(N, λ)-periodic solutions to abstract difference equations of convolution type

This work primarily focuses on (N, λ)-periodic sequences and their applications. To begin, we provide a brief overview of (N, λ)-periodic sequences and introduce several results. Secondly, in terms of applications and main objective, we establish sufficient criteria for both the existence and unique...

Full description

Autores:
Alvarez, Edgardo
Díaz, Stiven
Rueda, Silvia
Tipo de recurso:
Article of investigation
Fecha de publicación:
2024
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/13368
Acceso en línea:
https://hdl.handle.net/11323/13368
https://doi.org/10.1016/j.jmaa.2024.128643
https://repositorio.cuc.edu.co/
Palabra clave:
(N, λ)-periodic
Abstract difference equations of convolution type
Fractional difference equations
Difference operators
Rights
openAccess
License
Atribución 4.0 Internacional (CC BY 4.0)
id RCUC2_724cc68a568d7247d2dcef2bf318c5bd
oai_identifier_str oai:repositorio.cuc.edu.co:11323/13368
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.eng.fl_str_mv (N, λ)-periodic solutions to abstract difference equations of convolution type
title (N, λ)-periodic solutions to abstract difference equations of convolution type
spellingShingle (N, λ)-periodic solutions to abstract difference equations of convolution type
(N, λ)-periodic
Abstract difference equations of convolution type
Fractional difference equations
Difference operators
title_short (N, λ)-periodic solutions to abstract difference equations of convolution type
title_full (N, λ)-periodic solutions to abstract difference equations of convolution type
title_fullStr (N, λ)-periodic solutions to abstract difference equations of convolution type
title_full_unstemmed (N, λ)-periodic solutions to abstract difference equations of convolution type
title_sort (N, λ)-periodic solutions to abstract difference equations of convolution type
dc.creator.fl_str_mv Alvarez, Edgardo
Díaz, Stiven
Rueda, Silvia
dc.contributor.author.none.fl_str_mv Alvarez, Edgardo
Díaz, Stiven
Rueda, Silvia
dc.subject.proposal.eng.fl_str_mv (N, λ)-periodic
Abstract difference equations of convolution type
Fractional difference equations
Difference operators
topic (N, λ)-periodic
Abstract difference equations of convolution type
Fractional difference equations
Difference operators
description This work primarily focuses on (N, λ)-periodic sequences and their applications. To begin, we provide a brief overview of (N, λ)-periodic sequences and introduce several results. Secondly, in terms of applications and main objective, we establish sufficient criteria for both the existence and uniqueness of (N, λ)-periodic mild solutions for abstract difference equations of convolution type. Furthermore, we present illustrative examples to highlight our key findings.
publishDate 2024
dc.date.accessioned.none.fl_str_mv 2024-09-24T15:00:23Z
dc.date.available.none.fl_str_mv 2024-09-24T15:00:23Z
dc.date.issued.none.fl_str_mv 2024-12-15
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
format http://purl.org/coar/resource_type/c_2df8fbb1
status_str publishedVersion
dc.identifier.issn.spa.fl_str_mv 0022-247X
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/11323/13368
dc.identifier.doi.none.fl_str_mv https://doi.org/10.1016/j.jmaa.2024.128643
dc.identifier.eissn.spa.fl_str_mv 1096-0813
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
identifier_str_mv 0022-247X
1096-0813
Corporación Universidad de la Costa
REDICUC - Repositorio CUC
url https://hdl.handle.net/11323/13368
https://doi.org/10.1016/j.jmaa.2024.128643
https://repositorio.cuc.edu.co/
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.ispartofjournal.spa.fl_str_mv Journal of Mathematical Analysis and Applications
dc.relation.references.spa.fl_str_mv [1] L. Abadias, C. Lizama, Almost automorphic mild solutions to fractional partial difference-differential equations, Appl. Anal. 95 (6) (2016) 1347–1369.
[2] L. Abadias, C. Lizama, P.J. Miana, M.P. Velasco, Cesàro sums and algebra homomorphisms of bounded operators, Isr. J. Math. 216 (1) (2016) 471–505.
[3] R.P. Agarwal, C. Cuevas, F. Dantas, Almost automorphy profile of solutions for difference equations of Volterra type, J. Appl. Math. Comput. 42 (2013) 1–18.
[4] E. Alvarez, S. Díaz, C. Lizama, C-semigroups, subordination principle and the Lévy α-stable distribution on discrete time, Commun. Contemp. Math. 24 (01) (2020) 2050063.
[5] E. Alvarez, S. Díaz, C. Lizama, On the existence and uniqueness of (N, λ)-periodic solutions to a class of Volterra difference equations, Adv. Differ. Equ. 105 (2019).
[6] E. Alvarez, S. Díaz, C. Lizama, Existence of (N, λ)-periodic solutions for abstract fractional difference equations, Mediterr. J. Math. 19 (2022) 47.
[7] E. Alvarez, R. Grau, R. Meriño, (ω, c)-periodic solutions for a class of fractional integrodifferential equations, Bound. Value Probl. 40 (2023).
[8] J. Cao, A. Debbouche, Y. Zhou, Asymptotic almost-periodicity for a class of Weyl-like fractional difference equations, Mathematics 7 (2019) 592.
[9] Y.K. Chang, L. Penghui, Weighted pseudo asymptotically antiperiodic sequential solutions to semilinear difference equation, J. Differ. Equ. Appl. 27 (2021) 10.
[10] Y.K. Chang, J. Zhao, Pseudo S-asymptotically (ω, c)-periodic solutions to some evolution equations in Banach spaces, Banach J. Math. Anal. 17 (2023) 34.
[11] S. Elaydi, Stability and asymptoticity of Volterra difference equations: a progress report, J. Comput. Appl. Math. 228 (2) (2009) 504–513.
[12] M. Feckan, M.T. Khalladi, M. Kostić, A. Rahmani, Multi-dimensional ρ-almost periodic type functions and applications, Appl. Anal. (2022) 1–27.
[13] J.W. He, L. Peng, Time discrete abstract fractional Volterra equations via resolvent sequences, Mediterr. J. Math. 19 (2022) 207.
[14] V. Keyantuo, C. Lizama, S. Rueda, M. Warma, Asymptotic behavior of mild solutions for a class of abstract nonlinear difference equations of convolution type, Adv. Differ. Equ. 2019 (2019) 251.
[15] M. Kostić, B. Chaouchi, W.-S. Du, D. Velinov, Generalized ρ-almost periodic sequences and applications, Fractal Fract. 7 (5) (2023) 410, https://doi.org/10.3390/fractalfract7050410.
[16] Y. Li, W. Qi, B. Li, Besicovitch almost periodic solutions to semilinear evolution dynamic equations with varying delay, Qual. Theory Dyn. Syst. 22 (2023) 29, https://doi.org/10.1007/s12346-022-00735-2.
[17] K. Liu, J. Wang, D. O’Regan, M. Feckan, A new class of (ω, c)-periodic non-instantaneous impulsive differential equations, Mediterr. J. Math. 17 (2020) 155.
[18] C. Lizama, The Poisson distribution, abstract fractional difference equations, and stability, Proc. Am. Math. Soc. 145 (9) (2017) 3809–3827.
[19] J. Matkowski, Integrable solutions of functional equations, Diss. Math. 127 (1975) 1–68.
[20] L. Penghui, Y.K. Chang, Pseudo antiperiodic solutions to Volterra difference equations, Mediterr. J. Math. 20 (2023) 36.
[21] J.R. Wang, L. Ren, Y. Zhou, (ω, c)-periodic solutions for time varying impulsive differential equations, Adv. Differ. Equ. 2019 (2019) 259.
[22] Z. Xia, D. Wang, Asymptotic behavior of mild solutions for nonlinear fractional difference equations, Fract. Calc. Appl. Anal. 21 (2) (2018) 527–551.
[23] Z. Xia, Discrete weighted pseudo-almost automorphy and applications, J. Appl. Math. 2014 (2014) 946–984.
