Vehicle flow prediction through probabilistic modeling
Within the area of wireless and mobile communications, ad hoc vehicular networks have generated the interest of different organizations, which has generated a topic of study and analysis for the increase of applications, devices, technology integration, security, standards, and quality of service in...
- Autores:
-
Silva, Jesús
Varela Izquierdo, Noel
Pineda, Omar
Álvarez, Vladimir
de la Hoz, Boris
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2020
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/7787
- Acceso en línea:
- https://hdl.handle.net/11323/7787
https://doi.org/10.1007/978-981-15-4875-8_36
https://repositorio.cuc.edu.co/
- Palabra clave:
- Mobility
Probability
SPH
Vehicular flow
Markov chains
Stochastic model
- Rights
- openAccess
- License
- Attribution-NonCommercial-NoDerivatives 4.0 International
id |
RCUC2_71c65b6e19b0bcdc8aa777a5ac308d89 |
---|---|
oai_identifier_str |
oai:repositorio.cuc.edu.co:11323/7787 |
network_acronym_str |
RCUC2 |
network_name_str |
REDICUC - Repositorio CUC |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Vehicle flow prediction through probabilistic modeling |
title |
Vehicle flow prediction through probabilistic modeling |
spellingShingle |
Vehicle flow prediction through probabilistic modeling Mobility Probability SPH Vehicular flow Markov chains Stochastic model |
title_short |
Vehicle flow prediction through probabilistic modeling |
title_full |
Vehicle flow prediction through probabilistic modeling |
title_fullStr |
Vehicle flow prediction through probabilistic modeling |
title_full_unstemmed |
Vehicle flow prediction through probabilistic modeling |
title_sort |
Vehicle flow prediction through probabilistic modeling |
dc.creator.fl_str_mv |
Silva, Jesús Varela Izquierdo, Noel Pineda, Omar Álvarez, Vladimir de la Hoz, Boris |
dc.contributor.author.spa.fl_str_mv |
Silva, Jesús Varela Izquierdo, Noel Pineda, Omar Álvarez, Vladimir de la Hoz, Boris |
dc.subject.spa.fl_str_mv |
Mobility Probability SPH Vehicular flow Markov chains Stochastic model |
topic |
Mobility Probability SPH Vehicular flow Markov chains Stochastic model |
description |
Within the area of wireless and mobile communications, ad hoc vehicular networks have generated the interest of different organizations, which has generated a topic of study and analysis for the increase of applications, devices, technology integration, security, standards, and quality of service in different areas (Zhu et al. in IEEE Trans Veh Technol 64(4):1607–1619, [1]) and (Tian et al. in A self-adaptive V2V communication system with DSRC, pp 1528–1532, [2]). This study on vehicle networks shows a great deal of opportunity and motivation to deepen the aspects that involve it, which have emerged due to the advance of wireless technologies, as well as research in the automotive industry. This allows the development of networks with spontaneous topologies with vehicles in constant movement in several simulations (Mir and Filali in LTE and IEEE 802.11p for vehicular networking: a performance evaluation, pp 1–15, [3]), with reliable vehicle flows, through the share of traffic information, considering that continuous mobility is an essential characteristic of a VANET vehicle network, which can have short changes in terms of groups of vehicles in the same direction (Lokhande and Khamitkar, 9(12):30–33, [4]). The following paper uses a road scenario called VANET to obtain a predictive characterization of vehicle flow using a probabilistic model. |
publishDate |
2020 |
dc.date.issued.none.fl_str_mv |
2020 |
dc.date.accessioned.none.fl_str_mv |
2021-01-28T13:01:51Z |
dc.date.available.none.fl_str_mv |
2021-01-28T13:01:51Z |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
acceptedVersion |
dc.identifier.uri.spa.fl_str_mv |
https://hdl.handle.net/11323/7787 |
dc.identifier.doi.spa.fl_str_mv |
