A color fusion model based on Markowitz portfolio optimization for optic disc segmentation in retinal images

Retinal disorders are a severe health threat for older adults because they may lead to vision loss and blindness. Diabetic patients are particularly prone to suffer from Diabetic Retinopathy. Identifying relevant structural components in color fundus images like the optic disc (OD) is crucial to dia...

Full description

Autores:
Escorcia-Gutierrez, Jose
Torrents-Barrena, Jordina
Gamarra, Margarita
Romero-Aroca, Pedro
Valls, Aida
Puig, Domenec
Tipo de recurso:
http://purl.org/coar/resource_type/c_816b
Fecha de publicación:
2021
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/8083
Acceso en línea:
https://hdl.handle.net/11323/8083
https://doi.org/10.1016/j.eswa.2021.114697
https://repositorio.cuc.edu.co/
Palabra clave:
Diabetic retinopathy
Optic disc
Color fusión
Markowitz portfolio
Segmentation
Rights
openAccess
License
CC0 1.0 Universal
Description
Summary:Retinal disorders are a severe health threat for older adults because they may lead to vision loss and blindness. Diabetic patients are particularly prone to suffer from Diabetic Retinopathy. Identifying relevant structural components in color fundus images like the optic disc (OD) is crucial to diagnose retinal diseases. Automatic OD detection is complex because of its location in an area where blood vessels converge, and color distribution is uneven. Several image processing techniques have been developed for OD detection so far, but vessel segmentation is sometimes required, increasing computational complexity and time. Moreover, precise OD segmentation methods utilize complex algorithms that need special hardware or extensive labeled datasets. We propose an OD detection approach based on the Modern Portfolio Theory of Markowitz to generate an innovative color fusion model. Specifically, the training phase calculates the optimal weights for each color channel. A fusion of weighted color channels is then applied in the testing phase. This approach acts as a powerful and real-time preprocessing stage. We use four heterogeneous datasets to validate the presented methodology. Three out of four datasets are publicly available (i.e., DRIVE, Messidor, and HRF), and the last corresponds to an in–house dataset acquired from Hospital Universitari Sant Joan de Reus (Spain). Two different segmentation methods are presented and compared with state-of-the-art computer vision techniques to analyze the model performance. An outstanding accuracy and overlap above 0.9 and 80%, respectively, and a minimal execution time of 0.05 s are reached. Therefore, our model could be integrated into daily clinical practice to accelerate the diagnosis of Diabetic Retinopathy due to its simplicity, performance, and speed.