[24] A. Zygmund, Trigonometric Series, vol. I, 2nd ed., Cambridge University Press, New York, 1959.
dc.relation.citationendpage.spa.fl_str_mv 12
dc.relation.citationstartpage.spa.fl_str_mv 1
dc.relation.citationissue.spa.fl_str_mv 2
dc.relation.citationvolume.spa.fl_str_mv 540
dc.rights.license.spa.fl_str_mv Atribución 4.0 Internacional (CC BY 4.0)
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Atribución 4.0 Internacional (CC BY 4.0)
https://creativecommons.org/licenses/by/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 12 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Elsevier
dc.publisher.place.spa.fl_str_mv United States
dc.source.spa.fl_str_mv https://pdf.sciencedirectassets.com/272578/1-s2.0-S0022247X24X00141/1-s2.0-S0022247X24005651/main.pdf?X-Amz-Security-Token=IQoJb3JpZ2luX2VjEIb%2F%2F%2F%2F%2F%2F%2F%2F%2F%2FwEaCXVzLWVhc3QtMSJHMEUCIQDl%2F6HYpBkXgNoaqh%2F938SqK%2BYho8y6lbO%2FZydITWJQ5AIgSUCA24zzE5LuYqZOWV0sOt7s25REcutfaQnMDg36EykquwUIrv%2F%2F%2F%2F%2F%2F%2F%2F%2F%2FARAFGgwwNTkwMDM1NDY4NjUiDHxxtw6BwbjMEJd9MiqPBSRYQG75KdfUwnRaP4qQHa37W%2BB4qDda3jyI%2BXfkSFdUPB4SRZThJjaTYOR0ipCUjgfG8AM3hX0v4lmzzAb2Ls2pQ7fzcLRZ0vESSzZ%2FKL6eokF6yjYqsREizOPoWLeMS40mW%2FIqorVMnH8mkPRAwNqdqGgT5ERBuEyviX8j%2Bn8hw%2FzNXoi1MWrdvq9m7J0cbQCd313A4lVfiIVV%2FuPhGz4DRm9j65RuPAVVSp2veUBGGzOHeNLPmrWuxpvKIyhBLn8F3PQhtg1GqAxQMZuRleyIuJlEXIJU%2BWX5FpsUfvueQj1eGyYg4H6qi%2BzcoCMVDGXaMLDuXKSW5DYNnRjhWXXYzl4rjhLkJ8R%2FljERXN0UzgnSZn0PWKWol8J84UOrf0atK4gxpU1ZoApTMH%2FNEjTMu3gJtLYuIoWGmglqWOB%2BWMQTk9J5Gp6IFfqlmuDnaZ600Kyg7MWUfC9CZ%2B2ljMTjvTYCk9QrS0CAvxaMAVdzagpbWuWJI5Id1FLD3QaJ10zpW2HoQIid5%2FhRWskr2GVFiqNgNgY847REOjy%2FFERlxyMdks3ylwa1Yq7aFTPYFZEEyumdBiieMRTYqgQ1cmw6MwHTrX1vTSgDOIO2q%2BmbIEjEU6NJeT9xcGfRZUWfzFruIlXhVOYcZTxunu7XPgzz9KPiLtKb4OG41yXlER5A6Mif%2Ba2ACK5zS9u0dWE7sxNNSSbABvRlBIbHv5Rt9D1JB1rGX8NPA%2BX6jB1lC4fQNf6K1JGs9cv742kVeNw1ZM07SiKTWe976gChqKVpKcY2Jff2qQfH7fijfpFn97%2BejCmj0SCgvf58T%2BiUz1qlsi8Ryl0S0TbCXkPF%2BT%2BdXgNUlWcPjr8knPgfrUMQwnQwt6%2BNtwY6sQGpyL8ZxGoz239AGyxGgfGFq2YUqW9qGKWb3%2BHL9HleXKjC2pgmiA3rfpiWZPOe8BpPGjDY9ccvDex1JUy8iodTPGysQj8215cAG3X%2FaOwP255PTkUUgOfos1GganxhokKJwHWozE1utqOXSHnv7hu3GaHKwjMjI%2FJbtZ2ikg%2FGOMmmr%2F3QwSeY3%2BC%2BkrbUmUoCcHX9tP6K%2B%2FOh1ESE6aJ%2B8A8o4eRWZLCpJIgZEAl8ls0%3D&X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Date=20240912T221549Z&X-Amz-SignedHeaders=host&X-Amz-Expires=300&X-Amz-Credential=ASIAQ3PHCVTY3ENYI536%2F20240912%2Fus-east-1%2Fs3%2Faws4_request&X-Amz-Signature=9b5d92f925a1aad17eed0df6b45a3eb2e0e818a37b5e5e71449ab6455a4e8911&hash=73858af2e5ef98e20f3c1b7011fc270d4d99e5d2fcf7325037fe2fb640fbd0bd&host=68042c943591013ac2b2430a89b270f6af2c76d8dfd086a07176afe7c76c2c61&pii=S0022247X24005651&tid=spdf-d6278c85-bc4f-454d-bd3a-6a23d509eb86&sid=647b92be3943a1459d38c68444abeb490501gxrqa&type=client&tsoh=d3d3LnNjaWVuY2VkaXJlY3QuY29t&ua=0d0b5a03555755575d&rr=8c2342222ff5b6f9&cc=co
institution Corporación Universidad de la Costa
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/9a0bee30-5de2-4fe7-8efd-e9733ab4f993/download
https://repositorio.cuc.edu.co/bitstreams/b0c8b1cf-54e7-4a38-8da3-ef9d055232ca/download
https://repositorio.cuc.edu.co/bitstreams/e98e574f-0218-4de6-9be3-e6e03c9424d5/download
https://repositorio.cuc.edu.co/bitstreams/d0b7ec3f-e33a-419f-9b40-f15acb498157/download
bitstream.checksum.fl_str_mv 50cb8c6a29f415df407065e00a13514e
2f9959eaf5b71fae44bbf9ec84150c7a
63c37f49fe78a44c75589b656b2c14c8
cc62ee7fb470bed7891e3619ceebff59
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1811760741863129088
spelling Atribución 4.0 Internacional (CC BY 4.0)© 2024 Elsevier Inc. All rights are reserved, including those for text and data mining, AI training, and similar technologies.https://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Alvarez, EdgardoDíaz, StivenRueda, Silvia2024-09-24T15:00:23Z2024-09-24T15:00:23Z2024-12-150022-247Xhttps://hdl.handle.net/11323/13368https://doi.org/10.1016/j.jmaa.2024.1286431096-0813Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/This work primarily focuses on (N, λ)-periodic sequences and their applications. To begin, we provide a brief overview of (N, λ)-periodic sequences and introduce several results. Secondly, in terms of applications and main objective, we establish sufficient criteria for both the existence and uniqueness of (N, λ)-periodic mild solutions for abstract difference equations of convolution type. Furthermore, we present illustrative examples to highlight our key findings.12 páginasapplication/pdfengElsevierUnited Stateshttps://pdf.sciencedirectassets.com/272578/1-s2.0-S0022247X24X00141/1-s2.0-S0022247X24005651/main.pdf?X-Amz-Security-Token=IQoJb3JpZ2luX2VjEIb%2F%2F%2F%2F%2F%2F%2F%2F%2F%2FwEaCXVzLWVhc3QtMSJHMEUCIQDl%2F6HYpBkXgNoaqh%2F938SqK%2BYho8y6lbO%2FZydITWJQ5AIgSUCA24zzE5LuYqZOWV0sOt7s25REcutfaQnMDg36EykquwUIrv%2F%2F%2F%2F%2F%2F%2F%2F%2F%2FARAFGgwwNTkwMDM1NDY4NjUiDHxxtw6BwbjMEJd9MiqPBSRYQG75KdfUwnRaP4qQHa37W%2BB4qDda3jyI%2BXfkSFdUPB4SRZThJjaTYOR0ipCUjgfG8AM3hX0v4lmzzAb2Ls2pQ7fzcLRZ0vESSzZ%2FKL6eokF6yjYqsREizOPoWLeMS40mW%2FIqorVMnH8mkPRAwNqdqGgT5ERBuEyviX8j%2Bn8hw%2FzNXoi1MWrdvq9m7J0cbQCd313A4lVfiIVV%2FuPhGz4DRm9j65RuPAVVSp2veUBGGzOHeNLPmrWuxpvKIyhBLn8F3PQhtg1GqAxQMZuRleyIuJlEXIJU%2BWX5FpsUfvueQj1eGyYg4H6qi%2BzcoCMVDGXaMLDuXKSW5DYNnRjhWXXYzl4rjhLkJ8R%2FljERXN0UzgnSZn0PWKWol8J84UOrf0atK4gxpU1ZoApTMH%2FNEjTMu3gJtLYuIoWGmglqWOB%2BWMQTk9J5Gp6IFfqlmuDnaZ600Kyg7MWUfC9CZ%2B2ljMTjvTYCk9QrS0CAvxaMAVdzagpbWuWJI5Id1FLD3QaJ10zpW2HoQIid5%2FhRWskr2GVFiqNgNgY847REOjy%2FFERlxyMdks3ylwa1Yq7aFTPYFZEEyumdBiieMRTYqgQ1cmw6MwHTrX1vTSgDOIO2q%2BmbIEjEU6NJeT9xcGfRZUWfzFruIlXhVOYcZTxunu7XPgzz9KPiLtKb4OG41yXlER5A6Mif%2Ba2ACK5zS9u0dWE7sxNNSSbABvRlBIbHv5Rt9D1JB1rGX8NPA%2BX6jB1lC4fQNf6K1JGs9cv742kVeNw1ZM07SiKTWe976gChqKVpKcY2Jff2qQfH7fijfpFn97%2BejCmj0SCgvf58T%2BiUz1qlsi8Ryl0S0TbCXkPF%2BT%2BdXgNUlWcPjr8knPgfrUMQwnQwt6%2BNtwY6sQGpyL8ZxGoz239AGyxGgfGFq2YUqW9qGKWb3%2BHL9HleXKjC2pgmiA3rfpiWZPOe8BpPGjDY9ccvDex1JUy8iodTPGysQj8215cAG3X%2FaOwP255PTkUUgOfos1GganxhokKJwHWozE1utqOXSHnv7hu3GaHKwjMjI%2FJbtZ2ikg%2FGOMmmr%2F3QwSeY3%2BC%2BkrbUmUoCcHX9tP6K%2B%2FOh1ESE6aJ%2B8A8o4eRWZLCpJIgZEAl8ls0%3D&X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Date=20240912T221549Z&X-Amz-SignedHeaders=host&X-Amz-Expires=300&X-Amz-Credential=ASIAQ3PHCVTY3ENYI536%2F20240912%2Fus-east-1%2Fs3%2Faws4_request&X-Amz-Signature=9b5d92f925a1aad17eed0df6b45a3eb2e0e818a37b5e5e71449ab6455a4e8911&hash=73858af2e5ef98e20f3c1b7011fc270d4d99e5d2fcf7325037fe2fb640fbd0bd&host=68042c943591013ac2b2430a89b270f6af2c76d8dfd086a07176afe7c76c2c61&pii=S0022247X24005651&tid=spdf-d6278c85-bc4f-454d-bd3a-6a23d509eb86&sid=647b92be3943a1459d38c68444abeb490501gxrqa&type=client&tsoh=d3d3LnNjaWVuY2VkaXJlY3QuY29t&ua=0d0b5a03555755575d&rr=8c2342222ff5b6f9&cc=co(N, λ)-periodic solutions to abstract difference equations of convolution typeArtículo de revistahttp://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85Journal of Mathematical Analysis and Applications[1] L. Abadias, C. Lizama, Almost automorphic mild solutions to fractional partial difference-differential equations, Appl. Anal. 95 (6) (2016) 1347–1369.[2] L. Abadias, C. Lizama, P.J. Miana, M.P. Velasco, Cesàro sums and algebra homomorphisms of bounded operators, Isr. J. Math. 216 (1) (2016) 471–505.[3] R.P. Agarwal, C. Cuevas, F. Dantas, Almost automorphy profile of solutions for difference equations of Volterra type, J. Appl. Math. Comput. 42 (2013) 1–18.[4] E. Alvarez, S. Díaz, C. Lizama, C-semigroups, subordination principle and the Lévy α-stable distribution on discrete time, Commun. Contemp. Math. 24 (01) (2020) 2050063.[5] E. Alvarez, S. Díaz, C. Lizama, On the existence and uniqueness of (N, λ)-periodic solutions to a class of Volterra difference equations, Adv. Differ. Equ. 105 (2019).[6] E. Alvarez, S. Díaz, C. Lizama, Existence of (N, λ)-periodic solutions for abstract fractional difference equations, Mediterr. J. Math. 19 (2022) 47.[7] E. Alvarez, R. Grau, R. Meriño, (ω, c)-periodic solutions for a class of fractional integrodifferential equations, Bound. Value Probl. 40 (2023).[8] J. Cao, A. Debbouche, Y. Zhou, Asymptotic almost-periodicity for a class of Weyl-like fractional difference equations, Mathematics 7 (2019) 592.[9] Y.K. Chang, L. Penghui, Weighted pseudo asymptotically antiperiodic sequential solutions to semilinear difference equation, J. Differ. Equ. Appl. 27 (2021) 10.[10] Y.K. Chang, J. Zhao, Pseudo S-asymptotically (ω, c)-periodic solutions to some evolution equations in Banach spaces, Banach J. Math. Anal. 17 (2023) 34.[11] S. Elaydi, Stability and asymptoticity of Volterra difference equations: a progress report, J. Comput. Appl. Math. 228 (2) (2009) 504–513.[12] M. Feckan, M.T. Khalladi, M. Kostić, A. Rahmani, Multi-dimensional ρ-almost periodic type functions and applications, Appl. Anal. (2022) 1–27.[13] J.W. He, L. Peng, Time discrete abstract fractional Volterra equations via resolvent sequences, Mediterr. J. Math. 19 (2022) 207.[14] V. Keyantuo, C. Lizama, S. Rueda, M. Warma, Asymptotic behavior of mild solutions for a class of abstract nonlinear difference equations of convolution type, Adv. Differ. Equ. 2019 (2019) 251.[15] M. Kostić, B. Chaouchi, W.-S. Du, D. Velinov, Generalized ρ-almost periodic sequences and applications, Fractal Fract. 7 (5) (2023) 410, https://doi.org/10.3390/fractalfract7050410.[16] Y. Li, W. Qi, B. Li, Besicovitch almost periodic solutions to semilinear evolution dynamic equations with varying delay, Qual. Theory Dyn. Syst. 22 (2023) 29, https://doi.org/10.1007/s12346-022-00735-2.[17] K. Liu, J. Wang, D. O’Regan, M. Feckan, A new class of (ω, c)-periodic non-instantaneous impulsive differential equations, Mediterr. J. Math. 17 (2020) 155.[18] C. Lizama, The Poisson distribution, abstract fractional difference equations, and stability, Proc. Am. Math. Soc. 145 (9) (2017) 3809–3827.[19] J. Matkowski, Integrable solutions of functional equations, Diss. Math. 127 (1975) 1–68.[20] L. Penghui, Y.K. Chang, Pseudo antiperiodic solutions to Volterra difference equations, Mediterr. J. Math. 20 (2023) 36.[21] J.R. Wang, L. Ren, Y. Zhou, (ω, c)-periodic solutions for time varying impulsive differential equations, Adv. Differ. Equ. 2019 (2019) 259.[22] Z. Xia, D. Wang, Asymptotic behavior of mild solutions for nonlinear fractional difference equations, Fract. Calc. Appl. Anal. 21 (2) (2018) 527–551.[23] Z. Xia, Discrete weighted pseudo-almost automorphy and applications, J. Appl. Math. 2014 (2014) 946–984.[24] A. Zygmund, Trigonometric Series, vol. I, 2nd ed., Cambridge University Press, New York, 1959.1212540(N, λ)-periodicAbstract difference equations of convolution typeFractional difference equationsDifference operatorsORIGINAL(N,λ)-periodic solutions to abstract difference equations of convolution type.pdf(N,λ)-periodic solutions to abstract difference equations of convolution type.pdfArtículoapplication/pdf325201https://repositorio.cuc.edu.co/bitstreams/9a0bee30-5de2-4fe7-8efd-e9733ab4f993/download50cb8c6a29f415df407065e00a13514eMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-814828https://repositorio.cuc.edu.co/bitstreams/b0c8b1cf-54e7-4a38-8da3-ef9d055232ca/download2f9959eaf5b71fae44bbf9ec84150c7aMD52TEXT(N,λ)-periodic solutions to abstract difference equations of convolution type.pdf.txt(N,λ)-periodic solutions to abstract difference equations of convolution type.pdf.txtExtracted texttext/plain28501https://repositorio.cuc.edu.co/bitstreams/e98e574f-0218-4de6-9be3-e6e03c9424d5/download63c37f49fe78a44c75589b656b2c14c8MD53THUMBNAIL(N,λ)-periodic solutions to abstract difference equations of convolution type.pdf.jpg(N,λ)-periodic solutions to abstract difference equations of convolution type.pdf.jpgGenerated Thumbnailimage/jpeg11866https://repositorio.cuc.edu.co/bitstreams/d0b7ec3f-e33a-419f-9b40-f15acb498157/downloadcc62ee7fb470bed7891e3619ceebff59MD5411323/13368oai:repositorio.cuc.edu.co:11323/133682024-09-25 03:00:53.577https://creativecommons.org/licenses/by/4.0/© 2024 Elsevier Inc. All rights are reserved, including those for text and data mining, AI training, and similar technologies.open.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coTEEgT0JSQSAoVEFMIFkgQ09NTyBTRSBERUZJTkUgTcOBUyBBREVMQU5URSkgU0UgT1RPUkdBIEJBSk8gTE9TIFRFUk1JTk9TIERFIEVTVEEgTElDRU5DSUEgUMOaQkxJQ0EgREUgQ1JFQVRJVkUgQ09NTU9OUyAo4oCcTFBDQ+KAnSBPIOKAnExJQ0VOQ0lB4oCdKS4gTEEgT0JSQSBFU1TDgSBQUk9URUdJREEgUE9SIERFUkVDSE9TIERFIEFVVE9SIFkvVSBPVFJBUyBMRVlFUyBBUExJQ0FCTEVTLiBRVUVEQSBQUk9ISUJJRE8gQ1VBTFFVSUVSIFVTTyBRVUUgU0UgSEFHQSBERSBMQSBPQlJBIFFVRSBOTyBDVUVOVEUgQ09OIExBIEFVVE9SSVpBQ0nDk04gUEVSVElORU5URSBERSBDT05GT1JNSURBRCBDT04gTE9TIFTDiVJNSU5PUyBERSBFU1RBIExJQ0VOQ0lBIFkgREUgTEEgTEVZIERFIERFUkVDSE8gREUgQVVUT1IuCgpNRURJQU5URSBFTCBFSkVSQ0lDSU8gREUgQ1VBTFFVSUVSQSBERSBMT1MgREVSRUNIT1MgUVVFIFNFIE9UT1JHQU4gRU4gRVNUQSBMSUNFTkNJQSwgVVNURUQgQUNFUFRBIFkgQUNVRVJEQSBRVUVEQVIgT0JMSUdBRE8gRU4gTE9TIFRFUk1JTk9TIFFVRSBTRSBTRcORQUxBTiBFTiBFTExBLiBFTCBMSUNFTkNJQU5URSBDT05DRURFIEEgVVNURUQgTE9TIERFUkVDSE9TIENPTlRFTklET1MgRU4gRVNUQSBMSUNFTkNJQSBDT05ESUNJT05BRE9TIEEgTEEgQUNFUFRBQ0nDk04gREUgU1VTIFRFUk1JTk9TIFkgQ09ORElDSU9ORVMuCjEuIERlZmluaWNpb25lcwoKYS4JT2JyYSBDb2xlY3RpdmEgZXMgdW5hIG9icmEsIHRhbCBjb21vIHVuYSBwdWJsaWNhY2nDs24gcGVyacOzZGljYSwgdW5hIGFudG9sb2fDrWEsIG8gdW5hIGVuY2ljbG9wZWRpYSwgZW4gbGEgcXVlIGxhIG9icmEgZW4gc3UgdG90YWxpZGFkLCBzaW4gbW9kaWZpY2FjacOzbiBhbGd1bmEsIGp1bnRvIGNvbiB1biBncnVwbyBkZSBvdHJhcyBjb250cmlidWNpb25lcyBxdWUgY29uc3RpdHV5ZW4gb2JyYXMgc2VwYXJhZGFzIGUgaW5kZXBlbmRpZW50ZXMgZW4gc8OtIG1pc21hcywgc2UgaW50ZWdyYW4gZW4gdW4gdG9kbyBjb2xlY3Rpdm8uIFVuYSBPYnJhIHF1ZSBjb25zdGl0dXllIHVuYSBvYnJhIGNvbGVjdGl2YSBubyBzZSBjb25zaWRlcmFyw6EgdW5hIE9icmEgRGVyaXZhZGEgKGNvbW8gc2UgZGVmaW5lIGFiYWpvKSBwYXJhIGxvcyBwcm9ww7NzaXRvcyBkZSBlc3RhIGxpY2VuY2lhLiBhcXVlbGxhIHByb2R1Y2lkYSBwb3IgdW4gZ3J1cG8gZGUgYXV0b3JlcywgZW4gcXVlIGxhIE9icmEgc2UgZW5jdWVudHJhIHNpbiBtb2RpZmljYWNpb25lcywganVudG8gY29uIHVuYSBjaWVydGEgY2FudGlkYWQgZGUgb3RyYXMgY29udHJpYnVjaW9uZXMsIHF1ZSBjb25zdGl0dXllbiBlbiBzw60gbWlzbW9zIHRyYWJham9zIHNlcGFyYWRvcyBlIGluZGVwZW5kaWVudGVzLCBxdWUgc29uIGludGVncmFkb3MgYWwgdG9kbyBjb2xlY3Rpdm8sIHRhbGVzIGNvbW8gcHVibGljYWNpb25lcyBwZXJpw7NkaWNhcywgYW50b2xvZ8OtYXMgbyBlbmNpY2xvcGVkaWFzLgoKYi4JT2JyYSBEZXJpdmFkYSBzaWduaWZpY2EgdW5hIG9icmEgYmFzYWRhIGVuIGxhIG9icmEgb2JqZXRvIGRlIGVzdGEgbGljZW5jaWEgbyBlbiDDqXN0YSB5IG90cmFzIG9icmFzIHByZWV4aXN0ZW50ZXMsIHRhbGVzIGNvbW8gdHJhZHVjY2lvbmVzLCBhcnJlZ2xvcyBtdXNpY2FsZXMsIGRyYW1hdGl6YWNpb25lcywg4oCcZmljY2lvbmFsaXphY2lvbmVz4oCdLCB2ZXJzaW9uZXMgcGFyYSBjaW5lLCDigJxncmFiYWNpb25lcyBkZSBzb25pZG/igJ0sIHJlcHJvZHVjY2lvbmVzIGRlIGFydGUsIHJlc8O6bWVuZXMsIGNvbmRlbnNhY2lvbmVzLCBvIGN1YWxxdWllciBvdHJhIGVuIGxhIHF1ZSBsYSBvYnJhIHB1ZWRhIHNlciB0cmFuc2Zvcm1hZGEsIGNhbWJpYWRhIG8gYWRhcHRhZGEsIGV4Y2VwdG8gYXF1ZWxsYXMgcXVlIGNvbnN0aXR1eWFuIHVuYSBvYnJhIGNvbGVjdGl2YSwgbGFzIHF1ZSBubyBzZXLDoW4gY29uc2lkZXJhZGFzIHVuYSBvYnJhIGRlcml2YWRhIHBhcmEgZWZlY3RvcyBkZSBlc3RhIGxpY2VuY2lhLiAoUGFyYSBldml0YXIgZHVkYXMsIGVuIGVsIGNhc28gZGUgcXVlIGxhIE9icmEgc2VhIHVuYSBjb21wb3NpY2nDs24gbXVzaWNhbCBvIHVuYSBncmFiYWNpw7NuIHNvbm9yYSwgcGFyYSBsb3MgZWZlY3RvcyBkZSBlc3RhIExpY2VuY2lhIGxhIHNpbmNyb25pemFjacOzbiB0ZW1wb3JhbCBkZSBsYSBPYnJhIGNvbiB1bmEgaW1hZ2VuIGVuIG1vdmltaWVudG8gc2UgY29uc2lkZXJhcsOhIHVuYSBPYnJhIERlcml2YWRhIHBhcmEgbG9zIGZpbmVzIGRlIGVzdGEgbGljZW5jaWEpLgoKYy4JTGljZW5jaWFudGUsIGVzIGVsIGluZGl2aWR1byBvIGxhIGVudGlkYWQgdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgZGUgYXV0b3IgcXVlIG9mcmVjZSBsYSBPYnJhIGVuIGNvbmZvcm1pZGFkIGNvbiBsYXMgY29uZGljaW9uZXMgZGUgZXN0YSBMaWNlbmNpYS4KCmQuCUF1dG9yIG9yaWdpbmFsLCBlcyBlbCBpbmRpdmlkdW8gcXVlIGNyZcOzIGxhIE9icmEuCgplLglPYnJhLCBlcyBhcXVlbGxhIG9icmEgc3VzY2VwdGlibGUgZGUgcHJvdGVjY2nDs24gcG9yIGVsIHLDqWdpbWVuIGRlIERlcmVjaG8gZGUgQXV0b3IgeSBxdWUgZXMgb2ZyZWNpZGEgZW4gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIGxpY2VuY2lhCgpmLglVc3RlZCwgZXMgZWwgaW5kaXZpZHVvIG8gbGEgZW50aWRhZCBxdWUgZWplcmNpdGEgbG9zIGRlcmVjaG9zIG90b3JnYWRvcyBhbCBhbXBhcm8gZGUgZXN0YSBMaWNlbmNpYSB5IHF1ZSBjb24gYW50ZXJpb3JpZGFkIG5vIGhhIHZpb2xhZG8gbGFzIGNvbmRpY2lvbmVzIGRlIGxhIG1pc21hIHJlc3BlY3RvIGEgbGEgT2JyYSwgbyBxdWUgaGF5YSBvYnRlbmlkbyBhdXRvcml6YWNpw7NuIGV4cHJlc2EgcG9yIHBhcnRlIGRlbCBMaWNlbmNpYW50ZSBwYXJhIGVqZXJjZXIgbG9zIGRlcmVjaG9zIGFsIGFtcGFybyBkZSBlc3RhIExpY2VuY2lhIHBlc2UgYSB1bmEgdmlvbGFjacOzbiBhbnRlcmlvci4KCjIuIERlcmVjaG9zIGRlIFVzb3MgSG9ucmFkb3MgeSBleGNlcGNpb25lcyBMZWdhbGVzLgpOYWRhIGVuIGVzdGEgTGljZW5jaWEgcG9kcsOhIHNlciBpbnRlcnByZXRhZG8gY29tbyB1bmEgZGlzbWludWNpw7NuLCBsaW1pdGFjacOzbiBvIHJlc3RyaWNjacOzbiBkZSBsb3MgZGVyZWNob3MgZGVyaXZhZG9zIGRlbCB1c28gaG9ucmFkbyB5IG90cmFzIGxpbWl0YWNpb25lcyBvIGV4Y2VwY2lvbmVzIGEgbG9zIGRlcmVjaG9zIGRlbCBhdXRvciBiYWpvIGVsIHLDqWdpbWVuIGxlZ2FsIHZpZ2VudGUgbyBkZXJpdmFkbyBkZSBjdWFscXVpZXIgb3RyYSBub3JtYSBxdWUgc2UgbGUgYXBsaXF1ZS4KCjMuIENvbmNlc2nDs24gZGUgbGEgTGljZW5jaWEuCkJham8gbG9zIHTDqXJtaW5vcyB5IGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIGVsIExpY2VuY2lhbnRlIG90b3JnYSBhIFVzdGVkIHVuYSBsaWNlbmNpYSBtdW5kaWFsLCBsaWJyZSBkZSByZWdhbMOtYXMsIG5vIGV4Y2x1c2l2YSB5IHBlcnBldHVhIChkdXJhbnRlIHRvZG8gZWwgcGVyw61vZG8gZGUgdmlnZW5jaWEgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yKSBwYXJhIGVqZXJjZXIgZXN0b3MgZGVyZWNob3Mgc29icmUgbGEgT2JyYSB0YWwgeSBjb21vIHNlIGluZGljYSBhIGNvbnRpbnVhY2nDs246CgphLglSZXByb2R1Y2lyIGxhIE9icmEsIGluY29ycG9yYXIgbGEgT2JyYSBlbiB1bmEgbyBtw6FzIE9icmFzIENvbGVjdGl2YXMsIHkgcmVwcm9kdWNpciBsYSBPYnJhIGluY29ycG9yYWRhIGVuIGxhcyBPYnJhcyBDb2xlY3RpdmFzLgoKYi4JRGlzdHJpYnVpciBjb3BpYXMgbyBmb25vZ3JhbWFzIGRlIGxhcyBPYnJhcywgZXhoaWJpcmxhcyBww7pibGljYW1lbnRlLCBlamVjdXRhcmxhcyBww7pibGljYW1lbnRlIHkvbyBwb25lcmxhcyBhIGRpc3Bvc2ljacOzbiBww7pibGljYSwgaW5jbHV5w6luZG9sYXMgY29tbyBpbmNvcnBvcmFkYXMgZW4gT2JyYXMgQ29sZWN0aXZhcywgc2Vnw7puIGNvcnJlc3BvbmRhLgoKYy4JRGlzdHJpYnVpciBjb3BpYXMgZGUgbGFzIE9icmFzIERlcml2YWRhcyBxdWUgc2UgZ2VuZXJlbiwgZXhoaWJpcmxhcyBww7pibGljYW1lbnRlLCBlamVjdXRhcmxhcyBww7pibGljYW1lbnRlIHkvbyBwb25lcmxhcyBhIGRpc3Bvc2ljacOzbiBww7pibGljYS4KTG9zIGRlcmVjaG9zIG1lbmNpb25hZG9zIGFudGVyaW9ybWVudGUgcHVlZGVuIHNlciBlamVyY2lkb3MgZW4gdG9kb3MgbG9zIG1lZGlvcyB5IGZvcm1hdG9zLCBhY3R1YWxtZW50ZSBjb25vY2lkb3MgbyBxdWUgc2UgaW52ZW50ZW4gZW4gZWwgZnV0dXJvLiBMb3MgZGVyZWNob3MgYW50ZXMgbWVuY2lvbmFkb3MgaW5jbHV5ZW4gZWwgZGVyZWNobyBhIHJlYWxpemFyIGRpY2hhcyBtb2RpZmljYWNpb25lcyBlbiBsYSBtZWRpZGEgcXVlIHNlYW4gdMOpY25pY2FtZW50ZSBuZWNlc2FyaWFzIHBhcmEgZWplcmNlciBsb3MgZGVyZWNob3MgZW4gb3RybyBtZWRpbyBvIGZvcm1hdG9zLCBwZXJvIGRlIG90cmEgbWFuZXJhIHVzdGVkIG5vIGVzdMOhIGF1dG9yaXphZG8gcGFyYSByZWFsaXphciBvYnJhcyBkZXJpdmFkYXMuIFRvZG9zIGxvcyBkZXJlY2hvcyBubyBvdG9yZ2Fkb3MgZXhwcmVzYW1lbnRlIHBvciBlbCBMaWNlbmNpYW50ZSBxdWVkYW4gcG9yIGVzdGUgbWVkaW8gcmVzZXJ2YWRvcywgaW5jbHV5ZW5kbyBwZXJvIHNpbiBsaW1pdGFyc2UgYSBhcXVlbGxvcyBxdWUgc2UgbWVuY2lvbmFuIGVuIGxhcyBzZWNjaW9uZXMgNChkKSB5IDQoZSkuCgo0LiBSZXN0cmljY2lvbmVzLgpMYSBsaWNlbmNpYSBvdG9yZ2FkYSBlbiBsYSBhbnRlcmlvciBTZWNjacOzbiAzIGVzdMOhIGV4cHJlc2FtZW50ZSBzdWpldGEgeSBsaW1pdGFkYSBwb3IgbGFzIHNpZ3VpZW50ZXMgcmVzdHJpY2Npb25lczoKCmEuCVVzdGVkIHB1ZWRlIGRpc3RyaWJ1aXIsIGV4aGliaXIgcMO6YmxpY2FtZW50ZSwgZWplY3V0YXIgcMO6YmxpY2FtZW50ZSwgbyBwb25lciBhIGRpc3Bvc2ljacOzbiBww7pibGljYSBsYSBPYnJhIHPDs2xvIGJham8gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIHkgVXN0ZWQgZGViZSBpbmNsdWlyIHVuYSBjb3BpYSBkZSBlc3RhIGxpY2VuY2lhIG8gZGVsIElkZW50aWZpY2Fkb3IgVW5pdmVyc2FsIGRlIFJlY3Vyc29zIGRlIGxhIG1pc21hIGNvbiBjYWRhIGNvcGlhIGRlIGxhIE9icmEgcXVlIGRpc3RyaWJ1eWEsIGV4aGliYSBww7pibGljYW1lbnRlLCBlamVjdXRlIHDDumJsaWNhbWVudGUgbyBwb25nYSBhIGRpc3Bvc2ljacOzbiBww7pibGljYS4gTm8gZXMgcG9zaWJsZSBvZnJlY2VyIG8gaW1wb25lciBuaW5ndW5hIGNvbmRpY2nDs24gc29icmUgbGEgT2JyYSBxdWUgYWx0ZXJlIG8gbGltaXRlIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhIG8gZWwgZWplcmNpY2lvIGRlIGxvcyBkZXJlY2hvcyBkZSBsb3MgZGVzdGluYXRhcmlvcyBvdG9yZ2Fkb3MgZW4gZXN0ZSBkb2N1bWVudG8uIE5vIGVzIHBvc2libGUgc3VibGljZW5jaWFyIGxhIE9icmEuIFVzdGVkIGRlYmUgbWFudGVuZXIgaW50YWN0b3MgdG9kb3MgbG9zIGF2aXNvcyBxdWUgaGFnYW4gcmVmZXJlbmNpYSBhIGVzdGEgTGljZW5jaWEgeSBhIGxhIGNsw6F1c3VsYSBkZSBsaW1pdGFjacOzbiBkZSBnYXJhbnTDrWFzLiBVc3RlZCBubyBwdWVkZSBkaXN0cmlidWlyLCBleGhpYmlyIHDDumJsaWNhbWVudGUsIGVqZWN1dGFyIHDDumJsaWNhbWVudGUsIG8gcG9uZXIgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBjb24gYWxndW5hIG1lZGlkYSB0ZWNub2zDs2dpY2EgcXVlIGNvbnRyb2xlIGVsIGFjY2VzbyBvIGxhIHV0aWxpemFjacOzbiBkZSBlbGxhIGRlIHVuYSBmb3JtYSBxdWUgc2VhIGluY29uc2lzdGVudGUgY29uIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLiBMbyBhbnRlcmlvciBzZSBhcGxpY2EgYSBsYSBPYnJhIGluY29ycG9yYWRhIGEgdW5hIE9icmEgQ29sZWN0aXZhLCBwZXJvIGVzdG8gbm8gZXhpZ2UgcXVlIGxhIE9icmEgQ29sZWN0aXZhIGFwYXJ0ZSBkZSBsYSBvYnJhIG1pc21hIHF1ZWRlIHN1amV0YSBhIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLiBTaSBVc3RlZCBjcmVhIHVuYSBPYnJhIENvbGVjdGl2YSwgcHJldmlvIGF2aXNvIGRlIGN1YWxxdWllciBMaWNlbmNpYW50ZSBkZWJlLCBlbiBsYSBtZWRpZGEgZGUgbG8gcG9zaWJsZSwgZWxpbWluYXIgZGUgbGEgT2JyYSBDb2xlY3RpdmEgY3VhbHF1aWVyIHJlZmVyZW5jaWEgYSBkaWNobyBMaWNlbmNpYW50ZSBvIGFsIEF1dG9yIE9yaWdpbmFsLCBzZWfDum4gbG8gc29saWNpdGFkbyBwb3IgZWwgTGljZW5jaWFudGUgeSBjb25mb3JtZSBsbyBleGlnZSBsYSBjbMOhdXN1bGEgNChjKS4KCmIuCVVzdGVkIG5vIHB1ZWRlIGVqZXJjZXIgbmluZ3VubyBkZSBsb3MgZGVyZWNob3MgcXVlIGxlIGhhbiBzaWRvIG90b3JnYWRvcyBlbiBsYSBTZWNjacOzbiAzIHByZWNlZGVudGUgZGUgbW9kbyBxdWUgZXN0w6luIHByaW5jaXBhbG1lbnRlIGRlc3RpbmFkb3MgbyBkaXJlY3RhbWVudGUgZGlyaWdpZG9zIGEgY29uc2VndWlyIHVuIHByb3ZlY2hvIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLiBFbCBpbnRlcmNhbWJpbyBkZSBsYSBPYnJhIHBvciBvdHJhcyBvYnJhcyBwcm90ZWdpZGFzIHBvciBkZXJlY2hvcyBkZSBhdXRvciwgeWEgc2VhIGEgdHJhdsOpcyBkZSB1biBzaXN0ZW1hIHBhcmEgY29tcGFydGlyIGFyY2hpdm9zIGRpZ2l0YWxlcyAoZGlnaXRhbCBmaWxlLXNoYXJpbmcpIG8gZGUgY3VhbHF1aWVyIG90cmEgbWFuZXJhIG5vIHNlcsOhIGNvbnNpZGVyYWRvIGNvbW8gZXN0YXIgZGVzdGluYWRvIHByaW5jaXBhbG1lbnRlIG8gZGlyaWdpZG8gZGlyZWN0YW1lbnRlIGEgY29uc2VndWlyIHVuIHByb3ZlY2hvIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLCBzaWVtcHJlIHF1ZSBubyBzZSByZWFsaWNlIHVuIHBhZ28gbWVkaWFudGUgdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIGVuIHJlbGFjacOzbiBjb24gZWwgaW50ZXJjYW1iaW8gZGUgb2JyYXMgcHJvdGVnaWRhcyBwb3IgZWwgZGVyZWNobyBkZSBhdXRvci4KCmMuCVNpIHVzdGVkIGRpc3RyaWJ1eWUsIGV4aGliZSBww7pibGljYW1lbnRlLCBlamVjdXRhIHDDumJsaWNhbWVudGUgbyBlamVjdXRhIHDDumJsaWNhbWVudGUgZW4gZm9ybWEgZGlnaXRhbCBsYSBPYnJhIG8gY3VhbHF1aWVyIE9icmEgRGVyaXZhZGEgdSBPYnJhIENvbGVjdGl2YSwgVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RhIHRvZGEgbGEgaW5mb3JtYWNpw7NuIGRlIGRlcmVjaG8gZGUgYXV0b3IgZGUgbGEgT2JyYSB5IHByb3BvcmNpb25hciwgZGUgZm9ybWEgcmF6b25hYmxlIHNlZ8O6biBlbCBtZWRpbyBvIG1hbmVyYSBxdWUgVXN0ZWQgZXN0w6kgdXRpbGl6YW5kbzogKGkpIGVsIG5vbWJyZSBkZWwgQXV0b3IgT3JpZ2luYWwgc2kgZXN0w6EgcHJvdmlzdG8gKG8gc2V1ZMOzbmltbywgc2kgZnVlcmUgYXBsaWNhYmxlKSwgeS9vIChpaSkgZWwgbm9tYnJlIGRlIGxhIHBhcnRlIG8gbGFzIHBhcnRlcyBxdWUgZWwgQXV0b3IgT3JpZ2luYWwgeS9vIGVsIExpY2VuY2lhbnRlIGh1YmllcmVuIGRlc2lnbmFkbyBwYXJhIGxhIGF0cmlidWNpw7NuICh2LmcuLCB1biBpbnN0aXR1dG8gcGF0cm9jaW5hZG9yLCBlZGl0b3JpYWwsIHB1YmxpY2FjacOzbikgZW4gbGEgaW5mb3JtYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZWwgTGljZW5jaWFudGUsIHTDqXJtaW5vcyBkZSBzZXJ2aWNpb3MgbyBkZSBvdHJhcyBmb3JtYXMgcmF6b25hYmxlczsgZWwgdMOtdHVsbyBkZSBsYSBPYnJhIHNpIGVzdMOhIHByb3Zpc3RvOyBlbiBsYSBtZWRpZGEgZGUgbG8gcmF6b25hYmxlbWVudGUgZmFjdGlibGUgeSwgc2kgZXN0w6EgcHJvdmlzdG8sIGVsIElkZW50aWZpY2Fkb3IgVW5pZm9ybWUgZGUgUmVjdXJzb3MgKFVuaWZvcm0gUmVzb3VyY2UgSWRlbnRpZmllcikgcXVlIGVsIExpY2VuY2lhbnRlIGVzcGVjaWZpY2EgcGFyYSBzZXIgYXNvY2lhZG8gY29uIGxhIE9icmEsIHNhbHZvIHF1ZSB0YWwgVVJJIG5vIHNlIHJlZmllcmEgYSBsYSBub3RhIHNvYnJlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBvIGEgbGEgaW5mb3JtYWNpw7NuIHNvYnJlIGVsIGxpY2VuY2lhbWllbnRvIGRlIGxhIE9icmE7IHkgZW4gZWwgY2FzbyBkZSB1bmEgT2JyYSBEZXJpdmFkYSwgYXRyaWJ1aXIgZWwgY3LDqWRpdG8gaWRlbnRpZmljYW5kbyBlbCB1c28gZGUgbGEgT2JyYSBlbiBsYSBPYnJhIERlcml2YWRhICh2LmcuLCAiVHJhZHVjY2nDs24gRnJhbmNlc2EgZGUgbGEgT2JyYSBkZWwgQXV0b3IgT3JpZ2luYWwsIiBvICJHdWnDs24gQ2luZW1hdG9ncsOhZmljbyBiYXNhZG8gZW4gbGEgT2JyYSBvcmlnaW5hbCBkZWwgQXV0b3IgT3JpZ2luYWwiKS4gVGFsIGNyw6lkaXRvIHB1ZWRlIHNlciBpbXBsZW1lbnRhZG8gZGUgY3VhbHF1aWVyIGZvcm1hIHJhem9uYWJsZTsgZW4gZWwgY2Fzbywgc2luIGVtYmFyZ28sIGRlIE9icmFzIERlcml2YWRhcyB1IE9icmFzIENvbGVjdGl2YXMsIHRhbCBjcsOpZGl0byBhcGFyZWNlcsOhLCBjb21vIG3DrW5pbW8sIGRvbmRlIGFwYXJlY2UgZWwgY3LDqWRpdG8gZGUgY3VhbHF1aWVyIG90cm8gYXV0b3IgY29tcGFyYWJsZSB5IGRlIHVuYSBtYW5lcmEsIGFsIG1lbm9zLCB0YW4gZGVzdGFjYWRhIGNvbW8gZWwgY3LDqWRpdG8gZGUgb3RybyBhdXRvciBjb21wYXJhYmxlLgoKZC4JUGFyYSBldml0YXIgdG9kYSBjb25mdXNpw7NuLCBlbCBMaWNlbmNpYW50ZSBhY2xhcmEgcXVlLCBjdWFuZG8gbGEgb2JyYSBlcyB1bmEgY29tcG9zaWNpw7NuIG11c2ljYWw6CgppLglSZWdhbMOtYXMgcG9yIGludGVycHJldGFjacOzbiB5IGVqZWN1Y2nDs24gYmFqbyBsaWNlbmNpYXMgZ2VuZXJhbGVzLiBFbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gZXhjbHVzaXZvIGRlIGF1dG9yaXphciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIG8gbGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGRlIGxhIG9icmEgeSBkZSByZWNvbGVjdGFyLCBzZWEgaW5kaXZpZHVhbG1lbnRlIG8gYSB0cmF2w6lzIGRlIHVuYSBzb2NpZWRhZCBkZSBnZXN0acOzbiBjb2xlY3RpdmEgZGUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIChwb3IgZWplbXBsbywgU0FZQ08pLCBsYXMgcmVnYWzDrWFzIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIG8gcG9yIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIChwb3IgZWplbXBsbyBXZWJjYXN0KSBsaWNlbmNpYWRhIGJham8gbGljZW5jaWFzIGdlbmVyYWxlcywgc2kgbGEgaW50ZXJwcmV0YWNpw7NuIG8gZWplY3VjacOzbiBkZSBsYSBvYnJhIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBvcmllbnRhZGEgcG9yIG8gZGlyaWdpZGEgYSBsYSBvYnRlbmNpw7NuIGRlIHVuYSB2ZW50YWphIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLgoKaWkuCVJlZ2Fsw61hcyBwb3IgRm9ub2dyYW1hcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSByZWNvbGVjdGFyLCBpbmRpdmlkdWFsbWVudGUgbyBhIHRyYXbDqXMgZGUgdW5hIHNvY2llZGFkIGRlIGdlc3Rpw7NuIGNvbGVjdGl2YSBkZSBkZXJlY2hvcyBkZSBhdXRvciB5IGRlcmVjaG9zIGNvbmV4b3MgKHBvciBlamVtcGxvLCBsb3MgY29uc2FncmFkb3MgcG9yIGxhIFNBWUNPKSwgdW5hIGFnZW5jaWEgZGUgZGVyZWNob3MgbXVzaWNhbGVzIG8gYWxnw7puIGFnZW50ZSBkZXNpZ25hZG8sIGxhcyByZWdhbMOtYXMgcG9yIGN1YWxxdWllciBmb25vZ3JhbWEgcXVlIFVzdGVkIGNyZWUgYSBwYXJ0aXIgZGUgbGEgb2JyYSAo4oCcdmVyc2nDs24gY292ZXLigJ0pIHkgZGlzdHJpYnV5YSwgZW4gbG9zIHTDqXJtaW5vcyBkZWwgcsOpZ2ltZW4gZGUgZGVyZWNob3MgZGUgYXV0b3IsIHNpIGxhIGNyZWFjacOzbiBvIGRpc3RyaWJ1Y2nDs24gZGUgZXNhIHZlcnNpw7NuIGNvdmVyIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkZXN0aW5hZGEgbyBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuCgplLglHZXN0acOzbiBkZSBEZXJlY2hvcyBkZSBBdXRvciBzb2JyZSBJbnRlcnByZXRhY2lvbmVzIHkgRWplY3VjaW9uZXMgRGlnaXRhbGVzIChXZWJDYXN0aW5nKS4gUGFyYSBldml0YXIgdG9kYSBjb25mdXNpw7NuLCBlbCBMaWNlbmNpYW50ZSBhY2xhcmEgcXVlLCBjdWFuZG8gbGEgb2JyYSBzZWEgdW4gZm9ub2dyYW1hLCBlbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gZXhjbHVzaXZvIGRlIGF1dG9yaXphciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8sIHdlYmNhc3QpIHkgZGUgcmVjb2xlY3RhciwgaW5kaXZpZHVhbG1lbnRlIG8gYSB0cmF2w6lzIGRlIHVuYSBzb2NpZWRhZCBkZSBnZXN0acOzbiBjb2xlY3RpdmEgZGUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIChwb3IgZWplbXBsbywgQUNJTlBSTyksIGxhcyByZWdhbMOtYXMgcG9yIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIChwb3IgZWplbXBsbywgd2ViY2FzdCksIHN1amV0YSBhIGxhcyBkaXNwb3NpY2lvbmVzIGFwbGljYWJsZXMgZGVsIHLDqWdpbWVuIGRlIERlcmVjaG8gZGUgQXV0b3IsIHNpIGVzdGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuCgo1LiBSZXByZXNlbnRhY2lvbmVzLCBHYXJhbnTDrWFzIHkgTGltaXRhY2lvbmVzIGRlIFJlc3BvbnNhYmlsaWRhZC4KQSBNRU5PUyBRVUUgTEFTIFBBUlRFUyBMTyBBQ09SREFSQU4gREUgT1RSQSBGT1JNQSBQT1IgRVNDUklUTywgRUwgTElDRU5DSUFOVEUgT0ZSRUNFIExBIE9CUkEgKEVOIEVMIEVTVEFETyBFTiBFTCBRVUUgU0UgRU5DVUVOVFJBKSDigJxUQUwgQ1VBTOKAnSwgU0lOIEJSSU5EQVIgR0FSQU5Uw41BUyBERSBDTEFTRSBBTEdVTkEgUkVTUEVDVE8gREUgTEEgT0JSQSwgWUEgU0VBIEVYUFJFU0EsIElNUEzDjUNJVEEsIExFR0FMIE8gQ1VBTFFVSUVSQSBPVFJBLCBJTkNMVVlFTkRPLCBTSU4gTElNSVRBUlNFIEEgRUxMQVMsIEdBUkFOVMONQVMgREUgVElUVUxBUklEQUQsIENPTUVSQ0lBQklMSURBRCwgQURBUFRBQklMSURBRCBPIEFERUNVQUNJw5NOIEEgUFJPUMOTU0lUTyBERVRFUk1JTkFETywgQVVTRU5DSUEgREUgSU5GUkFDQ0nDk04sIERFIEFVU0VOQ0lBIERFIERFRkVDVE9TIExBVEVOVEVTIE8gREUgT1RSTyBUSVBPLCBPIExBIFBSRVNFTkNJQSBPIEFVU0VOQ0lBIERFIEVSUk9SRVMsIFNFQU4gTyBOTyBERVNDVUJSSUJMRVMgKFBVRURBTiBPIE5PIFNFUiBFU1RPUyBERVNDVUJJRVJUT1MpLiBBTEdVTkFTIEpVUklTRElDQ0lPTkVTIE5PIFBFUk1JVEVOIExBIEVYQ0xVU0nDk04gREUgR0FSQU5Uw41BUyBJTVBMw41DSVRBUywgRU4gQ1VZTyBDQVNPIEVTVEEgRVhDTFVTScOTTiBQVUVERSBOTyBBUExJQ0FSU0UgQSBVU1RFRC4KCjYuIExpbWl0YWNpw7NuIGRlIHJlc3BvbnNhYmlsaWRhZC4KQSBNRU5PUyBRVUUgTE8gRVhJSkEgRVhQUkVTQU1FTlRFIExBIExFWSBBUExJQ0FCTEUsIEVMIExJQ0VOQ0lBTlRFIE5PIFNFUsOBIFJFU1BPTlNBQkxFIEFOVEUgVVNURUQgUE9SIERBw5FPIEFMR1VOTywgU0VBIFBPUiBSRVNQT05TQUJJTElEQUQgRVhUUkFDT05UUkFDVFVBTCwgUFJFQ09OVFJBQ1RVQUwgTyBDT05UUkFDVFVBTCwgT0JKRVRJVkEgTyBTVUJKRVRJVkEsIFNFIFRSQVRFIERFIERBw5FPUyBNT1JBTEVTIE8gUEFUUklNT05JQUxFUywgRElSRUNUT1MgTyBJTkRJUkVDVE9TLCBQUkVWSVNUT1MgTyBJTVBSRVZJU1RPUyBQUk9EVUNJRE9TIFBPUiBFTCBVU08gREUgRVNUQSBMSUNFTkNJQSBPIERFIExBIE9CUkEsIEFVTiBDVUFORE8gRUwgTElDRU5DSUFOVEUgSEFZQSBTSURPIEFEVkVSVElETyBERSBMQSBQT1NJQklMSURBRCBERSBESUNIT1MgREHDkU9TLiBBTEdVTkFTIExFWUVTIE5PIFBFUk1JVEVOIExBIEVYQ0xVU0nDk04gREUgQ0lFUlRBIFJFU1BPTlNBQklMSURBRCwgRU4gQ1VZTyBDQVNPIEVTVEEgRVhDTFVTScOTTiBQVUVERSBOTyBBUExJQ0FSU0UgQSBVU1RFRC4KCjcuIFTDqXJtaW5vLgoKYS4JRXN0YSBMaWNlbmNpYSB5IGxvcyBkZXJlY2hvcyBvdG9yZ2Fkb3MgZW4gdmlydHVkIGRlIGVsbGEgdGVybWluYXLDoW4gYXV0b23DoXRpY2FtZW50ZSBzaSBVc3RlZCBpbmZyaW5nZSBhbGd1bmEgY29uZGljacOzbiBlc3RhYmxlY2lkYSBlbiBlbGxhLiBTaW4gZW1iYXJnbywgbG9zIGluZGl2aWR1b3MgbyBlbnRpZGFkZXMgcXVlIGhhbiByZWNpYmlkbyBPYnJhcyBEZXJpdmFkYXMgbyBDb2xlY3RpdmFzIGRlIFVzdGVkIGRlIGNvbmZvcm1pZGFkIGNvbiBlc3RhIExpY2VuY2lhLCBubyB2ZXLDoW4gdGVybWluYWRhcyBzdXMgbGljZW5jaWFzLCBzaWVtcHJlIHF1ZSBlc3RvcyBpbmRpdmlkdW9zIG8gZW50aWRhZGVzIHNpZ2FuIGN1bXBsaWVuZG8gw61udGVncmFtZW50ZSBsYXMgY29uZGljaW9uZXMgZGUgZXN0YXMgbGljZW5jaWFzLiBMYXMgU2VjY2lvbmVzIDEsIDIsIDUsIDYsIDcsIHkgOCBzdWJzaXN0aXLDoW4gYSBjdWFscXVpZXIgdGVybWluYWNpw7NuIGRlIGVzdGEgTGljZW5jaWEuCgpiLglTdWpldGEgYSBsYXMgY29uZGljaW9uZXMgeSB0w6lybWlub3MgYW50ZXJpb3JlcywgbGEgbGljZW5jaWEgb3RvcmdhZGEgYXF1w60gZXMgcGVycGV0dWEgKGR1cmFudGUgZWwgcGVyw61vZG8gZGUgdmlnZW5jaWEgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGRlIGxhIG9icmEpLiBObyBvYnN0YW50ZSBsbyBhbnRlcmlvciwgZWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGEgcHVibGljYXIgeS9vIGVzdHJlbmFyIGxhIE9icmEgYmFqbyBjb25kaWNpb25lcyBkZSBsaWNlbmNpYSBkaWZlcmVudGVzIG8gYSBkZWphciBkZSBkaXN0cmlidWlybGEgZW4gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIExpY2VuY2lhIGVuIGN1YWxxdWllciBtb21lbnRvOyBlbiBlbCBlbnRlbmRpZG8sIHNpbiBlbWJhcmdvLCBxdWUgZXNhIGVsZWNjacOzbiBubyBzZXJ2aXLDoSBwYXJhIHJldm9jYXIgZXN0YSBsaWNlbmNpYSBvIHF1ZSBkZWJhIHNlciBvdG9yZ2FkYSAsIGJham8gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIGxpY2VuY2lhKSwgeSBlc3RhIGxpY2VuY2lhIGNvbnRpbnVhcsOhIGVuIHBsZW5vIHZpZ29yIHkgZWZlY3RvIGEgbWVub3MgcXVlIHNlYSB0ZXJtaW5hZGEgY29tbyBzZSBleHByZXNhIGF0csOhcy4gTGEgTGljZW5jaWEgcmV2b2NhZGEgY29udGludWFyw6Egc2llbmRvIHBsZW5hbWVudGUgdmlnZW50ZSB5IGVmZWN0aXZhIHNpIG5vIHNlIGxlIGRhIHTDqXJtaW5vIGVuIGxhcyBjb25kaWNpb25lcyBpbmRpY2FkYXMgYW50ZXJpb3JtZW50ZS4KCjguIFZhcmlvcy4KCmEuCUNhZGEgdmV6IHF1ZSBVc3RlZCBkaXN0cmlidXlhIG8gcG9uZ2EgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBvIHVuYSBPYnJhIENvbGVjdGl2YSwgZWwgTGljZW5jaWFudGUgb2ZyZWNlcsOhIGFsIGRlc3RpbmF0YXJpbyB1bmEgbGljZW5jaWEgZW4gbG9zIG1pc21vcyB0w6lybWlub3MgeSBjb25kaWNpb25lcyBxdWUgbGEgbGljZW5jaWEgb3RvcmdhZGEgYSBVc3RlZCBiYWpvIGVzdGEgTGljZW5jaWEuCgpiLglTaSBhbGd1bmEgZGlzcG9zaWNpw7NuIGRlIGVzdGEgTGljZW5jaWEgcmVzdWx0YSBpbnZhbGlkYWRhIG8gbm8gZXhpZ2libGUsIHNlZ8O6biBsYSBsZWdpc2xhY2nDs24gdmlnZW50ZSwgZXN0byBubyBhZmVjdGFyw6EgbmkgbGEgdmFsaWRleiBuaSBsYSBhcGxpY2FiaWxpZGFkIGRlbCByZXN0byBkZSBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhIHksIHNpbiBhY2Npw7NuIGFkaWNpb25hbCBwb3IgcGFydGUgZGUgbG9zIHN1amV0b3MgZGUgZXN0ZSBhY3VlcmRvLCBhcXXDqWxsYSBzZSBlbnRlbmRlcsOhIHJlZm9ybWFkYSBsbyBtw61uaW1vIG5lY2VzYXJpbyBwYXJhIGhhY2VyIHF1ZSBkaWNoYSBkaXNwb3NpY2nDs24gc2VhIHbDoWxpZGEgeSBleGlnaWJsZS4KCmMuCU5pbmfDum4gdMOpcm1pbm8gbyBkaXNwb3NpY2nDs24gZGUgZXN0YSBMaWNlbmNpYSBzZSBlc3RpbWFyw6EgcmVudW5jaWFkYSB5IG5pbmd1bmEgdmlvbGFjacOzbiBkZSBlbGxhIHNlcsOhIGNvbnNlbnRpZGEgYSBtZW5vcyBxdWUgZXNhIHJlbnVuY2lhIG8gY29uc2VudGltaWVudG8gc2VhIG90b3JnYWRvIHBvciBlc2NyaXRvIHkgZmlybWFkbyBwb3IgbGEgcGFydGUgcXVlIHJlbnVuY2llIG8gY29uc2llbnRhLgoKZC4JRXN0YSBMaWNlbmNpYSByZWZsZWphIGVsIGFjdWVyZG8gcGxlbm8gZW50cmUgbGFzIHBhcnRlcyByZXNwZWN0byBhIGxhIE9icmEgYXF1w60gbGljZW5jaWFkYS4gTm8gaGF5IGFycmVnbG9zLCBhY3VlcmRvcyBvIGRlY2xhcmFjaW9uZXMgcmVzcGVjdG8gYSBsYSBPYnJhIHF1ZSBubyBlc3TDqW4gZXNwZWNpZmljYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gRWwgTGljZW5jaWFudGUgbm8gc2UgdmVyw6EgbGltaXRhZG8gcG9yIG5pbmd1bmEgZGlzcG9zaWNpw7NuIGFkaWNpb25hbCBxdWUgcHVlZGEgc3VyZ2lyIGVuIGFsZ3VuYSBjb211bmljYWNpw7NuIGVtYW5hZGEgZGUgVXN0ZWQuIEVzdGEgTGljZW5jaWEgbm8gcHVlZGUgc2VyIG1vZGlmaWNhZGEgc2luIGVsIGNvbnNlbnRpbWllbnRvIG11dHVvIHBvciBlc2NyaXRvIGRlbCBMaWNlbmNpYW50ZSB5IFVzdGVkLgo=