https://doi.org/10.1007/978-981-15-4875-8_36 |
dc.identifier.instname.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.identifier.reponame.spa.fl_str_mv |
REDICUC - Repositorio CUC |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.cuc.edu.co/ |
url |
https://hdl.handle.net/11323/7787 https://doi.org/10.1007/978-981-15-4875-8_36 https://repositorio.cuc.edu.co/ |
identifier_str_mv |
Corporación Universidad de la Costa REDICUC - Repositorio CUC |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.references.spa.fl_str_mv |
1. Zhu, W., Li, D., Saad, W.: Multiple vehicles collaborative data download protocol via network coding. IEEE Trans. Veh. Technol. 64(4), 1607–1619 (2015) 2. Tian, D., Luo, H., Zhou, J., Wang, Y., Yu, G.: A self-adaptive V2V communication system with DSRC. In: 2013 IEEE International Conference on Green Computing and Communications and IEEE Internet of Things and IEEE Cyber, Physical and Social Computing, pp. 1528–1532 (2013) 3. Mir, Z.H., Filali, F.: LTE and IEEE 802.11p for Vehicular Networking: A Performance Evaluation, pp. 1–15 (2014) 4. Lokhande, S.N., Khamitkar S.D.: Design and simulation of wireless ad hoc network using NS2 simulator. 9(12), 30–33 (2014) 5. Sadek, N.M., Halawa, H.H., Daoud, R.M., Amer, H.H.: A Robust Multi-RAT VANET/LTE for Mixed Control and Entertainment Traffic, pp. 113–121 (2015) 6. Ndashimye, E., Ray, S.K., Sarkar, N.I., Gutiérrez, J.A.: Vehicle-to-infrastructure communication over multi-tier heterogeneous networks: a survey. Comput. Netw. (2016) 7. Garg, N., Rani, P.: An improved AODV routing protocol for VANET (Vehicular Ad-hoc Network). 4(6), 1885–1890 (2015) 8. Abada, D., Massaq, A., Boulouz, A., Salah, M.B.: An adaptive vehicular relay and gateway selection scheme for connecting VANETs to internet via 4G LTE cellular network. In: Emerging Technologies for Connected Internet of Vehicles and Intelligent Transportation System Networks, pp. 149–163. Springer, Cham (2020) 9. Zheng, Y., Luo, J., Zhong, T.: Service recommendation middleware based on location privacy protection in VANET. IEEE Access 8, 12768–12783 (2020) 10. Obaidat, M., Khodjaeva, M., Holst, J., Zid, M.B.: Security and privacy challenges in vehicular ad hoc networks. In: Connected Vehicles in the Internet of Things, pp. 223–251. Springer, Cham (2020) 11. Tang, Y., Cheng, N., Wu, W., Wang, M., Dai, Y., Shen, X.: Delay-minimization routing for heterogeneous VANETs with machine learning based mobility prediction. IEEE Trans. Veh. Technol. 68(4), 3967–3979 (2019) 12. Srivastava, A., Prakash, A., Tripathi, R.: Location based routing protocols in VANET: issues and existing solutions. Veh. Commun. 100231 (2020) 13. Ahmad, I., Noor, R.M., Zaba, M.R., Qureshi, M.A., Imran, M., Shoaib, M.: A cooperative heterogeneous vehicular clustering mechanism for road traffic management. Int. J. Parallel Program. 1–20 (2019) 14. Nkenyereye, L., Nkenyereye, L., Islam, S.M., Choi, Y.H., Bilal, M., Jang, J.W.: Software-defined network-based vehicular networks: a position paper on their modeling and implementation. Sensors 19(17), 3788 (2019) 15. Viloria, A., Bonerge Pineda Lezama, O.: Improvements for Determining the Number of Clusters in k-Means for Innovation Databases in SMEs. ANT/EDI40, pp. 1201–1206 (2019) 16. Amelec, V.: Increased efficiency in a company of development of technological solutions in the areas commercial and of consultancy. Adv. Sci. Lett. 21(5), 1406–1408 (2015) 17. Zhang, Y., Wang, R., Hossain, M.S., Alhamid, M.F., Guizani, M.: Heterogeneous information network-based content caching in the internet of vehicles. IEEE Trans. Veh. Technol. 68(10), 10216–10226 (2019) 18. Sharma, T.P., Sharma, A.K.: Heterogeneous-internet of vehicles (Het-IoV) in twenty-first century: a comprehensive Study. In: Handbook of Computer Networks and Cyber Security, pp. 555–584. Springer, Cham (2020) |
dc.rights.spa.fl_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.source.spa.fl_str_mv |
Smart Innovation, Systems and Technologies |
institution |
Corporación Universidad de la Costa |
dc.source.url.spa.fl_str_mv |
https://link.springer.com/chapter/10.1007/978-981-15-4875-8_36 |
bitstream.url.fl_str_mv |
https://repositorio.cuc.edu.co/bitstreams/1cc48191-31ca-45dd-8b23-8c528aaf8732/download https://repositorio.cuc.edu.co/bitstreams/246b743a-b5f0-4ae0-b6bb-1331b0491a90/download https://repositorio.cuc.edu.co/bitstreams/25e32089-4564-41f1-b38e-46942e0cbdfd/download https://repositorio.cuc.edu.co/bitstreams/7da840e1-17a4-4a1e-b7f7-c9e292f50377/download https://repositorio.cuc.edu.co/bitstreams/43372742-7d52-439b-ade9-787ab36ea179/download |
bitstream.checksum.fl_str_mv |
e30e9215131d99561d40d6b0abbe9bad a487cb7b5b7506716a3bebd17abb8726 4460e5956bc1d1639be9ae6146a50347 d9a825321ae373dbdba5d9cf859f457d 517eefce7fbe0d37c89dfbcc89405e7f |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad de la Costa CUC |
repository.mail.fl_str_mv |
repdigital@cuc.edu.co |
_version_ |
1811760826123550720 |
spelling |
Silva, JesúsVarela Izquierdo, NoelPineda, OmarÁlvarez, Vladimirde la Hoz, Boris2021-01-28T13:01:51Z2021-01-28T13:01:51Z2020https://hdl.handle.net/11323/7787https://doi.org/10.1007/978-981-15-4875-8_36Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/Within the area of wireless and mobile communications, ad hoc vehicular networks have generated the interest of different organizations, which has generated a topic of study and analysis for the increase of applications, devices, technology integration, security, standards, and quality of service in different areas (Zhu et al. in IEEE Trans Veh Technol 64(4):1607–1619, [1]) and (Tian et al. in A self-adaptive V2V communication system with DSRC, pp 1528–1532, [2]). This study on vehicle networks shows a great deal of opportunity and motivation to deepen the aspects that involve it, which have emerged due to the advance of wireless technologies, as well as research in the automotive industry. This allows the development of networks with spontaneous topologies with vehicles in constant movement in several simulations (Mir and Filali in LTE and IEEE 802.11p for vehicular networking: a performance evaluation, pp 1–15, [3]), with reliable vehicle flows, through the share of traffic information, considering that continuous mobility is an essential characteristic of a VANET vehicle network, which can have short changes in terms of groups of vehicles in the same direction (Lokhande and Khamitkar, 9(12):30–33, [4]). The following paper uses a road scenario called VANET to obtain a predictive characterization of vehicle flow using a probabilistic model.Silva, JesúsVarela Izquierdo, Noel-will be generated-orcid-0000-0001-7036-4414-600Pineda, Omar-will be generated-orcid-0000-0002-8239-3906-600Álvarez, Vladimirde la Hoz, Borisapplication/pdfengCorporación Universidad de la CostaAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Smart Innovation, Systems and Technologieshttps://link.springer.com/chapter/10.1007/978-981-15-4875-8_36MobilityProbabilitySPHVehicular flowMarkov chainsStochastic modelVehicle flow prediction through probabilistic modelingArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersion1. Zhu, W., Li, D., Saad, W.: Multiple vehicles collaborative data download protocol via network coding. IEEE Trans. Veh. Technol. 64(4), 1607–1619 (2015)2. Tian, D., Luo, H., Zhou, J., Wang, Y., Yu, G.: A self-adaptive V2V communication system with DSRC. In: 2013 IEEE International Conference on Green Computing and Communications and IEEE Internet of Things and IEEE Cyber, Physical and Social Computing, pp. 1528–1532 (2013)3. Mir, Z.H., Filali, F.: LTE and IEEE 802.11p for Vehicular Networking: A Performance Evaluation, pp. 1–15 (2014)4. Lokhande, S.N., Khamitkar S.D.: Design and simulation of wireless ad hoc network using NS2 simulator. 9(12), 30–33 (2014)5. Sadek, N.M., Halawa, H.H., Daoud, R.M., Amer, H.H.: A Robust Multi-RAT VANET/LTE for Mixed Control and Entertainment Traffic, pp. 113–121 (2015)6. Ndashimye, E., Ray, S.K., Sarkar, N.I., Gutiérrez, J.A.: Vehicle-to-infrastructure communication over multi-tier heterogeneous networks: a survey. Comput. Netw. (2016)7. Garg, N., Rani, P.: An improved AODV routing protocol for VANET (Vehicular Ad-hoc Network). 4(6), 1885–1890 (2015)8. Abada, D., Massaq, A., Boulouz, A., Salah, M.B.: An adaptive vehicular relay and gateway selection scheme for connecting VANETs to internet via 4G LTE cellular network. In: Emerging Technologies for Connected Internet of Vehicles and Intelligent Transportation System Networks, pp. 149–163. Springer, Cham (2020)9. Zheng, Y., Luo, J., Zhong, T.: Service recommendation middleware based on location privacy protection in VANET. IEEE Access 8, 12768–12783 (2020)10. Obaidat, M., Khodjaeva, M., Holst, J., Zid, M.B.: Security and privacy challenges in vehicular ad hoc networks. In: Connected Vehicles in the Internet of Things, pp. 223–251. Springer, Cham (2020)11. Tang, Y., Cheng, N., Wu, W., Wang, M., Dai, Y., Shen, X.: Delay-minimization routing for heterogeneous VANETs with machine learning based mobility prediction. IEEE Trans. Veh. Technol. 68(4), 3967–3979 (2019)12. Srivastava, A., Prakash, A., Tripathi, R.: Location based routing protocols in VANET: issues and existing solutions. Veh. Commun. 100231 (2020)13. Ahmad, I., Noor, R.M., Zaba, M.R., Qureshi, M.A., Imran, M., Shoaib, M.: A cooperative heterogeneous vehicular clustering mechanism for road traffic management. Int. J. Parallel Program. 1–20 (2019)14. Nkenyereye, L., Nkenyereye, L., Islam, S.M., Choi, Y.H., Bilal, M., Jang, J.W.: Software-defined network-based vehicular networks: a position paper on their modeling and implementation. Sensors 19(17), 3788 (2019)15. Viloria, A., Bonerge Pineda Lezama, O.: Improvements for Determining the Number of Clusters in k-Means for Innovation Databases in SMEs. ANT/EDI40, pp. 1201–1206 (2019)16. Amelec, V.: Increased efficiency in a company of development of technological solutions in the areas commercial and of consultancy. Adv. Sci. Lett. 21(5), 1406–1408 (2015)17. Zhang, Y., Wang, R., Hossain, M.S., Alhamid, M.F., Guizani, M.: Heterogeneous information network-based content caching in the internet of vehicles. IEEE Trans. Veh. Technol. 68(10), 10216–10226 (2019)18. Sharma, T.P., Sharma, A.K.: Heterogeneous-internet of vehicles (Het-IoV) in twenty-first century: a comprehensive Study. In: Handbook of Computer Networks and Cyber Security, pp. 555–584. Springer, Cham (2020)PublicationLICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/1cc48191-31ca-45dd-8b23-8c528aaf8732/downloade30e9215131d99561d40d6b0abbe9badMD53ORIGINALVehicle flow prediction through probabilistic modeling.pdfVehicle flow prediction through probabilistic modeling.pdfapplication/pdf116715https://repositorio.cuc.edu.co/bitstreams/246b743a-b5f0-4ae0-b6bb-1331b0491a90/downloada487cb7b5b7506716a3bebd17abb8726MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.cuc.edu.co/bitstreams/25e32089-4564-41f1-b38e-46942e0cbdfd/download4460e5956bc1d1639be9ae6146a50347MD52THUMBNAILVehicle flow prediction through probabilistic modeling.pdf.jpgVehicle flow prediction through probabilistic modeling.pdf.jpgimage/jpeg36517https://repositorio.cuc.edu.co/bitstreams/7da840e1-17a4-4a1e-b7f7-c9e292f50377/downloadd9a825321ae373dbdba5d9cf859f457dMD54TEXTVehicle flow prediction through probabilistic modeling.pdf.txtVehicle flow prediction through probabilistic modeling.pdf.txttext/plain1656https://repositorio.cuc.edu.co/bitstreams/43372742-7d52-439b-ade9-787ab36ea179/download517eefce7fbe0d37c89dfbcc89405e7fMD5511323/7787oai:repositorio.cuc.edu.co:11323/77872024-09-17 14:05:58.942http://creativecommons.org/licenses/by-nc-nd/4.0/Attribution-NonCommercial-NoDerivatives 4.0 Internationalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA== |