Vehicle flow prediction through probabilistic modeling

Within the area of wireless and mobile communications, ad hoc vehicular networks have generated the interest of different organizations, which has generated a topic of study and analysis for the increase of applications, devices, technology integration, security, standards, and quality of service in...

Full description

Autores:
Silva, Jesús
Varela Izquierdo, Noel
Pineda, Omar
Álvarez, Vladimir
de la Hoz, Boris
Tipo de recurso:
Article of journal
Fecha de publicación:
2020
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/7787
Acceso en línea:
https://hdl.handle.net/11323/7787
https://doi.org/10.1007/978-981-15-4875-8_36
https://repositorio.cuc.edu.co/
Palabra clave:
Mobility
Probability
SPH
Vehicular flow
Markov chains
Stochastic model
Rights
openAccess
License
Attribution-NonCommercial-NoDerivatives 4.0 International
id RCUC2_71c65b6e19b0bcdc8aa777a5ac308d89
oai_identifier_str oai:repositorio.cuc.edu.co:11323/7787
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.spa.fl_str_mv Vehicle flow prediction through probabilistic modeling
title Vehicle flow prediction through probabilistic modeling
spellingShingle Vehicle flow prediction through probabilistic modeling
Mobility
Probability
SPH
Vehicular flow
Markov chains
Stochastic model
title_short Vehicle flow prediction through probabilistic modeling
title_full Vehicle flow prediction through probabilistic modeling
title_fullStr Vehicle flow prediction through probabilistic modeling
title_full_unstemmed Vehicle flow prediction through probabilistic modeling
title_sort Vehicle flow prediction through probabilistic modeling
dc.creator.fl_str_mv Silva, Jesús
Varela Izquierdo, Noel
Pineda, Omar
Álvarez, Vladimir
de la Hoz, Boris
dc.contributor.author.spa.fl_str_mv Silva, Jesús
Varela Izquierdo, Noel
Pineda, Omar
Álvarez, Vladimir
de la Hoz, Boris
dc.subject.spa.fl_str_mv Mobility
Probability
SPH
Vehicular flow
Markov chains
Stochastic model
topic Mobility
Probability
SPH
Vehicular flow
Markov chains
Stochastic model
description Within the area of wireless and mobile communications, ad hoc vehicular networks have generated the interest of different organizations, which has generated a topic of study and analysis for the increase of applications, devices, technology integration, security, standards, and quality of service in different areas (Zhu et al. in IEEE Trans Veh Technol 64(4):1607–1619, [1]) and (Tian et al. in A self-adaptive V2V communication system with DSRC, pp 1528–1532, [2]). This study on vehicle networks shows a great deal of opportunity and motivation to deepen the aspects that involve it, which have emerged due to the advance of wireless technologies, as well as research in the automotive industry. This allows the development of networks with spontaneous topologies with vehicles in constant movement in several simulations (Mir and Filali in LTE and IEEE 802.11p for vehicular networking: a performance evaluation, pp 1–15, [3]), with reliable vehicle flows, through the share of traffic information, considering that continuous mobility is an essential characteristic of a VANET vehicle network, which can have short changes in terms of groups of vehicles in the same direction (Lokhande and Khamitkar, 9(12):30–33, [4]). The following paper uses a road scenario called VANET to obtain a predictive characterization of vehicle flow using a probabilistic model.
publishDate 2020
dc.date.issued.none.fl_str_mv 2020
dc.date.accessioned.none.fl_str_mv 2021-01-28T13:01:51Z
dc.date.available.none.fl_str_mv 2021-01-28T13:01:51Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_6501
status_str acceptedVersion
dc.identifier.uri.spa.fl_str_mv https://hdl.handle.net/11323/7787
dc.identifier.doi.spa.fl_str_mv https://doi.org/10.1007/978-981-15-4875-8_36
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
url https://hdl.handle.net/11323/7787
https://doi.org/10.1007/978-981-15-4875-8_36
https://repositorio.cuc.edu.co/
identifier_str_mv Corporación Universidad de la Costa
REDICUC - Repositorio CUC
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.references.spa.fl_str_mv 1. Zhu, W., Li, D., Saad, W.: Multiple vehicles collaborative data download protocol via network coding. IEEE Trans. Veh. Technol. 64(4), 1607–1619 (2015)
2. Tian, D., Luo, H., Zhou, J., Wang, Y., Yu, G.: A self-adaptive V2V communication system with DSRC. In: 2013 IEEE International Conference on Green Computing and Communications and IEEE Internet of Things and IEEE Cyber, Physical and Social Computing, pp. 1528–1532 (2013)
3. Mir, Z.H., Filali, F.: LTE and IEEE 802.11p for Vehicular Networking: A Performance Evaluation, pp. 1–15 (2014)
4. Lokhande, S.N., Khamitkar S.D.: Design and simulation of wireless ad hoc network using NS2 simulator. 9(12), 30–33 (2014)
5. Sadek, N.M., Halawa, H.H., Daoud, R.M., Amer, H.H.: A Robust Multi-RAT VANET/LTE for Mixed Control and Entertainment Traffic, pp. 113–121 (2015)
6. Ndashimye, E., Ray, S.K., Sarkar, N.I., Gutiérrez, J.A.: Vehicle-to-infrastructure communication over multi-tier heterogeneous networks: a survey. Comput. Netw. (2016)
7. Garg, N., Rani, P.: An improved AODV routing protocol for VANET (Vehicular Ad-hoc Network). 4(6), 1885–1890 (2015)
8. Abada, D., Massaq, A., Boulouz, A., Salah, M.B.: An adaptive vehicular relay and gateway selection scheme for connecting VANETs to internet via 4G LTE cellular network. In: Emerging Technologies for Connected Internet of Vehicles and Intelligent Transportation System Networks, pp. 149–163. Springer, Cham (2020)
9. Zheng, Y., Luo, J., Zhong, T.: Service recommendation middleware based on location privacy protection in VANET. IEEE Access 8, 12768–12783 (2020)
10. Obaidat, M., Khodjaeva, M., Holst, J., Zid, M.B.: Security and privacy challenges in vehicular ad hoc networks. In: Connected Vehicles in the Internet of Things, pp. 223–251. Springer, Cham (2020)
11. Tang, Y., Cheng, N., Wu, W., Wang, M., Dai, Y., Shen, X.: Delay-minimization routing for heterogeneous VANETs with machine learning based mobility prediction. IEEE Trans. Veh. Technol. 68(4), 3967–3979 (2019)
12. Srivastava, A., Prakash, A., Tripathi, R.: Location based routing protocols in VANET: issues and existing solutions. Veh. Commun. 100231 (2020)
13. Ahmad, I., Noor, R.M., Zaba, M.R., Qureshi, M.A., Imran, M., Shoaib, M.: A cooperative heterogeneous vehicular clustering mechanism for road traffic management. Int. J. Parallel Program. 1–20 (2019)
14. Nkenyereye, L., Nkenyereye, L., Islam, S.M., Choi, Y.H., Bilal, M., Jang, J.W.: Software-defined network-based vehicular networks: a position paper on their modeling and implementation. Sensors 19(17), 3788 (2019)
15. Viloria, A., Bonerge Pineda Lezama, O.: Improvements for Determining the Number of Clusters in k-Means for Innovation Databases in SMEs. ANT/EDI40, pp. 1201–1206 (2019)
16. Amelec, V.: Increased efficiency in a company of development of technological solutions in the areas commercial and of consultancy. Adv. Sci. Lett. 21(5), 1406–1408 (2015)
17. Zhang, Y., Wang, R., Hossain, M.S., Alhamid, M.F., Guizani, M.: Heterogeneous information network-based content caching in the internet of vehicles. IEEE Trans. Veh. Technol. 68(10), 10216–10226 (2019)
18. Sharma, T.P., Sharma, A.K.: Heterogeneous-internet of vehicles (Het-IoV) in twenty-first century: a comprehensive Study. In: Handbook of Computer Networks and Cyber Security, pp. 555–584. Springer, Cham (2020)
dc.rights.spa.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Corporación Universidad de la Costa
dc.source.spa.fl_str_mv Smart Innovation, Systems and Technologies
institution Corporación Universidad de la Costa
dc.source.url.spa.fl_str_mv https://link.springer.com/chapter/10.1007/978-981-15-4875-8_36
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/1cc48191-31ca-45dd-8b23-8c528aaf8732/download
https://repositorio.cuc.edu.co/bitstreams/246b743a-b5f0-4ae0-b6bb-1331b0491a90/download
https://repositorio.cuc.edu.co/bitstreams/25e32089-4564-41f1-b38e-46942e0cbdfd/download
https://repositorio.cuc.edu.co/bitstreams/7da840e1-17a4-4a1e-b7f7-c9e292f50377/download
https://repositorio.cuc.edu.co/bitstreams/43372742-7d52-439b-ade9-787ab36ea179/download
bitstream.checksum.fl_str_mv e30e9215131d99561d40d6b0abbe9bad
a487cb7b5b7506716a3bebd17abb8726
4460e5956bc1d1639be9ae6146a50347
d9a825321ae373dbdba5d9cf859f457d
517eefce7fbe0d37c89dfbcc89405e7f
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1811760826123550720
spelling Silva, JesúsVarela Izquierdo, NoelPineda, OmarÁlvarez, Vladimirde la Hoz, Boris2021-01-28T13:01:51Z2021-01-28T13:01:51Z2020https://hdl.handle.net/11323/7787https://doi.org/10.1007/978-981-15-4875-8_36Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/Within the area of wireless and mobile communications, ad hoc vehicular networks have generated the interest of different organizations, which has generated a topic of study and analysis for the increase of applications, devices, technology integration, security, standards, and quality of service in different areas (Zhu et al. in IEEE Trans Veh Technol 64(4):1607–1619, [1]) and (Tian et al. in A self-adaptive V2V communication system with DSRC, pp 1528–1532, [2]). This study on vehicle networks shows a great deal of opportunity and motivation to deepen the aspects that involve it, which have emerged due to the advance of wireless technologies, as well as research in the automotive industry. This allows the development of networks with spontaneous topologies with vehicles in constant movement in several simulations (Mir and Filali in LTE and IEEE 802.11p for vehicular networking: a performance evaluation, pp 1–15, [3]), with reliable vehicle flows, through the share of traffic information, considering that continuous mobility is an essential characteristic of a VANET vehicle network, which can have short changes in terms of groups of vehicles in the same direction (Lokhande and Khamitkar, 9(12):30–33, [4]). The following paper uses a road scenario called VANET to obtain a predictive characterization of vehicle flow using a probabilistic model.Silva, JesúsVarela Izquierdo, Noel-will be generated-orcid-0000-0001-7036-4414-600Pineda, Omar-will be generated-orcid-0000-0002-8239-3906-600Álvarez, Vladimirde la Hoz, Borisapplication/pdfengCorporación Universidad de la CostaAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Smart Innovation, Systems and Technologieshttps://link.springer.com/chapter/10.1007/978-981-15-4875-8_36MobilityProbabilitySPHVehicular flowMarkov chainsStochastic modelVehicle flow prediction through probabilistic modelingArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersion1. Zhu, W., Li, D., Saad, W.: Multiple vehicles collaborative data download protocol via network coding. IEEE Trans. Veh. Technol. 64(4), 1607–1619 (2015)2. Tian, D., Luo, H., Zhou, J., Wang, Y., Yu, G.: A self-adaptive V2V communication system with DSRC. In: 2013 IEEE International Conference on Green Computing and Communications and IEEE Internet of Things and IEEE Cyber, Physical and Social Computing, pp. 1528–1532 (2013)3. Mir, Z.H., Filali, F.: LTE and IEEE 802.11p for Vehicular Networking: A Performance Evaluation, pp. 1–15 (2014)4. Lokhande, S.N., Khamitkar S.D.: Design and simulation of wireless ad hoc network using NS2 simulator. 