2020). Electrical Consumption Patterns through Machine Learning. In Journal of Physics: Conference Series (Vol. 1432). Institute of Physics Publishing. https://doi.org/10.1088/1742-6596/1432/1/012093.
dc.rights.spa.fl_str_mv CC0 1.0 Universal
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/publicdomain/zero/1.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv CC0 1.0 Universal
http://creativecommons.org/publicdomain/zero/1.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Corporación Universidad de la Costa
dc.source.spa.fl_str_mv Procedia Computer Science
institution Corporación Universidad de la Costa
dc.source.url.spa.fl_str_mv https://www.sciencedirect.com/science/article/pii/S1877050920317919
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/4e4fa757-c493-4034-addf-d881f3a2c4ad/download
https://repositorio.cuc.edu.co/bitstreams/ac347b0f-6777-41c9-8e54-94a18f35e19a/download
https://repositorio.cuc.edu.co/bitstreams/7c106751-b321-4a44-b1bc-2c8b4e37acd2/download
https://repositorio.cuc.edu.co/bitstreams/3c1f28c2-ad8f-42d7-869d-85cf29918b42/download
https://repositorio.cuc.edu.co/bitstreams/04921ae0-b471-4f11-8cc3-89b955e1f232/download
bitstream.checksum.fl_str_mv 264f0055d335b654b6e3973e8e51f475
42fd4ad1e89814f5e4a476b409eb708c
e30e9215131d99561d40d6b0abbe9bad
35982fd9c703f4a2afa1b20211f6c81c
1737c3de475a87e00d1a9551ca5aa0c4
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1811760782005764096
spelling amelec, viloriaLizardo Zelaya, Nelson AlbertoMercado Caruso, Nohora Nubia2021-01-15T14:14:56Z2021-01-15T14:14:56Z20201877-0509https://hdl.handle.net/11323/7693https://doi.org/10.1016/j.procs.2020.07.091Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/A rapid evolution in electronic systems has been experienced in recent years, and one of the fields where this development has been notorious is the telecommunication systems in which users demand more and better services and with higher data transfer speeds. This has generated the need to develop new devices, algorithms and systems that manage to satisfy the requirements demanded y new technologies. An example of the above is the front-end of telecommunication systems. Systems need to be more efficient, but some elements of the systems, as the power amplifier, present nonlinearity when operating in its most efficient region, causing that it has to make a commitment between efficiency and linearity. This paper presents a comparison of different artificial neural network architectures, as a behavioral modeling method, to perform digital predistortion of power amplifiers.amelec, viloria-will be generated-orcid-0000-0003-2673-6350-600Lizardo Zelaya, Nelson AlbertoMercado Caruso, Nohora Nubia-will be generated-orcid-0000-0001-9261-8331-600application/pdfengCorporación Universidad de la CostaCC0 1.0 Universalhttp://creativecommons.org/publicdomain/zero/1.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Procedia Computer Sciencehttps://www.sciencedirect.com/science/article/pii/S1877050920317919Comparative studyNeural networksDigital pre-distortionRF amplifiersArtificial techniques applied to the improvement of the previous signals in the power amplifiersArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersion[1] Liu, T., Ye, Y., Yin, S., Chen, H., Xu, G., Lu, Y., & Chen, Y. (2019, May). Digital Predistortion Linearization with Deep Neural Networks for 5G Power Amplifiers. In 2019 European Microwave Conference in Central Europe (EuMCE) (pp. 216-219). IEEE.[2] Phartiyal, D., & Rawat, M. (2019, February). LSTM-Deep Neural Networks based Predistortion Linearizer for High Power Amplifiers. In 2019 National Conference on Communications (NCC) (pp. 1-5). IEEE.[3] Viloria, A., Hernández Palma, H., Gamboa Suarez, R., Niebles Núẽz, W., & Solórzano Movilla, J. (2020). Intelligent Model for Electric Power Management: Patterns. In Journal of Physics: Conference Series (Vol. 1432). Institute of Physics Publishing. https://doi.org/10.1088/1742-6596/1432/1/012032.[4] Sun, J., Wang, J., Guo, L., Yang, J., & Gui, G. (2020). Adaptive deep learning aided digital predistorter considering dynamic envelope. IEEE Transactions on Vehicular Technology.[5] Tripathi, G. C., Rawat, M., & Rawat, K. (2019, October). Swish Activation Based Deep Neural Network Predistorter for RF-PA. In TENCON 2019-2019 IEEE Region 10 Conference (TENCON) (pp. 1239-1242). IEEE.[6] Tripathi, G. C., Rawat, M., & Rawat, K. (2019, October). Swish Activation Based Deep Neural Network Predistorter for RF-PA. In TENCON 2019-2019 IEEE Region 10 Conference (TENCON) (pp. 1239-1242). IEEE.[7] Cioba, A., Chua, A., Shiu, D. S., Kuo, T. H., & Peng, C. S. (2020). Efficient attention guided 5G power amplifier digital predistortion. arXiv preprint arXiv:2003.13361.[8] Rawat, M., Rawat, K., & Ghannouchi, F. M. (2009). Adaptive digital predistortion of wireless power amplifiers/transmitters using dynamic real-valued focused time-delay line neural networks. IEEE Transactions on Microwave Theory and Techniques, 58(1), 95-104.[9] Isaksson, M. (2007). Radio Frequency Power Amplifiers: Behavioral Modeling, Parameter-Reduction, and Digital Predistortion (Doctoral dissertation, Royal Institute of Technology).[10] Xiang, T. and Wang, G. Doherty power amplifier with feedforward linearization, 2009 Asia Pacific Microwave Conference, Singapore, 2009, pp. 1621-1624[11] Watkins, B. E., North, R., & Tummala, M. (1995, November). Neural network based adaptive predistortion for the linearization of nonlinear RF amplifiers. In Proceedings of MILCOM'95 (Vol. 1, pp. 145-149). IEEE.[12] Watkins, B. E., & North, R. (1996, October). Predistortion of nonlinear amplifiers using neural networks. In Proceedings of MILCOM'96 IEEE Military Communications Conference (Vol. 1, pp. 316-320). IEEE.[13] Viloria, A., Senior Naveda, A., Hernández Palma, H., Niebles Núẽz, W., & Niebles Núẽz, L. (2020). Electrical Consumption Patterns through Machine Learning. In Journal of Physics: Conference Series (Vol. 1432). Institute of Physics Publishing. https://doi.org/10.1088/1742-6596/1432/1/012093.PublicationORIGINALArtificial techniques applied to the improvement of the previous signals in the power amplifiers.pdfArtificial techniques applied to the improvement of the previous signals in the power amplifiers.pdfapplication/pdf959496https://repositorio.cuc.edu.co/bitstreams/4e4fa757-c493-4034-addf-d881f3a2c4ad/download264f0055d335b654b6e3973e8e51f475MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8701https://repositorio.cuc.edu.co/bitstreams/ac347b0f-6777-41c9-8e54-94a18f35e19a/download42fd4ad1e89814f5e4a476b409eb708cMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/7c106751-b321-4a44-b1bc-2c8b4e37acd2/downloade30e9215131d99561d40d6b0abbe9badMD53THUMBNAILArtificial techniques applied to the improvement of the previous signals in the power amplifiers.pdf.jpgArtificial techniques applied to the improvement of the previous signals in the power amplifiers.pdf.jpgimage/jpeg44817https://repositorio.cuc.edu.co/bitstreams/3c1f28c2-ad8f-42d7-869d-85cf29918b42/download35982fd9c703f4a2afa1b20211f6c81cMD54TEXTArtificial techniques applied to the improvement of the previous signals in the power amplifiers.pdf.txtArtificial techniques applied to the improvement of the previous signals in the power amplifiers.pdf.txttext/plain19807https://repositorio.cuc.edu.co/bitstreams/04921ae0-b471-4f11-8cc3-89b955e1f232/download1737c3de475a87e00d1a9551ca5aa0c4MD5511323/7693oai:repositorio.cuc.edu.co:11323/76932024-09-17 11:07:42.079http://creativecommons.org/publicdomain/zero/1.0/CC0 1.0 Universalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA==