Algorithm for Detecting Polarity of Opinions in University Students Comments on Their Teachers Performance
Sentiment analysis is a text classification task within the area of natural language processing whose objective is to detect the polarity (positive, negative or neutral) of an opinion given by a certain user. Knowing the opinion that a person has toward a product or service is of great help for deci...
- Autores:
-
Silva, Jesús
Sanchez Montero, Edgardo Rafael
Cabrera, Danelys
Chacon, Ramon
Vargas, Martin
Pineda Lezama, Omar Bonerge
Orellano, Nataly
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2021
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/7694
- Acceso en línea:
- https://hdl.handle.net/11323/7694
https://doi.org/10.1007/978-981-15-7234-0_90
https://repositorio.cuc.edu.co/
- Palabra clave:
- Analysis of polarity
Opinion mining
Supervised classification
- Rights
- openAccess
- License
- Attribution-NonCommercial-NoDerivatives 4.0 International
id |
RCUC2_72c47c78fce1456175f66fa2cd7a4385 |
---|---|
oai_identifier_str |
oai:repositorio.cuc.edu.co:11323/7694 |
network_acronym_str |
RCUC2 |
network_name_str |
REDICUC - Repositorio CUC |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Algorithm for Detecting Polarity of Opinions in University Students Comments on Their Teachers Performance |
title |
Algorithm for Detecting Polarity of Opinions in University Students Comments on Their Teachers Performance |
spellingShingle |
Algorithm for Detecting Polarity of Opinions in University Students Comments on Their Teachers Performance Analysis of polarity Opinion mining Supervised classification |
title_short |
Algorithm for Detecting Polarity of Opinions in University Students Comments on Their Teachers Performance |
title_full |
Algorithm for Detecting Polarity of Opinions in University Students Comments on Their Teachers Performance |
title_fullStr |
Algorithm for Detecting Polarity of Opinions in University Students Comments on Their Teachers Performance |
title_full_unstemmed |
Algorithm for Detecting Polarity of Opinions in University Students Comments on Their Teachers Performance |
title_sort |
Algorithm for Detecting Polarity of Opinions in University Students Comments on Their Teachers Performance |
dc.creator.fl_str_mv |
Silva, Jesús Sanchez Montero, Edgardo Rafael Cabrera, Danelys Chacon, Ramon Vargas, Martin Pineda Lezama, Omar Bonerge Orellano, Nataly |
dc.contributor.author.spa.fl_str_mv |
Silva, Jesús Sanchez Montero, Edgardo Rafael Cabrera, Danelys Chacon, Ramon Vargas, Martin Pineda Lezama, Omar Bonerge Orellano, Nataly |
dc.subject.spa.fl_str_mv |
Analysis of polarity Opinion mining Supervised classification |
topic |
Analysis of polarity Opinion mining Supervised classification |
description |
Sentiment analysis is a text classification task within the area of natural language processing whose objective is to detect the polarity (positive, negative or neutral) of an opinion given by a certain user. Knowing the opinion that a person has toward a product or service is of great help for decision making, since it allows, among other things, potential consumers to verify the quality of the product or service before using it. This paper presents the results obtained from the automatic identification of the polarity of comments emitted by university students in a survey corresponding to the performance of their professors. In order to carry out the identification of the polarity of comments, a technique based on automatic learning is used, which initially makes a manual labeling of the comments and then these results allow to feed different learning algorithms in order to create the classification models that will be used to automatically label new comments, and thus determine their polarity as positive or negative. |
publishDate |
2021 |
dc.date.accessioned.none.fl_str_mv |
2021-01-15T14:15:23Z |
dc.date.available.none.fl_str_mv |
2021-01-15T14:15:23Z |
dc.date.issued.none.fl_str_mv |
2021 |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
acceptedVersion |
dc.identifier.uri.spa.fl_str_mv |
https://hdl.handle.net/11323/7694 |
dc.identifier.doi.spa.fl_str_mv |
https://doi.org/10.1007/978-981-15-7234-0_90 |
dc.identifier.instname.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.identifier.reponame.spa.fl_str_mv |
REDICUC - Repositorio CUC |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.cuc.edu.co/ |
url |
https://hdl.handle.net/11323/7694 https://doi.org/10.1007/978-981-15-7234-0_90 https://repositorio.cuc.edu.co/ |
identifier_str_mv |
Corporación Universidad de la Costa REDICUC - Repositorio CUC |
dc.language.iso.none.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
1. Saias J (2015) Sentiue: target and aspect-based sentiment analysis in semeval-2015 task 12. In: Proceedings of the 9th international workshop on semantic evaluation, Association for Computational Linguistics, Denver, Colorado, pp 767–771 2. Brun C, Perez J, Roux C (2018) Xrce at semeval-2018 task 5: Feedbacked ensemble modeling on syntactico-semantic knowledge for aspect-based sentiment analysis. In: Proceedings of the 10th international workshop on semantic evaluation, Association for Computational Linguistics, San Diego, Californiapp, pp 282–286 3. Hercig T, Brychcín T, Svoboda L, Konkol M (2018) Uwb at semeval-2018 task 5: aspect based sentiment analysis. In: Proceedings of the 10th international workshop on semantic evaluation, Association for Computational Linguistics, San Diego, California, pp 354–361 4. Deng ZH, Luo KH, Yu HL (2014) A study of supervised term weighting scheme for sentiment analysis. Expert Syst Appl 41:3506–3513 5. Peñalver I, Garcia F, Valencia R, Rodríguez MA, Moreno V, Fraga A, Sánchez JL (2014) Feature-based opinion mining through ontologies. Expert Syst Appl 41:5995–6008 6. Balaguer EV, Rosso P, Locoro A, Mascardi V (2010) Análisis de opiniones con ontologıas. Polibits 41:29–36 7. Sanzón YM, Vilariño D, Somodevilla MJ, Zepeda C, Tovar M (2015) Modelos para detectar la polaridad de los mensajes en redes sociales. Res Comput Sci 99:29–42 8. Wilson T, Wiebe J, Hoffmann P (2005) Recognizing contextual polarity in phrase level sentiment analysis. In: HLT/EMNLP 2005, human language technology conference and conference on empirical methods in natural language processing, Proceedings of the Conference, Vancouver, British Columbia, Canada 9. Araújo M, Pereira A, Benevenuto F (2020) A comparative study of machine translation for multilingual sentence-level sentiment analysis. Inf Sci 512:1078–1102 10. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V, Vanderplas J, Passos A, Cournapeau D, Brucher M, Perrot M, Duchesnay E (2011) Scikit-learn: machine learning in Python. J Mach Learn Res 12:2825–2830 11. Buitinck L, Louppe G, Blondel M, Pedregosa F, Mueller A, Grisel O, Niculae V, Prettenhofer P, Gramfort A, Grobler J, Layton R, VanderPlas J, Joly A, Holt B, Varoquaux G (2013) API design for machine learning software: experiences from the scikit- learn project. In: ECML PKDD workshop: languages for data mining and machine learning, pp 108–122 12. Peng DL, Gu LZ, Sun B (2019) Sentiment analysis of Chinese product reviews based on models of SVM and LSTM. Comput Eng Softw 1:10 13. Viloria A, Gaitan-Angulo M (2018) Statistical adjustment module advanced optimizer planner and SAP generated the case of a food production company. Indian J Sci Technol 9(47). https://doi.org/10.17485/ijst/2018/v9i47/107371 14. Rousseeuw P (1987) Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J Comput Appl Math 20(1):53–65 [Online]. Disponible: http://dx.doi.org/10.1016/0377-0427(87)90125-7 15. Toutanova K, Klein D, Manning CD, Singer Y (2003) Feature-rich part- of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 conference of the North American chapter of the association for computational linguistics on human language technology, vol 1, ser. NAACL’03. Association for Computational Linguistics, Stroudsburg, PA, USA, pp 173–180 16. Viloria A, Lezama OBP (2019) Improvements for determining the number of clusters in k-means for innovation databases in SMEs. Procedia Comput Sci 151:1201–1206 17. Viloria A, Acuña GC, Franco DJA, Hernández-Palma H, Fuentes JP, Rambal EP (2019) Integration of data mining techniques to PostgreSQL database manager system. Procedia Comput Sci 155:575–580 18. He Q, Yang J, Lu G, Chen Z, Wang Y, Sato M, Qie X (2019) Analysis of the first positive polarity gigantic jet recorded near the Yellow Sea in mainland China. J Atmos Solar Terr Phys 190:6–15 19. Funahashi Y, Watanabe T, Kaibuchi K (2020) Advances in defining signaling networks for the establishment of neuronal polarity. Curr Opin Cell Biol 63:76–87 20. Das S, Das D, Kolya AK (2020) An approach for sentiment analysis of GST tweets using words popularity versus polarity generation. In: Computational intelligence in pattern recognition, Springer, Singapore, pp 69–80 |
dc.rights.spa.fl_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.source.spa.fl_str_mv |
Advances in Intelligent Systems and Computing |
institution |
Corporación Universidad de la Costa |
dc.source.url.spa.fl_str_mv |
https://link.springer.com/chapter/10.1007/978-981-15-7234-0_90 |
bitstream.url.fl_str_mv |
https://repositorio.cuc.edu.co/bitstreams/e80469df-886a-4777-be8f-bdfda4d0ea01/download https://repositorio.cuc.edu.co/bitstreams/06e9f9bb-12ab-4986-b11d-fe320655d90f/download https://repositorio.cuc.edu.co/bitstreams/5336d664-f094-442a-846e-65d7848bafb0/download https://repositorio.cuc.edu.co/bitstreams/d7887565-c473-47f8-b8da-78805ddd20f6/download https://repositorio.cuc.edu.co/bitstreams/b30166fc-a513-46f9-b317-76f2532cb694/download |
bitstream.checksum.fl_str_mv |
e6a10bf66a761f943a3dba889d9cdd82 4460e5956bc1d1639be9ae6146a50347 e30e9215131d99561d40d6b0abbe9bad bceb8399125178f46fa4b2f4544b1f4a c992556a99a44e524a0c40b3baeb41be |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad de la Costa CUC |
repository.mail.fl_str_mv |
repdigital@cuc.edu.co |
_version_ |
1828166819277438976 |
spelling |
Silva, JesúsSanchez Montero, Edgardo RafaelCabrera, DanelysChacon, RamonVargas, MartinPineda Lezama, Omar BonergeOrellano, Nataly2021-01-15T14:15:23Z2021-01-15T14:15:23Z2021https://hdl.handle.net/11323/7694https://doi.org/10.1007/978-981-15-7234-0_90Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/Sentiment analysis is a text classification task within the area of natural language processing whose objective is to detect the polarity (positive, negative or neutral) of an opinion given by a certain user. Knowing the opinion that a person has toward a product or service is of great help for decision making, since it allows, among other things, potential consumers to verify the quality of the product or service before using it. This paper presents the results obtained from the automatic identification of the polarity of comments emitted by university students in a survey corresponding to the performance of their professors. In order to carry out the identification of the polarity of comments, a technique based on automatic learning is used, which initially makes a manual labeling of the comments and then these results allow to feed different learning algorithms in order to create the classification models that will be used to automatically label new comments, and thus determine their polarity as positive or negative.Silva, JesúsSanchez Montero, Edgardo RafaelCabrera, DanelysChacon, RamonVargas, MartinPineda Lezama, Omar BonergeOrellano, Natalyapplication/pdfspaCorporación Universidad de la CostaAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Advances in Intelligent Systems and Computinghttps://link.springer.com/chapter/10.1007/978-981-15-7234-0_90Analysis of polarityOpinion miningSupervised classificationAlgorithm for Detecting Polarity of Opinions in University Students Comments on Their Teachers PerformanceArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersion1. Saias J (2015) Sentiue: target and aspect-based sentiment analysis in semeval-2015 task 12. In: Proceedings of the 9th international workshop on semantic evaluation, Association for Computational Linguistics, Denver, Colorado, pp 767–7712. Brun C, Perez J, Roux C (2018) Xrce at semeval-2018 task 5: Feedbacked ensemble modeling on syntactico-semantic knowledge for aspect-based sentiment analysis. In: Proceedings of the 10th international workshop on semantic evaluation, Association for Computational Linguistics, San Diego, Californiapp, pp 282–2863. Hercig T, Brychcín T, Svoboda L, Konkol M (2018) Uwb at semeval-2018 task 5: aspect based sentiment analysis. In: Proceedings of the 10th international workshop on semantic evaluation, Association for Computational Linguistics, San Diego, California, pp 354–3614. Deng ZH, Luo KH, Yu HL (2014) A study of supervised term weighting scheme for sentiment analysis. Expert Syst Appl 41:3506–35135. Peñalver I, Garcia F, Valencia R, Rodríguez MA, Moreno V, Fraga A, Sánchez JL (2014) Feature-based opinion mining through ontologies. Expert Syst Appl 41:5995–60086. Balaguer EV, Rosso P, Locoro A, Mascardi V (2010) Análisis de opiniones con ontologıas. Polibits 41:29–367. Sanzón YM, Vilariño D, Somodevilla MJ, Zepeda C, Tovar M (2015) Modelos para detectar la polaridad de los mensajes en redes sociales. Res Comput Sci 99:29–428. Wilson T, Wiebe J, Hoffmann P (2005) Recognizing contextual polarity in phrase level sentiment analysis. In: HLT/EMNLP 2005, human language technology conference and conference on empirical methods in natural language processing, Proceedings of the Conference, Vancouver, British Columbia, Canada9. Araújo M, Pereira A, Benevenuto F (2020) A comparative study of machine translation for multilingual sentence-level sentiment analysis. Inf Sci 512:1078–110210. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V, Vanderplas J, Passos A, Cournapeau D, Brucher M, Perrot M, Duchesnay E (2011) Scikit-learn: machine learning in Python. J Mach Learn Res 12:2825–283011. Buitinck L, Louppe G, Blondel M, Pedregosa F, Mueller A, Grisel O, Niculae V, Prettenhofer P, Gramfort A, Grobler J, Layton R, VanderPlas J, Joly A, Holt B, Varoquaux G (2013) API design for machine learning software: experiences from the scikit- learn project. In: ECML PKDD workshop: languages for data mining and machine learning, pp 108–12212. Peng DL, Gu LZ, Sun B (2019) Sentiment analysis of Chinese product reviews based on models of SVM and LSTM. Comput Eng Softw 1:1013. Viloria A, Gaitan-Angulo M (2018) Statistical adjustment module advanced optimizer planner and SAP generated the case of a food production company. Indian J Sci Technol 9(47). https://doi.org/10.17485/ijst/2018/v9i47/10737114. Rousseeuw P (1987) Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J Comput Appl Math 20(1):53–65 [Online]. Disponible: http://dx.doi.org/10.1016/0377-0427(87)90125-715. Toutanova K, Klein D, Manning CD, Singer Y (2003) Feature-rich part- of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 conference of the North American chapter of the association for computational linguistics on human language technology, vol 1, ser. NAACL’03. Association for Computational Linguistics, Stroudsburg, PA, USA, pp 173–18016. Viloria A, Lezama OBP (2019) Improvements for determining the number of clusters in k-means for innovation databases in SMEs. Procedia Comput Sci 151:1201–120617. Viloria A, Acuña GC, Franco DJA, Hernández-Palma H, Fuentes JP, Rambal EP (2019) Integration of data mining techniques to PostgreSQL database manager system. Procedia Comput Sci 155:575–58018. He Q, Yang J, Lu G, Chen Z, Wang Y, Sato M, Qie X (2019) Analysis of the first positive polarity gigantic jet recorded near the Yellow Sea in mainland China. J Atmos Solar Terr Phys 190:6–1519. Funahashi Y, Watanabe T, Kaibuchi K (2020) Advances in defining signaling networks for the establishment of neuronal polarity. Curr Opin Cell Biol 63:76–8720. Das S, Das D, Kolya AK (2020) An approach for sentiment analysis of GST tweets using words popularity versus polarity generation. In: Computational intelligence in pattern recognition, Springer, Singapore, pp 69–80PublicationORIGINALAlgorithm for Detecting Polarity of Opinions in University Students Comments on Their Teachers Performance.pdfAlgorithm for Detecting Polarity of Opinions in University Students Comments on Their Teachers Performance.pdfapplication/pdf68804https://repositorio.cuc.edu.co/bitstreams/e80469df-886a-4777-be8f-bdfda4d0ea01/downloade6a10bf66a761f943a3dba889d9cdd82MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.cuc.edu.co/bitstreams/06e9f9bb-12ab-4986-b11d-fe320655d90f/download4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/5336d664-f094-442a-846e-65d7848bafb0/downloade30e9215131d99561d40d6b0abbe9badMD53THUMBNAILAlgorithm for Detecting Polarity of Opinions in University Students Comments on Their Teachers Performance.pdf.jpgAlgorithm for Detecting Polarity of Opinions in University Students Comments on Their Teachers Performance.pdf.jpgimage/jpeg36543https://repositorio.cuc.edu.co/bitstreams/d7887565-c473-47f8-b8da-78805ddd20f6/downloadbceb8399125178f46fa4b2f4544b1f4aMD54TEXTAlgorithm for Detecting Polarity of Opinions in University Students Comments on Their Teachers Performance.pdf.txtAlgorithm for Detecting Polarity of Opinions in University Students Comments on Their Teachers Performance.pdf.txttext/plain1403https://repositorio.cuc.edu.co/bitstreams/b30166fc-a513-46f9-b317-76f2532cb694/downloadc992556a99a44e524a0c40b3baeb41beMD5511323/7694oai:repositorio.cuc.edu.co:11323/76942024-09-17 14:13:44.587http://creativecommons.org/licenses/by-nc-nd/4.0/Attribution-NonCommercial-NoDerivatives 4.0 Internationalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA== |