9(12), 30–33 (2014)5. Sadek, N.M., Halawa, H.H., Daoud, R.M., Amer, H.H.: A Robust Multi-RAT VANET/LTE for Mixed Control and Entertainment Traffic, pp. 113–121 (2015)6. Ndashimye, E., Ray, S.K., Sarkar, N.I., Gutiérrez, J.A.: Vehicle-to-infrastructure communication over multi-tier heterogeneous networks: a survey. Comput. Netw. (2016)7. Garg, N., Rani, P.: An improved AODV routing protocol for VANET (Vehicular Ad-hoc Network). 4(6), 1885–1890 (2015)8. Abada, D., Massaq, A., Boulouz, A., Salah, M.B.: An adaptive vehicular relay and gateway selection scheme for connecting VANETs to internet via 4G LTE cellular network. In: Emerging Technologies for Connected Internet of Vehicles and Intelligent Transportation System Networks, pp. 149–163. Springer, Cham (2020)9. Zheng, Y., Luo, J., Zhong, T.: Service recommendation middleware based on location privacy protection in VANET. IEEE Access 8, 12768–12783 (2020)10. Obaidat, M., Khodjaeva, M., Holst, J., Zid, M.B.: Security and privacy challenges in vehicular ad hoc networks. In: Connected Vehicles in the Internet of Things, pp. 223–251. Springer, Cham (2020)11. Tang, Y., Cheng, N., Wu, W., Wang, M., Dai, Y., Shen, X.: Delay-minimization routing for heterogeneous VANETs with machine learning based mobility prediction. IEEE Trans. Veh. Technol. 68(4), 3967–3979 (2019)12. Srivastava, A., Prakash, A., Tripathi, R.: Location based routing protocols in VANET: issues and existing solutions. Veh. Commun. 100231 (2020)13. Ahmad, I., Noor, R.M., Zaba, M.R., Qureshi, M.A., Imran, M., Shoaib, M.: A cooperative heterogeneous vehicular clustering mechanism for road traffic management. Int. J. Parallel Program. 1–20 (2019)14. Nkenyereye, L., Nkenyereye, L., Islam, S.M., Choi, Y.H., Bilal, M., Jang, J.W.: Software-defined network-based vehicular networks: a position paper on their modeling and implementation. Sensors 19(17), 3788 (2019)15. Viloria, A., Bonerge Pineda Lezama, O.: Improvements for Determining the Number of Clusters in k-Means for Innovation Databases in SMEs. ANT/EDI40, pp. 1201–1206 (2019)16. Amelec, V.: Increased efficiency in a company of development of technological solutions in the areas commercial and of consultancy. Adv. Sci. Lett. 21(5), 1406–1408 (2015)17. Zhang, Y., Wang, R., Hossain, M.S., Alhamid, M.F., Guizani, M.: Heterogeneous information network-based content caching in the internet of vehicles. IEEE Trans. Veh. Technol. 68(10), 10216–10226 (2019)18. Sharma, T.P., Sharma, A.K.: Heterogeneous-internet of vehicles (Het-IoV) in twenty-first century: a comprehensive Study. In: Handbook of Computer Networks and Cyber Security, pp. 555–584. Springer, Cham (2020)PublicationLICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/1cc48191-31ca-45dd-8b23-8c528aaf8732/downloade30e9215131d99561d40d6b0abbe9badMD53ORIGINALVehicle flow prediction through probabilistic modeling.pdfVehicle flow prediction through probabilistic modeling.pdfapplication/pdf116715https://repositorio.cuc.edu.co/bitstreams/246b743a-b5f0-4ae0-b6bb-1331b0491a90/downloada487cb7b5b7506716a3bebd17abb8726MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.cuc.edu.co/bitstreams/25e32089-4564-41f1-b38e-46942e0cbdfd/download4460e5956bc1d1639be9ae6146a50347MD52THUMBNAILVehicle flow prediction through probabilistic modeling.pdf.jpgVehicle flow prediction through probabilistic modeling.pdf.jpgimage/jpeg36517https://repositorio.cuc.edu.co/bitstreams/7da840e1-17a4-4a1e-b7f7-c9e292f50377/downloadd9a825321ae373dbdba5d9cf859f457dMD54TEXTVehicle flow prediction through probabilistic modeling.pdf.txtVehicle flow prediction through probabilistic modeling.pdf.txttext/plain1656https://repositorio.cuc.edu.co/bitstreams/43372742-7d52-439b-ade9-787ab36ea179/download517eefce7fbe0d37c89dfbcc89405e7fMD5511323/7787oai:repositorio.cuc.edu.co:11323/77872024-09-17 14:05:58.942http://creativecommons.org/licenses/by-nc-nd/4.0/Attribution-NonCommercial-NoDerivatives 4.0 Internationalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA==