Factors Affecting the Electricity Consumption and Productivity of the Lead Acid Battery Formation Process. The Case of a Battery Plant in Colombia
This study identifies the main factors affecting the electricity efficiency and productivity of the lead acid battery formation process. A representative sample of 12,286 battery formation processes, developed between June 2014 and June 2015, were used in a statistic analysis. As a result, an energy...
- Autores:
-
Balbis Morejón, Milen
Cabello Eras, Juan José
Sagastume Gutierrez, Alexis
Sousa Santos, Vladimir
Pérez Gómez, Yabiel
Rueda-Bayona, Juan Gabriel
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2019
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/5142
- Acceso en línea:
- https://hdl.handle.net/11323/5142
https://repositorio.cuc.edu.co/
- Palabra clave:
- Energy Efficiency
Productivity
Training Process
Lead-acid Batteries
- Rights
- openAccess
- License
- CC0 1.0 Universal
id |
RCUC2_73d391be4e6c9a1c91a8034fe0436112 |
---|---|
oai_identifier_str |
oai:repositorio.cuc.edu.co:11323/5142 |
network_acronym_str |
RCUC2 |
network_name_str |
REDICUC - Repositorio CUC |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Factors Affecting the Electricity Consumption and Productivity of the Lead Acid Battery Formation Process. The Case of a Battery Plant in Colombia |
title |
Factors Affecting the Electricity Consumption and Productivity of the Lead Acid Battery Formation Process. The Case of a Battery Plant in Colombia |
spellingShingle |
Factors Affecting the Electricity Consumption and Productivity of the Lead Acid Battery Formation Process. The Case of a Battery Plant in Colombia Energy Efficiency Productivity Training Process Lead-acid Batteries |
title_short |
Factors Affecting the Electricity Consumption and Productivity of the Lead Acid Battery Formation Process. The Case of a Battery Plant in Colombia |
title_full |
Factors Affecting the Electricity Consumption and Productivity of the Lead Acid Battery Formation Process. The Case of a Battery Plant in Colombia |
title_fullStr |
Factors Affecting the Electricity Consumption and Productivity of the Lead Acid Battery Formation Process. The Case of a Battery Plant in Colombia |
title_full_unstemmed |
Factors Affecting the Electricity Consumption and Productivity of the Lead Acid Battery Formation Process. The Case of a Battery Plant in Colombia |
title_sort |
Factors Affecting the Electricity Consumption and Productivity of the Lead Acid Battery Formation Process. The Case of a Battery Plant in Colombia |
dc.creator.fl_str_mv |
Balbis Morejón, Milen Cabello Eras, Juan José Sagastume Gutierrez, Alexis Sousa Santos, Vladimir Pérez Gómez, Yabiel Rueda-Bayona, Juan Gabriel |
dc.contributor.author.spa.fl_str_mv |
Balbis Morejón, Milen Cabello Eras, Juan José Sagastume Gutierrez, Alexis Sousa Santos, Vladimir Pérez Gómez, Yabiel Rueda-Bayona, Juan Gabriel |
dc.subject.spa.fl_str_mv |
Energy Efficiency Productivity Training Process Lead-acid Batteries |
topic |
Energy Efficiency Productivity Training Process Lead-acid Batteries |
description |
This study identifies the main factors affecting the electricity efficiency and productivity of the lead acid battery formation process. A representative sample of 12,286 battery formation processes, developed between June 2014 and June 2015, were used in a statistic analysis. As a result, an energy performance indicator was developed to assess the electricity consumption of battery formation. Given that there are several formation circuits in the formation area, an energy performance indicator was developed for each circuit. The influence of the operational practices, operational teams, workings shift starting time and technical condition of the circuits were analyzed. The influence of the operational practices and the technical conditions of the formation circuits were identified as the main factors affecting the productivity and the electricity consumption. These factors cause a time waste, affecting productivity between 2% and 5%, and increasing the electricity consumption. As a result it is recommended to improve maintenance and operational practices towards higher productivity and electricity efficiency. |
publishDate |
2019 |
dc.date.accessioned.none.fl_str_mv |
2019-08-09T21:03:59Z |
dc.date.available.none.fl_str_mv |
2019-08-09T21:03:59Z |
dc.date.issued.none.fl_str_mv |
2019-06-29 |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
acceptedVersion |
dc.identifier.issn.spa.fl_str_mv |
2146-4553 |
dc.identifier.uri.spa.fl_str_mv |
https://hdl.handle.net/11323/5142 |
dc.identifier.instname.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.identifier.reponame.spa.fl_str_mv |
REDICUC - Repositorio CUC |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.cuc.edu.co/ |
identifier_str_mv |
2146-4553 Corporación Universidad de la Costa REDICUC - Repositorio CUC |
url |
https://hdl.handle.net/11323/5142 https://repositorio.cuc.edu.co/ |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartof.spa.fl_str_mv |
https://doi.org/10.32479/ijeep.8021 |
dc.relation.references.spa.fl_str_mv |
Abdelaziz, E., Saidur, R., Mekhilef, S. (2011), A review on energy saving strategies in industrial sector. Renewable and Sustainable Energy Reviews, 15, 150-168. Bajpai, A., Fernandes, K.J., Kumar, M. (2018), Modeling, analysis, and improvement of integrated productivity and energy consumption in a serial manufacturing system. Journal of Cleaner Production, 199, 296-304. Block, L., Larsen, A., Togeby, M. (2006), Empirical analysis of energy management in Danish industry. Journal of Cleaner Production, 14(5), 516-526. Bunse, K., Vodicka, M., Schönsleben, P., Brülhart, M., Ernst F. (2011), Integrating energy efficiency performance in production management e gap analysis between industrial needs and scientific literature. Journal of Cleaner Production, 19, 667-679. Cabello, J.J., Sagastume, A., Santos, V., Hernández, H., Balbis, M., Silva,J., Noriega, E., Vandecasteele, C. (2018), Energy Management in the Formation of Light, Starter, and Ignition Lead-acid Batteries, Energy Efficiency Magazine. Cabello, J.J., Sagastume, A., Sousa, V., Hernandez, H., Balbis, M., Silva, J. (2017), Soft Sensors to Assess the Energy Consumption in the Formation of Lead-acid Batteries. São Paulo-Brazil: 6th International Workshop Advances in Cleaner Production. p1-10. Available from: http://www.advancesincleanerproduction.net/sixth/ files/sessoes/5A/7/cabello_jj_et_al_academic.pdf. Cabello, J.J., Santos, V., Gutiérrez, A., Álvarez, M., Haeseldonckx, D., Vandecasteele, C. (2016), Tools to improve forecasting and control of the electricity consumption in hotels. Journal of Cleaner Production, 137, 803-812. Cagno, E., Trianni, A. (2014), Evaluating the barriers to specific industrial energy efficiency measures: An exploratory study in small and medium-sized enterprises. Journal of Cleaner Production, 82, 70-83. Chan, Y., Kantamanen, R. (2015), Study on Energy Efficiency and Energy Saving Potential in Industry and on Possible Policy Mechanisms. ICF Consulting Limited. Available from: https://www.ec.europa.eu/ energy/sites/ener/files/documents/151201%20DG%20ENER%20 Industrial%20EE%20study%20-%20final%20report_clean_stc.pdf. Chen, H., Wei, Y., Luo, Y., Duan, S. (1996), Study and application of several-step tank formation of lead/acid battery plates. Journal of Power Sources, 59(1), 59-62. Cope, R.C., Podrazhansky, Y. (1999), The Art of Battery Charging. Battery Conference on Applications and Advances. The Fourteenth Annual. Long Beach, CA, USA. Available from: http://www.EEIexplore. EEIe.org/document/795996/?arnumber=795996. Cuatrecasas, A.L. (2009), Diseño Avanzado de Procesos y Plantas de Producción Flexible: Técnicas de Diseño y Herramientas Gráficas con Soporte Informático. Profit Editorial. p718. Dahodwalla, H., Herat, S. (2000), Cleaner production options for leadacid battery manufacturing industry. Journal of Cleaner Production, 8(2), 133-142. Fawkes, S., Oung, K., Thorpe, D. (2016), Best Practices and Case Studies for Industrial Energy Efficiency Improvement. Copenhagen: Introduction for Policy Makers. Copenhagen Centre on Energy Efficiency and United Nations Environment Programme (UNEP). Available from: http://www.unepdtu.org/media/Sites/ energyefficiencycentre/Publications/C2E2%20Publications/BestPractises-for-industriaIal-EE_web.ashx?la=da. [Last accessed on 2016 Aug 15]. Gamtessa, S., Olani, A.B. (2018), Energy price, energy efficiency, and capital productivity: Empirical investigations and policy implications. Energy Economics, 72, 650-666. Gensch, C., Baron, Y., Moch, K., (2018), World Energy Balances: Overview. Paris: Organization for Economic Cooperation and Development. Giacone, E., Mancò, S. (2012), Energy efficiency measurement in industrial processes. Energy, 38, 331-345. Gielen, D., Taylor, P. (2009), Indicators for industrial energy efficiency in India. Energy, 34(8), 962-969. Hens, L., Cabello, J.J., Sagastume, A., García, D., Cogollos, V., Vandecasteele, C. (2016), University-industry interaction on cleaner production. The case of the cleaner production center at the university of cienfuegos in Cuba, a country in transition. Journal of Cleaner Production, 142, 63-68. International Standard Organization (ISO). (2014), ISO Survey 2014. Available from: http://www.iso.org. ISO. (2012), 50004: 2012-Energy Management Systems-guidance for the implementation, Maintenance and Improvement of an Energy Management System. Geneva: International Organization for Standardization. ISO. (2014), 50006: 2014-Energy Management Systems. Measuring Energy Performance using Energy Baselines (EnB) and Energy Performance Indicators (EnPI). General Principles and Guidance. Geneva: International Organization for Standardization. ISO. (2019), ISO Survey 2017. Available from: https://www.iso.org/ the-iso-survey.html. ITRI Ltd. (2017), Lead-acid Batteries Impact on Future Tin Use. Technical Report 2017. Jung, J., Zhang, L., Zhang, J. (2016), Lead-acid Battery Technologies. Fundamentals, Materials, and Applications. New York: CRC Press, Taylor and Francis Group. Kiessling, R. (1992), Lead Acid Battery Formation Techniques. Digatron Firing Circuits. Available from: http://www.digatron.com/fileadmin/ pdf/lead_acid.pdf. Li, Z., Luan, X., Liu, T., Jin, B., Zhang, Y. (2014), Room Cooling Load Calculation Based on Soft Sensing. International Conference on Life System Modeling and Simulation and International Conference on Intelligent Computing for Sustainable Energy and Environment. Berlin Heidelberg, Germany: Springer. p331-341. May, G.J., Davidson, A., Monahov, B., (2018), Lead batteries for utility energy storage: A review. Journal of Energy Storage, 15, 145-157. Miloloža, I. (2013), Tendencies of development of global battery market with emphasis on republic of Croatia. Interdisciplinary Description of Complex Systems, 11, 318-333. Montalbano, P., Nenci, S. (2018), Energy efficiency, productivity and exporting: Firm-level evidence in Latin America. Energy Economics. DOI: 10.1016/j.eneco.2018.03.033. Ospino, A. (2014), Análisis del potencial energético solar en la región caribe para el diseño de un sistema fotovoltaico. Revista Inge-CUC, 6, 95-102. Palamutcu, S. (2010), Electric energy consumption in the cotton textile processing stages. Energy, 35(7), 2945-2952. Pavlov, D. (2011), Lead-acid Batteries: Science and Technology: A Handbook of Lead-acid Battery Technology and its Influence on the Product. 1st ed. Ámsterdam: Elsevier. Pavlov, D., Petkova, G., Dimitrov, M., Shiomi, M., Tsubota, M. (2000), Influence of fast charge on the life cycle of positive lead–acid battery plates. Journal of Power Sources, 87(1), 39-56. Petkova, G., Pavlov, D. (2003), Influence of charge mode on the capacity and cycle life of lead–acid battery negative plates. Journal of Power Sources, 113(2), 355-362. Pillot, C. (2015), The Rechargeable Battery Market and Main Trends 2014-2025. Avicenne Energy, 32nd International Battery Seminar and Exhibit. p69. Porter, M.E., Van der Linde, C. (1995), Toward a new conception of the environment-competitiveness relationship. Journal of Economic Perspectives, 9(4), 97-118. Poscha, A., Brudermann, T., Braschela, N., Gabriel, M. (2015), Strategic energy management in energy-intensive enterprises: A quantitative analysis of relevant factors in the Austrian paper and pulp industry. Journal of Cleaner Production, 90, 291-299. Rantik, M. (1999), Life Cycle Assessment of Five Batteries for Electric Vehicles under different Charging Regimes. Stockholm: KFBKommunikations Forsknings-beredningen. Report Buyer Ltd. (2015), Global and China Lead-acid Battery Industry Report, 2015-2018. Available from: https://www.reportbuyer.com/ product/3548160/global-and-china-lead-acid-battery-industryreport-2015-2018.html. Rudberg, M., Waldemarsson, M., Lidestam, H. (2013), Strategic perspectives on energy management: A case study in the process industry. Applied Energy, 104, 487-496. Rydh, C.J., Sandén, B.A. (2005), Energy analysis of batteries in photovoltaic systems. Part I: Performance and energy requirements. Energy Conversion and Management, 46(11), 1957-1979. Sagastume, A., Cabello, J.J., Sousa, V., Hernández, H., Hens, L., Vandecasteele, C. (2018), Electricity management in the production of lead-acid batteries: The industrial case of a production plant in Colombia. Journal of Cleaner Production, 198, 1443-1458. Sullivan, J.L., Gaines, L. (2010), A Review of Battery Life-cycle Analysis: State of Knowledge and Critical Needs (No. ANL/ESD/10-7). USA: Argonne National Laboratory (ANL). Thi, M.N. (2009), Lead Acid Batteries in Extreme Conditions: Accelerated Charge, Maintaining the Charge with Imposed Low Current, Polarity Inversions Introducing Non-conventional Charge Methods. Doctoral Dissertation, Université Montpellier II-Sciences et Techniques du Languedoc. France. Available from: https://www.tel.archivesouvertes.fr/tel-00443615/document. Vine, E. (2005), An international survey of the energy service company (ESCO) industry. Energy Policy, 33(5), 691-704. Weighall, M.J. (2003), Techniques for jar formation of valve-regulated lead–acid batteries. Journal of Power Sources, 116(1), 219-231. Weinert, N., Chiotellis, S., Seliger, G. (2011), Methodology for planning and operating energy-efficient production systems. CIRP Annals, 60, 41-44. Wong, Y.S., Hurley W.G., Wölfle W.H. (2008), Charge regimes for valve-regulated lead-acid batteries: Performance overview inclusive of temperature compensation. Journal of Power Sources, 183(2), 783-791. Zhang, C., Wei, Y.L., Cao, P.F., Lin, M.C. (2018), Energy storage system: Current studies on batteries and power condition system. Renewable and Sustainable Energy Reviews, 82, 3091-3106. Zhu, L., Chen, J. (2019), A dynamic approach to energy efficiency estimation in the large-scale chemical plant. Journal of Cleaner Production, 212, 1072-1085. |
dc.rights.spa.fl_str_mv |
CC0 1.0 Universal |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/publicdomain/zero/1.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
CC0 1.0 Universal http://creativecommons.org/publicdomain/zero/1.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.publisher.spa.fl_str_mv |
International Journal of Energy Economics and Policy |
institution |
Corporación Universidad de la Costa |
bitstream.url.fl_str_mv |
https://repositorio.cuc.edu.co/bitstreams/8cbaa4c6-7564-4176-9cd4-58c5296c4ec8/download https://repositorio.cuc.edu.co/bitstreams/54d87eed-0269-49e7-bc58-210b8e47295d/download https://repositorio.cuc.edu.co/bitstreams/f27ab33b-2445-48dc-8604-60cf2f860d5f/download https://repositorio.cuc.edu.co/bitstreams/c7ac43a7-e023-492b-8f12-2426b0d599aa/download https://repositorio.cuc.edu.co/bitstreams/2b2d5010-0d03-40c8-905a-e6210ed9346e/download https://repositorio.cuc.edu.co/bitstreams/6bc81ce8-268b-4869-a530-eddb161d4c4f/download |
bitstream.checksum.fl_str_mv |
5b671e7d5d95aacdea2f841c4747bc99 42fd4ad1e89814f5e4a476b409eb708c 8a4605be74aa9ea9d79846c1fba20a33 b0e31807db7cb1784d140dc8bd275348 b8c8b360720ec83269767a07fe1cc25a 63548dba8f0c122d90e76bfc144143f2 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad de la Costa CUC |
repository.mail.fl_str_mv |
repdigital@cuc.edu.co |
_version_ |
1828166880808927232 |
spelling |
Balbis Morejón, MilenCabello Eras, Juan JoséSagastume Gutierrez, AlexisSousa Santos, VladimirPérez Gómez, YabielRueda-Bayona, Juan Gabriel2019-08-09T21:03:59Z2019-08-09T21:03:59Z2019-06-292146-4553https://hdl.handle.net/11323/5142Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/This study identifies the main factors affecting the electricity efficiency and productivity of the lead acid battery formation process. A representative sample of 12,286 battery formation processes, developed between June 2014 and June 2015, were used in a statistic analysis. As a result, an energy performance indicator was developed to assess the electricity consumption of battery formation. Given that there are several formation circuits in the formation area, an energy performance indicator was developed for each circuit. The influence of the operational practices, operational teams, workings shift starting time and technical condition of the circuits were analyzed. The influence of the operational practices and the technical conditions of the formation circuits were identified as the main factors affecting the productivity and the electricity consumption. These factors cause a time waste, affecting productivity between 2% and 5%, and increasing the electricity consumption. As a result it is recommended to improve maintenance and operational practices towards higher productivity and electricity efficiency.Balbis Morejón, MilenCabello Eras, Juan JoséSagastume Gutierrez, AlexisSousa Santos, VladimirPérez Gómez, YabielRueda-Bayona, Juan GabrielengInternational Journal of Energy Economics and Policyhttps://doi.org/10.32479/ijeep.8021Abdelaziz, E., Saidur, R., Mekhilef, S. (2011), A review on energy saving strategies in industrial sector. Renewable and Sustainable Energy Reviews, 15, 150-168. Bajpai, A., Fernandes, K.J., Kumar, M. (2018), Modeling, analysis, and improvement of integrated productivity and energy consumption in a serial manufacturing system. Journal of Cleaner Production, 199, 296-304. Block, L., Larsen, A., Togeby, M. (2006), Empirical analysis of energy management in Danish industry. Journal of Cleaner Production, 14(5), 516-526. Bunse, K., Vodicka, M., Schönsleben, P., Brülhart, M., Ernst F. (2011), Integrating energy efficiency performance in production management e gap analysis between industrial needs and scientific literature. Journal of Cleaner Production, 19, 667-679. Cabello, J.J., Sagastume, A., Santos, V., Hernández, H., Balbis, M., Silva,J., Noriega, E., Vandecasteele, C. (2018), Energy Management in the Formation of Light, Starter, and Ignition Lead-acid Batteries, Energy Efficiency Magazine. Cabello, J.J., Sagastume, A., Sousa, V., Hernandez, H., Balbis, M., Silva, J. (2017), Soft Sensors to Assess the Energy Consumption in the Formation of Lead-acid Batteries. São Paulo-Brazil: 6th International Workshop Advances in Cleaner Production. p1-10. Available from: http://www.advancesincleanerproduction.net/sixth/ files/sessoes/5A/7/cabello_jj_et_al_academic.pdf. Cabello, J.J., Santos, V., Gutiérrez, A., Álvarez, M., Haeseldonckx, D., Vandecasteele, C. (2016), Tools to improve forecasting and control of the electricity consumption in hotels. Journal of Cleaner Production, 137, 803-812. Cagno, E., Trianni, A. (2014), Evaluating the barriers to specific industrial energy efficiency measures: An exploratory study in small and medium-sized enterprises. Journal of Cleaner Production, 82, 70-83. Chan, Y., Kantamanen, R. (2015), Study on Energy Efficiency and Energy Saving Potential in Industry and on Possible Policy Mechanisms. ICF Consulting Limited. Available from: https://www.ec.europa.eu/ energy/sites/ener/files/documents/151201%20DG%20ENER%20 Industrial%20EE%20study%20-%20final%20report_clean_stc.pdf. Chen, H., Wei, Y., Luo, Y., Duan, S. (1996), Study and application of several-step tank formation of lead/acid battery plates. Journal of Power Sources, 59(1), 59-62. Cope, R.C., Podrazhansky, Y. (1999), The Art of Battery Charging. Battery Conference on Applications and Advances. The Fourteenth Annual. Long Beach, CA, USA. Available from: http://www.EEIexplore. EEIe.org/document/795996/?arnumber=795996. Cuatrecasas, A.L. (2009), Diseño Avanzado de Procesos y Plantas de Producción Flexible: Técnicas de Diseño y Herramientas Gráficas con Soporte Informático. Profit Editorial. p718. Dahodwalla, H., Herat, S. (2000), Cleaner production options for leadacid battery manufacturing industry. Journal of Cleaner Production, 8(2), 133-142. Fawkes, S., Oung, K., Thorpe, D. (2016), Best Practices and Case Studies for Industrial Energy Efficiency Improvement. Copenhagen: Introduction for Policy Makers. Copenhagen Centre on Energy Efficiency and United Nations Environment Programme (UNEP). Available from: http://www.unepdtu.org/media/Sites/ energyefficiencycentre/Publications/C2E2%20Publications/BestPractises-for-industriaIal-EE_web.ashx?la=da. [Last accessed on 2016 Aug 15]. Gamtessa, S., Olani, A.B. (2018), Energy price, energy efficiency, and capital productivity: Empirical investigations and policy implications. Energy Economics, 72, 650-666. Gensch, C., Baron, Y., Moch, K., (2018), World Energy Balances: Overview. Paris: Organization for Economic Cooperation and Development. Giacone, E., Mancò, S. (2012), Energy efficiency measurement in industrial processes. Energy, 38, 331-345. Gielen, D., Taylor, P. (2009), Indicators for industrial energy efficiency in India. Energy, 34(8), 962-969. Hens, L., Cabello, J.J., Sagastume, A., García, D., Cogollos, V., Vandecasteele, C. (2016), University-industry interaction on cleaner production. The case of the cleaner production center at the university of cienfuegos in Cuba, a country in transition. Journal of Cleaner Production, 142, 63-68. International Standard Organization (ISO). (2014), ISO Survey 2014. Available from: http://www.iso.org. ISO. (2012), 50004: 2012-Energy Management Systems-guidance for the implementation, Maintenance and Improvement of an Energy Management System. Geneva: International Organization for Standardization. ISO. (2014), 50006: 2014-Energy Management Systems. Measuring Energy Performance using Energy Baselines (EnB) and Energy Performance Indicators (EnPI). General Principles and Guidance. Geneva: International Organization for Standardization. ISO. (2019), ISO Survey 2017. Available from: https://www.iso.org/ the-iso-survey.html. ITRI Ltd. (2017), Lead-acid Batteries Impact on Future Tin Use. Technical Report 2017. Jung, J., Zhang, L., Zhang, J. (2016), Lead-acid Battery Technologies. Fundamentals, Materials, and Applications. New York: CRC Press, Taylor and Francis Group. Kiessling, R. (1992), Lead Acid Battery Formation Techniques. Digatron Firing Circuits. Available from: http://www.digatron.com/fileadmin/ pdf/lead_acid.pdf. Li, Z., Luan, X., Liu, T., Jin, B., Zhang, Y. (2014), Room Cooling Load Calculation Based on Soft Sensing. International Conference on Life System Modeling and Simulation and International Conference on Intelligent Computing for Sustainable Energy and Environment. Berlin Heidelberg, Germany: Springer. p331-341. May, G.J., Davidson, A., Monahov, B., (2018), Lead batteries for utility energy storage: A review. Journal of Energy Storage, 15, 145-157. Miloloža, I. (2013), Tendencies of development of global battery market with emphasis on republic of Croatia. Interdisciplinary Description of Complex Systems, 11, 318-333. Montalbano, P., Nenci, S. (2018), Energy efficiency, productivity and exporting: Firm-level evidence in Latin America. Energy Economics. DOI: 10.1016/j.eneco.2018.03.033. Ospino, A. (2014), Análisis del potencial energético solar en la región caribe para el diseño de un sistema fotovoltaico. Revista Inge-CUC, 6, 95-102. Palamutcu, S. (2010), Electric energy consumption in the cotton textile processing stages. Energy, 35(7), 2945-2952. Pavlov, D. (2011), Lead-acid Batteries: Science and Technology: A Handbook of Lead-acid Battery Technology and its Influence on the Product. 1st ed. Ámsterdam: Elsevier. Pavlov, D., Petkova, G., Dimitrov, M., Shiomi, M., Tsubota, M. (2000), Influence of fast charge on the life cycle of positive lead–acid battery plates. Journal of Power Sources, 87(1), 39-56. Petkova, G., Pavlov, D. (2003), Influence of charge mode on the capacity and cycle life of lead–acid battery negative plates. Journal of Power Sources, 113(2), 355-362. Pillot, C. (2015), The Rechargeable Battery Market and Main Trends 2014-2025. Avicenne Energy, 32nd International Battery Seminar and Exhibit. p69. Porter, M.E., Van der Linde, C. (1995), Toward a new conception of the environment-competitiveness relationship. Journal of Economic Perspectives, 9(4), 97-118. Poscha, A., Brudermann, T., Braschela, N., Gabriel, M. (2015), Strategic energy management in energy-intensive enterprises: A quantitative analysis of relevant factors in the Austrian paper and pulp industry. Journal of Cleaner Production, 90, 291-299. Rantik, M. (1999), Life Cycle Assessment of Five Batteries for Electric Vehicles under different Charging Regimes. Stockholm: KFBKommunikations Forsknings-beredningen. Report Buyer Ltd. (2015), Global and China Lead-acid Battery Industry Report, 2015-2018. Available from: https://www.reportbuyer.com/ product/3548160/global-and-china-lead-acid-battery-industryreport-2015-2018.html. Rudberg, M., Waldemarsson, M., Lidestam, H. (2013), Strategic perspectives on energy management: A case study in the process industry. Applied Energy, 104, 487-496. Rydh, C.J., Sandén, B.A. (2005), Energy analysis of batteries in photovoltaic systems. Part I: Performance and energy requirements. Energy Conversion and Management, 46(11), 1957-1979. Sagastume, A., Cabello, J.J., Sousa, V., Hernández, H., Hens, L., Vandecasteele, C. (2018), Electricity management in the production of lead-acid batteries: The industrial case of a production plant in Colombia. Journal of Cleaner Production, 198, 1443-1458. Sullivan, J.L., Gaines, L. (2010), A Review of Battery Life-cycle Analysis: State of Knowledge and Critical Needs (No. ANL/ESD/10-7). USA: Argonne National Laboratory (ANL). Thi, M.N. (2009), Lead Acid Batteries in Extreme Conditions: Accelerated Charge, Maintaining the Charge with Imposed Low Current, Polarity Inversions Introducing Non-conventional Charge Methods. Doctoral Dissertation, Université