Factors Affecting the Electricity Consumption and Productivity of the Lead Acid Battery Formation Process. The Case of a Battery Plant in Colombia

This study identifies the main factors affecting the electricity efficiency and productivity of the lead acid battery formation process. A representative sample of 12,286 battery formation processes, developed between June 2014 and June 2015, were used in a statistic analysis. As a result, an energy...

Full description

Autores:
Balbis Morejón, Milen
Cabello Eras, Juan José
Sagastume Gutierrez, Alexis
Sousa Santos, Vladimir
Pérez Gómez, Yabiel
Rueda-Bayona, Juan Gabriel
Tipo de recurso:
Article of journal
Fecha de publicación:
2019
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/5142
Acceso en línea:
https://hdl.handle.net/11323/5142
https://repositorio.cuc.edu.co/
Palabra clave:
Energy Efficiency
Productivity
Training Process
Lead-acid Batteries
Rights
openAccess
License
CC0 1.0 Universal
id RCUC2_73d391be4e6c9a1c91a8034fe0436112
oai_identifier_str oai:repositorio.cuc.edu.co:11323/5142
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.spa.fl_str_mv Factors Affecting the Electricity Consumption and Productivity of the Lead Acid Battery Formation Process. The Case of a Battery Plant in Colombia
title Factors Affecting the Electricity Consumption and Productivity of the Lead Acid Battery Formation Process. The Case of a Battery Plant in Colombia
spellingShingle Factors Affecting the Electricity Consumption and Productivity of the Lead Acid Battery Formation Process. The Case of a Battery Plant in Colombia
Energy Efficiency
Productivity
Training Process
Lead-acid Batteries
title_short Factors Affecting the Electricity Consumption and Productivity of the Lead Acid Battery Formation Process. The Case of a Battery Plant in Colombia
title_full Factors Affecting the Electricity Consumption and Productivity of the Lead Acid Battery Formation Process. The Case of a Battery Plant in Colombia
title_fullStr Factors Affecting the Electricity Consumption and Productivity of the Lead Acid Battery Formation Process. The Case of a Battery Plant in Colombia
title_full_unstemmed Factors Affecting the Electricity Consumption and Productivity of the Lead Acid Battery Formation Process. The Case of a Battery Plant in Colombia
title_sort Factors Affecting the Electricity Consumption and Productivity of the Lead Acid Battery Formation Process. The Case of a Battery Plant in Colombia
dc.creator.fl_str_mv Balbis Morejón, Milen
Cabello Eras, Juan José
Sagastume Gutierrez, Alexis
Sousa Santos, Vladimir
Pérez Gómez, Yabiel
Rueda-Bayona, Juan Gabriel
dc.contributor.author.spa.fl_str_mv Balbis Morejón, Milen
Cabello Eras, Juan José
Sagastume Gutierrez, Alexis
Sousa Santos, Vladimir
Pérez Gómez, Yabiel
Rueda-Bayona, Juan Gabriel
dc.subject.spa.fl_str_mv Energy Efficiency
Productivity
Training Process
Lead-acid Batteries
topic Energy Efficiency
Productivity
Training Process
Lead-acid Batteries
description This study identifies the main factors affecting the electricity efficiency and productivity of the lead acid battery formation process. A representative sample of 12,286 battery formation processes, developed between June 2014 and June 2015, were used in a statistic analysis. As a result, an energy performance indicator was developed to assess the electricity consumption of battery formation. Given that there are several formation circuits in the formation area, an energy performance indicator was developed for each circuit. The influence of the operational practices, operational teams, workings shift starting time and technical condition of the circuits were analyzed. The influence of the operational practices and the technical conditions of the formation circuits were identified as the main factors affecting the productivity and the electricity consumption. These factors cause a time waste, affecting productivity between 2% and 5%, and increasing the electricity consumption. As a result it is recommended to improve maintenance and operational practices towards higher productivity and electricity efficiency.
publishDate 2019
dc.date.accessioned.none.fl_str_mv 2019-08-09T21:03:59Z
dc.date.available.none.fl_str_mv 2019-08-09T21:03:59Z
dc.date.issued.none.fl_str_mv 2019-06-29
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_6501
status_str acceptedVersion
dc.identifier.issn.spa.fl_str_mv 2146-4553
dc.identifier.uri.spa.fl_str_mv https://hdl.handle.net/11323/5142
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
identifier_str_mv 2146-4553
Corporación Universidad de la Costa
REDICUC - Repositorio CUC
url https://hdl.handle.net/11323/5142
https://repositorio.cuc.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.ispartof.spa.fl_str_mv https://doi.org/10.32479/ijeep.8021
dc.relation.references.spa.fl_str_mv Abdelaziz, E., Saidur, R., Mekhilef, S. (2011), A review on energy saving strategies in industrial sector. Renewable and Sustainable Energy Reviews, 15, 150-168. Bajpai, A., Fernandes, K.J., Kumar, M. (2018), Modeling, analysis, and improvement of integrated productivity and energy consumption in a serial manufacturing system. Journal of Cleaner Production, 199, 296-304. Block, L., Larsen, A., Togeby, M. (2006), Empirical analysis of energy management in Danish industry. Journal of Cleaner Production, 14(5), 516-526. Bunse, K., Vodicka, M., Schönsleben, P., Brülhart, M., Ernst F. (2011), Integrating energy efficiency performance in production management e gap analysis between industrial needs and scientific literature. Journal of Cleaner Production, 19, 667-679. Cabello, J.J., Sagastume, A., Santos, V., Hernández, H., Balbis, M., Silva,J., Noriega, E., Vandecasteele, C. (2018), Energy Management in the Formation of Light, Starter, and Ignition Lead-acid Batteries, Energy Efficiency Magazine. Cabello, J.J., Sagastume, A., Sousa, V., Hernandez, H., Balbis, M., Silva, J. (2017), Soft Sensors to Assess the Energy Consumption in the Formation of Lead-acid Batteries. São Paulo-Brazil: 6th International Workshop Advances in Cleaner Production. p1-10. Available from: http://www.advancesincleanerproduction.net/sixth/ files/sessoes/5A/7/cabello_jj_et_al_academic.pdf. Cabello, J.J., Santos, V., Gutiérrez, A., Álvarez, M., Haeseldonckx, D., Vandecasteele, C. (2016), Tools to improve forecasting and control of the electricity consumption in hotels. Journal of Cleaner Production, 137, 803-812. Cagno, E., Trianni, A. (2014), Evaluating the barriers to specific industrial energy efficiency measures: An exploratory study in small and medium-sized enterprises. Journal of Cleaner Production, 82, 70-83. Chan, Y., Kantamanen, R. (2015), Study on Energy Efficiency and Energy Saving Potential in Industry and on Possible Policy Mechanisms. ICF Consulting Limited. Available from: https://www.ec.europa.eu/ energy/sites/ener/files/documents/151201%20DG%20ENER%20 Industrial%20EE%20study%20-%20final%20report_clean_stc.pdf. Chen, H., Wei, Y., Luo, Y., Duan, S. (1996), Study and application of several-step tank formation of lead/acid battery plates. Journal of Power Sources, 59(1), 59-62. Cope, R.C., Podrazhansky, Y. (1999), The Art of Battery Charging. Battery Conference on Applications and Advances. The Fourteenth Annual. Long Beach, CA, USA. Available from: http://www.EEIexplore. EEIe.org/document/795996/?arnumber=795996. Cuatrecasas, A.L. (2009), Diseño Avanzado de Procesos y Plantas de Producción Flexible: Técnicas de Diseño y Herramientas Gráficas con Soporte Informático. Profit Editorial. p718. Dahodwalla, H., Herat, S. (2000), Cleaner production options for leadacid battery manufacturing industry. Journal of Cleaner Production, 8(2), 133-142. Fawkes, S., Oung, K., Thorpe, D. (2016), Best Practices and Case Studies for Industrial Energy Efficiency Improvement. Copenhagen: Introduction for Policy Makers. Copenhagen Centre on Energy Efficiency and United Nations Environment Programme (UNEP). Available from: http://www.unepdtu.org/media/Sites/ energyefficiencycentre/Publications/C2E2%20Publications/BestPractises-for-industriaIal-EE_web.ashx?la=da. [Last accessed on 2016 Aug 15]. Gamtessa, S., Olani, A.B. (2018), Energy price, energy efficiency, and capital productivity: Empirical investigations and policy implications. Energy Economics, 72, 650-666. Gensch, C., Baron, Y., Moch, K., (2018), World Energy Balances: Overview. Paris: Organization for Economic Cooperation and Development. Giacone, E., Mancò, S. (2012), Energy efficiency measurement in industrial processes. Energy, 38, 331-345. Gielen, D., Taylor, P. (2009), Indicators for industrial energy efficiency in India. Energy, 34(8), 962-969. Hens, L., Cabello, J.J., Sagastume, A., García, D., Cogollos, V., Vandecasteele, C. (2016), University-industry interaction on cleaner production. The case of the cleaner production center at the university of cienfuegos in Cuba, a country in transition. Journal of Cleaner Production, 142, 63-68. International Standard Organization (ISO). (2014), ISO Survey 2014. Available from: http://www.iso.org. ISO. (2012), 50004: 2012-Energy Management Systems-guidance for the implementation, Maintenance and Improvement of an Energy Management System. Geneva: International Organization for Standardization. ISO. (2014), 50006: 2014-Energy Management Systems. Measuring Energy Performance using Energy Baselines (EnB) and Energy Performance Indicators (EnPI). General Principles and Guidance. Geneva: International Organization for Standardization. ISO. (2019), ISO Survey 2017. Available from: https://www.iso.org/ the-iso-survey.html. ITRI Ltd. (2017), Lead-acid Batteries Impact on Future Tin Use. Technical Report 2017. Jung, J., Zhang, L., Zhang, J. (2016), Lead-acid Battery Technologies. Fundamentals, Materials, and Applications. New York: CRC Press, Taylor and Francis Group. Kiessling, R. (1992), Lead Acid Battery Formation Techniques. Digatron Firing Circuits. Available from: http://www.digatron.com/fileadmin/ pdf/lead_acid.pdf. Li, Z., Luan, X., Liu, T., Jin, B., Zhang, Y. (2014), Room Cooling Load Calculation Based on Soft Sensing. International Conference on Life System Modeling and Simulation and International Conference on Intelligent Computing for Sustainable Energy and Environment. Berlin Heidelberg, Germany: Springer. p331-341. May, G.J., Davidson, A., Monahov, B., (2018), Lead batteries for utility energy storage: A review. Journal of Energy Storage, 15, 145-157. Miloloža, I. (2013), Tendencies of development of global battery market with emphasis on republic of Croatia. Interdisciplinary Description of Complex Systems, 11, 318-333. Montalbano, P., Nenci, S. (2018), Energy efficiency, productivity and exporting: Firm-level evidence in Latin America. Energy Economics. DOI: 10.1016/j.eneco.2018.03.033. Ospino, A. (2014), Análisis del potencial energético solar en la región caribe para el diseño de un sistema fotovoltaico. Revista Inge-CUC, 6, 95-102. Palamutcu, S. (2010), Electric energy consumption in the cotton textile processing stages. Energy, 35(7), 2945-2952. Pavlov, D. (2011), Lead-acid Batteries: Science and Technology: A Handbook of Lead-acid Battery Technology and its Influence on the Product. 1st ed. Ámsterdam: Elsevier. Pavlov, D., Petkova, G., Dimitrov, M., Shiomi, M., Tsubota, M. (2000), Influence of fast charge on the life cycle of positive lead–acid battery plates. Journal of Power Sources, 87(1), 39-56. Petkova, G., Pavlov, D. (2003), Influence of charge mode on the capacity and cycle life of lead–acid battery negative plates. Journal of Power Sources, 113(2), 355-362. Pillot, C. (2015), The Rechargeable Battery Market and Main Trends 2014-2025. Avicenne Energy, 32nd International Battery Seminar and Exhibit. p69. Porter, M.E., Van der Linde, C. (1995), Toward a new conception of the environment-competitiveness relationship. Journal of Economic Perspectives, 9(4), 97-118. Poscha, A., Brudermann, T., Braschela, N., Gabriel, M. (2015), Strategic energy management in energy-intensive enterprises: A quantitative analysis of relevant factors in the Austrian paper and pulp industry. Journal of Cleaner Production, 90, 291-299. Rantik, M. (1999), Life Cycle Assessment of Five Batteries for Electric Vehicles under different Charging Regimes. Stockholm: KFBKommunikations Forsknings-beredningen. Report Buyer Ltd. (2015), Global and China Lead-acid Battery Industry Report, 2015-2018. Available from: https://www.reportbuyer.com/ product/3548160/global-and-china-lead-acid-battery-industryreport-2015-2018.html. Rudberg, M., Waldemarsson, M., Lidestam, H. (2013), Strategic perspectives on energy management: A case study in the process industry. Applied Energy, 104, 487-496. Rydh, C.J., Sandén, B.A. (2005), Energy analysis of batteries in photovoltaic systems. Part I: Performance and energy requirements. Energy Conversion and Management, 46(11), 1957-1979. Sagastume, A., Cabello, J.J., Sousa, V., Hernández, H., Hens, L., Vandecasteele, C. (2018), Electricity management in the production of lead-acid batteries: The industrial case of a production plant in Colombia. Journal of Cleaner Production, 198, 1443-1458. Sullivan, J.L., Gaines, L. (2010), A Review of Battery Life-cycle Analysis: State of Knowledge and Critical Needs (No. ANL/ESD/10-7). USA: Argonne National Laboratory (ANL). Thi, M.N. (2009), Lead Acid Batteries in Extreme Conditions: Accelerated Charge, Maintaining the Charge with Imposed Low Current, Polarity Inversions Introducing Non-conventional Charge Methods. Doctoral Dissertation, Université Montpellier II-Sciences et Techniques du Languedoc. France. Available from: https://www.tel.archivesouvertes.fr/tel-00443615/document. Vine, E. (2005), An international survey of the energy service company (ESCO) industry. Energy Policy, 33(5), 691-704. Weighall, M.J. (2003), Techniques for jar formation of valve-regulated lead–acid batteries. Journal of Power Sources, 116(1), 219-231. Weinert, N., Chiotellis, S., Seliger, G. (2011), Methodology for planning and operating energy-efficient production systems. CIRP Annals, 60, 41-44. Wong, Y.S., Hurley W.G., Wölfle W.H. (2008), Charge regimes for valve-regulated lead-acid batteries: Performance overview inclusive of temperature compensation. Journal of Power Sources, 183(2), 783-791. Zhang, C., Wei, Y.L., Cao, P.F., Lin, M.C. (2018), Energy storage system: Current studies on batteries and power condition system. Renewable and Sustainable Energy Reviews, 82, 3091-3106. Zhu, L., Chen, J. (2019), A dynamic approach to energy efficiency estimation in the large-scale chemical plant. Journal of Cleaner Production, 212, 1072-1085.
dc.rights.spa.fl_str_mv CC0 1.0 Universal
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/publicdomain/zero/1.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv CC0 1.0 Universal
http://creativecommons.org/publicdomain/zero/1.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.publisher.spa.fl_str_mv International Journal of Energy Economics and Policy
institution Corporación Universidad de la Costa
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/8cbaa4c6-7564-4176-9cd4-58c5296c4ec8/download
https://repositorio.cuc.edu.co/bitstreams/54d87eed-0269-49e7-bc58-210b8e47295d/download
https://repositorio.cuc.edu.co/bitstreams/f27ab33b-2445-48dc-8604-60cf2f860d5f/download
https://repositorio.cuc.edu.co/bitstreams/c7ac43a7-e023-492b-8f12-2426b0d599aa/download
https://repositorio.cuc.edu.co/bitstreams/2b2d5010-0d03-40c8-905a-e6210ed9346e/download
https://repositorio.cuc.edu.co/bitstreams/6bc81ce8-268b-4869-a530-eddb161d4c4f/download
bitstream.checksum.fl_str_mv 5b671e7d5d95aacdea2f841c4747bc99
42fd4ad1e89814f5e4a476b409eb708c
8a4605be74aa9ea9d79846c1fba20a33
b0e31807db7cb1784d140dc8bd275348
b8c8b360720ec83269767a07fe1cc25a
63548dba8f0c122d90e76bfc144143f2
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1828166880808927232
spelling Balbis Morejón, MilenCabello Eras, Juan JoséSagastume Gutierrez, AlexisSousa Santos, VladimirPérez Gómez, YabielRueda-Bayona, Juan Gabriel2019-08-09T21:03:59Z2019-08-09T21:03:59Z2019-06-292146-4553https://hdl.handle.net/11323/5142Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/This study identifies the main factors affecting the electricity efficiency and productivity of the lead acid battery formation process. A representative sample of 12,286 battery formation processes, developed between June 2014 and June 2015, were used in a statistic analysis. As a result, an energy performance indicator was developed to assess the electricity consumption of battery formation. Given that there are several formation circuits in the formation area, an energy performance indicator was developed for each circuit. The influence of the operational practices, operational teams, workings shift starting time and technical condition of the circuits were analyzed. The influence of the operational practices and the technical conditions of the formation circuits were identified as the main factors affecting the productivity and the electricity consumption. These factors cause a time waste, affecting productivity between 2% and 5%, and increasing the electricity consumption. As a result it is recommended to improve maintenance and operational practices towards higher productivity and electricity efficiency.Balbis Morejón, MilenCabello Eras, Juan JoséSagastume Gutierrez, AlexisSousa Santos, VladimirPérez Gómez, YabielRueda-Bayona, Juan GabrielengInternational Journal of Energy Economics and Policyhttps://doi.org/10.32479/ijeep.8021Abdelaziz, E., Saidur, R., Mekhilef, S. (2011), A review on energy saving strategies in industrial sector. Renewable and Sustainable Energy Reviews, 15, 150-168. Bajpai, A., Fernandes, K.J., Kumar, M. (2018), Modeling, analysis, and improvement of integrated productivity and energy consumption in a serial manufacturing system. Journal of Cleaner Production, 199, 296-304. Block, L., Larsen, A., Togeby, M. (2006), Empirical analysis of energy management in Danish industry. Journal of Cleaner Production, 14(5), 516-526. Bunse, K., Vodicka, M., Schönsleben, P., Brülhart, M., Ernst F. (2011), Integrating energy efficiency performance in production management e gap analysis between industrial needs and scientific literature. Journal of Cleaner Production, 19, 667-679. Cabello, J.J., Sagastume, A., Santos, V., Hernández, H., Balbis, M., Silva,J., Noriega, E., Vandecasteele, C. (2018), Energy Management in the Formation of Light, Starter, and Ignition Lead-acid Batteries, Energy Efficiency Magazine. Cabello, J.J., Sagastume, A., Sousa, V., Hernandez, H., Balbis, M., Silva, J. (2017), Soft Sensors to Assess the Energy Consumption in the Formation of Lead-acid Batteries. São Paulo-Brazil: 6th International Workshop Advances in Cleaner Production. p1-10. Available from: http://www.advancesincleanerproduction.net/sixth/ files/sessoes/5A/7/cabello_jj_et_al_academic.pdf. Cabello, J.J., Santos, V., Gutiérrez, A., Álvarez, M., Haeseldonckx, D., Vandecasteele, C. (2016), Tools to improve forecasting and control of the electricity consumption in hotels. Journal of Cleaner Production, 137, 803-812. Cagno, E., Trianni, A. (2014), Evaluating the barriers to specific industrial energy efficiency measures: An exploratory study in small and medium-sized enterprises. Journal of Cleaner Production, 82, 70-83. Chan, Y., Kantamanen, R. (2015), Study on Energy Efficiency and Energy Saving Potential in Industry and on Possible Policy Mechanisms. ICF Consulting Limited. Available from: https://www.ec.europa.eu/ energy/sites/ener/files/documents/151201%20DG%20ENER%20 Industrial%20EE%20study%20-%20final%20report_clean_stc.pdf. Chen, H., Wei, Y., Luo, Y., Duan, S. (1996), Study and application of several-step tank formation of lead/acid battery plates. Journal of Power Sources, 59(1), 59-62. Cope, R.C., Podrazhansky, Y. (1999), The Art of Battery Charging. Battery Conference on Applications and Advances. The Fourteenth Annual. Long Beach, CA, USA. Available from: http://www.EEIexplore. EEIe.org/document/795996/?arnumber=795996. Cuatrecasas, A.L. (2009), Diseño Avanzado de Procesos y Plantas de Producción Flexible: Técnicas de Diseño y Herramientas Gráficas con Soporte Informático. Profit Editorial. p718. Dahodwalla, H., Herat, S. (2000), Cleaner production options for leadacid battery manufacturing industry. Journal of Cleaner Production, 8(2), 133-142. Fawkes, S., Oung, K., Thorpe, D. (2016), Best Practices and Case Studies for Industrial Energy Efficiency Improvement. Copenhagen: Introduction for Policy Makers. Copenhagen Centre on Energy Efficiency and United Nations Environment Programme (UNEP). Available from: http://www.unepdtu.org/media/Sites/ energyefficiencycentre/Publications/C2E2%20Publications/BestPractises-for-industriaIal-EE_web.ashx?la=da. [Last accessed on 2016 Aug 15]. Gamtessa, S., Olani, A.B. (2018), Energy price, energy efficiency, and capital productivity: Empirical investigations and policy implications. Energy Economics, 72, 650-666. Gensch, C., Baron, Y., Moch, K., (2018), World Energy Balances: Overview. Paris: Organization for Economic Cooperation and Development. Giacone, E., Mancò, S. (2012), Energy efficiency measurement in industrial processes. Energy, 38, 331-345. Gielen, D., Taylor, P. (2009), Indicators for industrial energy efficiency in India. Energy, 34(8), 962-969. Hens, L., Cabello, J.J., Sagastume, A., García, D., Cogollos, V., Vandecasteele, C. (2016), University-industry interaction on cleaner production. The case of the cleaner production center at the university of cienfuegos in Cuba, a country in transition. Journal of Cleaner Production, 142, 63-68. International Standard Organization (ISO). (2014), ISO Survey 2014. Available from: http://www.iso.org. ISO. (2012), 50004: 2012-Energy Management Systems-guidance for the implementation, Maintenance and Improvement of an Energy Management System. Geneva: International Organization for Standardization. ISO. (2014), 50006: 2014-Energy Management Systems. Measuring Energy Performance using Energy Baselines (EnB) and Energy Performance Indicators (EnPI). General Principles and Guidance. Geneva: International Organization for Standardization. ISO. (2019), ISO Survey 2017. Available from: https://www.iso.org/ the-iso-survey.html. ITRI Ltd. (2017), Lead-acid Batteries Impact on Future Tin Use. Technical Report 2017. Jung, J., Zhang, L., Zhang, J. (2016), Lead-acid Battery Technologies. Fundamentals, Materials, and Applications. New York: CRC Press, Taylor and Francis Group. Kiessling, R. (1992), Lead Acid Battery Formation Techniques. Digatron Firing Circuits. Available from: http://www.digatron.com/fileadmin/ pdf/lead_acid.pdf. Li, Z., Luan, X., Liu, T., Jin, B., Zhang, Y. (2014), Room Cooling Load Calculation Based on Soft Sensing. International Conference on Life System Modeling and Simulation and International Conference on Intelligent Computing for Sustainable Energy and Environment. Berlin Heidelberg, Germany: Springer. p331-341. May, G.J., Davidson, A., Monahov, B., (2018), Lead batteries for utility energy storage: A review. Journal of Energy Storage, 15, 145-157. Miloloža, I. (2013), Tendencies of development of global battery market with emphasis on republic of Croatia. Interdisciplinary Description of Complex Systems, 11, 318-333. Montalbano, P., Nenci, S. (2018), Energy efficiency, productivity and exporting: Firm-level evidence in Latin America. Energy Economics. DOI: 10.1016/j.eneco.2018.03.033. Ospino, A. (2014), Análisis del potencial energético solar en la región caribe para el diseño de un sistema fotovoltaico. Revista Inge-CUC, 6, 95-102. Palamutcu, S. (2010), Electric energy consumption in the cotton textile processing stages. Energy, 35(7), 2945-2952. Pavlov, D. (2011), Lead-acid Batteries: Science and Technology: A Handbook of Lead-acid Battery Technology and its Influence on the Product. 1st ed. Ámsterdam: Elsevier. Pavlov, D., Petkova, G., Dimitrov, M., Shiomi, M., Tsubota, M. (2000), Influence of fast charge on the life cycle of positive lead–acid battery plates. Journal of Power Sources, 87(1), 39-56. Petkova, G., Pavlov, D. (2003), Influence of charge mode on the capacity and cycle life of lead–acid battery negative plates. Journal of Power Sources, 113(2), 355-362. Pillot, C. (2015), The Rechargeable Battery Market and Main Trends 2014-2025. Avicenne Energy, 32nd International Battery Seminar and Exhibit. p69. Porter, M.E., Van der Linde, C. (1995), Toward a new conception of the environment-competitiveness relationship. Journal of Economic Perspectives, 9(4), 97-118. Poscha, A., Brudermann, T., Braschela, N., Gabriel, M. (2015), Strategic energy management in energy-intensive enterprises: A quantitative analysis of relevant factors in the Austrian paper and pulp industry. Journal of Cleaner Production, 90, 291-299. Rantik, M. (1999), Life Cycle Assessment of Five Batteries for Electric Vehicles under different Charging Regimes. Stockholm: KFBKommunikations Forsknings-beredningen. Report Buyer Ltd. (2015), Global and China Lead-acid Battery Industry Report, 2015-2018. Available from: https://www.reportbuyer.com/ product/3548160/global-and-china-lead-acid-battery-industryreport-2015-2018.html. Rudberg, M., Waldemarsson, M., Lidestam, H. (2013), Strategic perspectives on energy management: A case study in the process industry. Applied Energy, 104, 487-496. Rydh, C.J., Sandén, B.A. (2005), Energy analysis of batteries in photovoltaic systems. Part I: Performance and energy requirements. Energy Conversion and Management, 46(11), 1957-1979. Sagastume, A., Cabello, J.J., Sousa, V., Hernández, H., Hens, L., Vandecasteele, C. (2018), Electricity management in the production of lead-acid batteries: The industrial case of a production plant in Colombia. Journal of Cleaner Production, 198, 1443-1458. Sullivan, J.L., Gaines, L. (2010), A Review of Battery Life-cycle Analysis: State of Knowledge and Critical Needs (No. ANL/ESD/10-7). USA: Argonne National Laboratory (ANL). Thi, M.N. (2009), Lead Acid Batteries in Extreme Conditions: Accelerated Charge, Maintaining the Charge with Imposed Low Current, Polarity Inversions Introducing Non-conventional Charge Methods. Doctoral Dissertation, Université Montpellier II-Sciences et Techniques du Languedoc. France. Available from: https://www.tel.archivesouvertes.fr/tel-00443615/document. Vine, E. (2005), An international survey of the energy service company (ESCO) industry. Energy Policy, 33(5), 691-704. Weighall, M.J. (2003), Techniques for jar formation of valve-regulated lead–acid batteries. Journal of Power Sources, 116(1), 219-231. Weinert, N., Chiotellis, S., Seliger, G. (2011), Methodology for planning and operating energy-efficient production systems. CIRP Annals, 60, 41-44. Wong, Y.S., Hurley W.G., Wölfle W.H. (2008), Charge regimes for valve-regulated lead-acid batteries: Performance overview inclusive of temperature compensation. Journal of Power Sources, 183(2), 783-791. Zhang, C., Wei, Y.L., Cao, P.F., Lin, M.C. (2018), Energy storage system: Current studies on batteries and power condition system. Renewable and Sustainable Energy Reviews, 82, 3091-3106. Zhu, L., Chen, J. (2019), A dynamic approach to energy efficiency estimation in the large-scale chemical plant. Journal of Cleaner Production, 212, 1072-1085.CC0 1.0 Universalhttp://creativecommons.org/publicdomain/zero/1.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Energy EfficiencyProductivityTraining ProcessLead-acid BatteriesFactors Affecting the Electricity Consumption and Productivity of the Lead Acid Battery Formation Process. The Case of a Battery Plant in ColombiaArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersionPublicationORIGINALFactors Affecting the Electricity Consumption and Productivity of the Lead Acid Battery Formation Process. The Case of a Battery Plant in Colombia.pdfFactors Affecting the Electricity Consumption and Productivity of the Lead Acid Battery Formation Process. The Case of a Battery Plant in Colombia.pdfapplication/pdf1569655https://repositorio.cuc.edu.co/bitstreams/8cbaa4c6-7564-4176-9cd4-58c5296c4ec8/download5b671e7d5d95aacdea2f841c4747bc99MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8701https://repositorio.cuc.edu.co/bitstreams/54d87eed-0269-49e7-bc58-210b8e47295d/download42fd4ad1e89814f5e4a476b409eb708cMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.cuc.edu.co/bitstreams/f27ab33b-2445-48dc-8604-60cf2f860d5f/download8a4605be74aa9ea9d79846c1fba20a33MD53THUMBNAILFactors Affecting the Electricity Consumption and Productivity of the Lead Acid Battery Formation Process. The Case of a Battery Plant in Colombia.pdf.jpgFactors Affecting the Electricity Consumption and Productivity of the Lead Acid Battery Formation Process. The Case of a Battery Plant in Colombia.pdf.jpgimage/jpeg3214https://repositorio.cuc.edu.co/bitstreams/c7ac43a7-e023-492b-8f12-2426b0d599aa/downloadb0e31807db7cb1784d140dc8bd275348MD54Factors Affecting the Electricity Consumption and Productivity of the Lead Acid Battery Formation Process. The Case of a Battery Plant in Colombia.pdf.jpgFactors Affecting the Electricity Consumption and Productivity of the Lead Acid Battery Formation Process. The Case of a Battery Plant in Colombia.pdf.jpgimage/jpeg70855https://repositorio.cuc.edu.co/bitstreams/2b2d5010-0d03-40c8-905a-e6210ed9346e/downloadb8c8b360720ec83269767a07fe1cc25aMD55THUMBNAILTEXTFactors Affecting the Electricity Consumption and Productivity of the Lead Acid Battery Formation Process. The Case of a Battery Plant in Colombia.pdf.txtFactors Affecting the Electricity Consumption and Productivity of the Lead Acid Battery Formation Process. The Case of a Battery Plant in Colombia.pdf.txttext/plain44750https://repositorio.cuc.edu.co/bitstreams/6bc81ce8-268b-4869-a530-eddb161d4c4f/download63548dba8f0c122d90e76bfc144143f2MD5611323/5142oai:repositorio.cuc.edu.co:11323/51422024-09-17 14:21:24.876http://creativecommons.org/publicdomain/zero/1.0/CC0 1.0 Universalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=