Montpellier II-Sciences et Techniques du Languedoc. France. Available from: https://www.tel.archivesouvertes.fr/tel-00443615/document. Vine, E. (2005), An international survey of the energy service company (ESCO) industry. Energy Policy, 33(5), 691-704. Weighall, M.J. (2003), Techniques for jar formation of valve-regulated lead–acid batteries. Journal of Power Sources, 116(1), 219-231. Weinert, N., Chiotellis, S., Seliger, G. (2011), Methodology for planning and operating energy-efficient production systems. CIRP Annals, 60, 41-44. Wong, Y.S., Hurley W.G., Wölfle W.H. (2008), Charge regimes for valve-regulated lead-acid batteries: Performance overview inclusive of temperature compensation. Journal of Power Sources, 183(2), 783-791. Zhang, C., Wei, Y.L., Cao, P.F., Lin, M.C. (2018), Energy storage system: Current studies on batteries and power condition system. Renewable and Sustainable Energy Reviews, 82, 3091-3106. Zhu, L., Chen, J. (2019), A dynamic approach to energy efficiency estimation in the large-scale chemical plant. Journal of Cleaner Production, 212, 1072-1085.CC0 1.0 Universalhttp://creativecommons.org/publicdomain/zero/1.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Energy EfficiencyProductivityTraining ProcessLead-acid BatteriesFactors Affecting the Electricity Consumption and Productivity of the Lead Acid Battery Formation Process. The Case of a Battery Plant in ColombiaArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersionPublicationORIGINALFactors Affecting the Electricity Consumption and Productivity of the Lead Acid Battery Formation Process. The Case of a Battery Plant in Colombia.pdfFactors Affecting the Electricity Consumption and Productivity of the Lead Acid Battery Formation Process. The Case of a Battery Plant in Colombia.pdfapplication/pdf1569655https://repositorio.cuc.edu.co/bitstreams/8cbaa4c6-7564-4176-9cd4-58c5296c4ec8/download5b671e7d5d95aacdea2f841c4747bc99MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8701https://repositorio.cuc.edu.co/bitstreams/54d87eed-0269-49e7-bc58-210b8e47295d/download42fd4ad1e89814f5e4a476b409eb708cMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.cuc.edu.co/bitstreams/f27ab33b-2445-48dc-8604-60cf2f860d5f/download8a4605be74aa9ea9d79846c1fba20a33MD53THUMBNAILFactors Affecting the Electricity Consumption and Productivity of the Lead Acid Battery Formation Process. The Case of a Battery Plant in Colombia.pdf.jpgFactors Affecting the Electricity Consumption and Productivity of the Lead Acid Battery Formation Process. The Case of a Battery Plant in Colombia.pdf.jpgimage/jpeg3214https://repositorio.cuc.edu.co/bitstreams/c7ac43a7-e023-492b-8f12-2426b0d599aa/downloadb0e31807db7cb1784d140dc8bd275348MD54Factors Affecting the Electricity Consumption and Productivity of the Lead Acid Battery Formation Process. The Case of a Battery Plant in Colombia.pdf.jpgFactors Affecting the Electricity Consumption and Productivity of the Lead Acid Battery Formation Process. The Case of a Battery Plant in Colombia.pdf.jpgimage/jpeg70855https://repositorio.cuc.edu.co/bitstreams/2b2d5010-0d03-40c8-905a-e6210ed9346e/downloadb8c8b360720ec83269767a07fe1cc25aMD55THUMBNAILTEXTFactors Affecting the Electricity Consumption and Productivity of the Lead Acid Battery Formation Process. The Case of a Battery Plant in Colombia.pdf.txtFactors Affecting the Electricity Consumption and Productivity of the Lead Acid Battery Formation Process. The Case of a Battery Plant in Colombia.pdf.txttext/plain44750https://repositorio.cuc.edu.co/bitstreams/6bc81ce8-268b-4869-a530-eddb161d4c4f/download63548dba8f0c122d90e76bfc144143f2MD5611323/5142oai:repositorio.cuc.edu.co:11323/51422024-09-17 14:21:24.876http://creativecommons.org/publicdomain/zero/1.0/CC0 1.0 Universalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |