Gas sensing system using an unmanned aerial vehicle

A prototype is designed for the analysis of CO2 concentration. In this paper, to evaluate its functionality, data sending tests are executed. A low cost E34-2G4H20D RF module installed in a UAV (unmanned aerial vehicle) is used for data transmission. CO2 concentration measurement were made at the “U...

Full description

Autores:
Piñeres Espitia, Gabriel Dario
Aziz Butt, Shariq
Cañate-Masson, M.
Alvarez-Navarro, A.
Areeb Hassan, Syed
Gochhait, Saikat
Tipo de recurso:
Article of journal
Fecha de publicación:
2021
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/8438
Acceso en línea:
https://hdl.handle.net/11323/8438
https://doi.org/10.1109/I2CT51068.2021.9418000
https://repositorio.cuc.edu.co/
Palabra clave:
Wireless network
Unmanned Aerial Vehicle Monitoring
MQ135 Sensor
Drone Sensing
Rights
openAccess
License
Attribution-NonCommercial-NoDerivatives 4.0 International
id RCUC2_7127ca51635701fb6ff537d46a3e88e6
oai_identifier_str oai:repositorio.cuc.edu.co:11323/8438
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.spa.fl_str_mv Gas sensing system using an unmanned aerial vehicle
title Gas sensing system using an unmanned aerial vehicle
spellingShingle Gas sensing system using an unmanned aerial vehicle
Wireless network
Unmanned Aerial Vehicle Monitoring
MQ135 Sensor
Drone Sensing
title_short Gas sensing system using an unmanned aerial vehicle
title_full Gas sensing system using an unmanned aerial vehicle
title_fullStr Gas sensing system using an unmanned aerial vehicle
title_full_unstemmed Gas sensing system using an unmanned aerial vehicle
title_sort Gas sensing system using an unmanned aerial vehicle
dc.creator.fl_str_mv Piñeres Espitia, Gabriel Dario
Aziz Butt, Shariq
Cañate-Masson, M.
Alvarez-Navarro, A.
Areeb Hassan, Syed
Gochhait, Saikat
dc.contributor.author.spa.fl_str_mv Piñeres Espitia, Gabriel Dario
Aziz Butt, Shariq
Cañate-Masson, M.
Alvarez-Navarro, A.
Areeb Hassan, Syed
Gochhait, Saikat
dc.subject.spa.fl_str_mv Wireless network
Unmanned Aerial Vehicle Monitoring
MQ135 Sensor
Drone Sensing
topic Wireless network
Unmanned Aerial Vehicle Monitoring
MQ135 Sensor
Drone Sensing
description A prototype is designed for the analysis of CO2 concentration. In this paper, to evaluate its functionality, data sending tests are executed. A low cost E34-2G4H20D RF module installed in a UAV (unmanned aerial vehicle) is used for data transmission. CO2 concentration measurement were made at the “Universidad de la Costa” in Barranquilla - Colombia. For this, a device was built for monitor the concentration of CO2 using the Arduino UNO platform and the MQ135 gas sensor. Tests were carried out at different heights to analyze package loss and CO2 concentration levels. The results show the effectiveness of the RF module in all tests for data transmission. The concentration of CO2 is evaluated in three zones to determine the minimum and maximum levels in each of them.
publishDate 2021
dc.date.accessioned.none.fl_str_mv 2021-06-29T21:42:25Z
dc.date.available.none.fl_str_mv 2021-06-29T21:42:25Z
dc.date.issued.none.fl_str_mv 2021
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_6501
status_str acceptedVersion
dc.identifier.uri.spa.fl_str_mv https://hdl.handle.net/11323/8438
dc.identifier.doi.spa.fl_str_mv https://doi.org/10.1109/I2CT51068.2021.9418000
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
url https://hdl.handle.net/11323/8438
https://doi.org/10.1109/I2CT51068.2021.9418000
https://repositorio.cuc.edu.co/
identifier_str_mv Corporación Universidad de la Costa
REDICUC - Repositorio CUC
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.references.spa.fl_str_mv F. Hernández, T. Portolés, M. Ibáñez, M.C. Bustos-López, R. Díaz, A. M. Botero-Coy, et al., "Use of time-of-flight mass spectrometry for large screening of organic pollutants in surface waters and soils from a rice production area in Colombia", Science of the Total Environment, vol. 439, pp. 249-259, 2012.
L. Gallardo, J. Escribano, L. Dawidowski, N. Rojas, M. de Fátima Andrade and M. Osses, "Evaluation of vehicle emission inventories for carbon monoxide and nitrogen oxides for Bogotá Buenos Aires Santiago and São Paulo", Atmospheric Environment, vol. 47, pp. 12-19, 2012.
L. Gupta, R. Jain and G. Vaszkun, "Survey of important issues in UAV communication networks", IEEE Communications Surveys & Tutorials, vol. 18, no. 2, pp. 1123-1152, 2016.
S. Hayat, E. Yanmaz and R. Muzaffar, "Survey on unmanned aerial vehicle networks for civil applications: A communications viewpoint", IEEE Communications Surveys & Tutorials, vol. 18, no. 4, pp. 2624-2661, 2016.
N. H. Motlagh, T. Taleb and O. Arouk, "Low-altitude unmanned aerial vehicles-based internet of things services: Comprehensive survey and future perspectives", IEEE Internet of Things Journal, vol. 3, no. 6, pp. 899-922, 2016.
R. Woellner and T. C. Wagner, "Saving species time and money: Application of unmanned aerial vehicles (UAVs) for monitoring of an endangered alpine river specialist in a small nature reserve", Biological Conservation, vol. 233, pp. 162-175, 2019.
M. Maimaitijiang, V. Sagan, P. Sidike, M. Maimaitiyiming, S. Hartling, K. T. Peterson, et al., "Vegetation Index Weighted Canopy Volume Model (CVMVI) for soybean biomass estimation from Unmanned Aerial System-based RGB imagery", ISPRS Journal of Photogrammetry and Remote Sensing, vol. 151, pp. 27-41, 2019.
A. Bertacchi, V. Giannini, C. Di Franco and N. Silvestri, "Using unmanned aerial vehicles for vegetation mapping and identification of botanical species in wetlands", Landscape and Ecological Engineering, pp. 1-10, 2019.
J. A. J. Berni, P. J. Zarco-Tejada, L. Suarez and E. Fereres, "Thermal and Narrowband Multispectral Remote Sensing for Vegetation Monitoring From an Unmanned Aerial Vehicle" in IEEE Transactions on Geoscience and Remote Sensing, vol. 47, no. 3, pp. 722-738, March 2009.
F. Ouyang, H. Cheng, Y. Lan, Y. Zhang, X. Yin, J. Hu, et al., "Automatic delivery and recovery system of Wireless Sensor Networks (WSN) nodes based on UAV for agricultural applications", Computers and Electronics in Agriculture, vol. 162, pp. 31-43, 2019.
Y. Liu, N. Noguchi and L. Liang, "Development of a positioning system using UAV-based computer vision for an airboat navigation in paddy field", Computers and Electronics in Agriculture, vol. 162, pp. 126-133, 2019.
J. Primicerio, S. F. Di Gennaro, E. Fiorillo, L. Genesio, E. Lugato, A. Matese, et al., "A flexible unmanned aerial vehicle for precision agriculture", Precision Agriculture, vol. 13, no. 4, pp. 517-523, 2012.
S. Candiago, F. Remondino, M. De Giglio, M. Dubbini and M. Gattelli, "Evaluating multispectral images and vegetation indices for precision farming applications from UAV images", Remote sensing, vol. 7, no. 4, pp. 4026-4047, 2015.
E. Salamí, C. Barrado and E. Pastor, "UAV flight experiments applied to the remote sensing of vegetated areas", Remote Sensing, vol. 6, no. 11, pp. 11051-11081, 2014.
K. Li, R. C. Voicu, S. S. Kanhere, W. Ni and E. Tovar, "Energy Efficient Legitimate Wireless Surveillance of UAV Communications" in IEEE Transactions on Vehicular Technology, vol. 68, no. 3, pp. 2283-2293, 2019.
J. Dong, G. Wu, T. Yang and Z. Jiang, "Battlefield situation awareness and networking based on agent distributed computing", Physical Communication, vol. 33, pp. 178-186, 2019.
B. Bethke, J. P. How and J. Vian, "Group health management of UAV teams with applications to persistent surveillance", 2008 American Control Conference, pp. 3145-3150, 2008.
Z. Sun, P. Wang, M. C. Vuran, M. A. Al-Rodhaan, A. M. Al-Dhelaan and I. F. Akyildiz, "BorderSense: Border patrol through advanced wireless sensor networks", Ad Hoc Networks, vol. 9, no. 3, pp. 468-477, 2011.
J. Li, L. Wang and X. Shen, "Unmanned Aerial Vehicle Intelligent Patrol-Inspection System Applied to Transmission Grid", 2018 2nd IEEE Conference on Energy Internet and Energy System Integration (EI2), pp. 1-5, October 2018.
I. Bekmezci, O. K. Sahingoz and S. Temel, "Flying ad-hoc networks (FANETs): A survey", Ad Hoc Networks, vol. 11, no. 3, pp. 1254-1270, 2013.
W. Qingwen, L. Gang, L. Zhi and Q. Qian, "An adaptive forwarding protocol for three dimensional Flying Ad Hoc Networks", 2015 IEEE 5th International Conference on Electronics Information and Emergency Communication, pp. 142-145, May 2015.
G. Gankhuyag, A. P. Shrestha and S. J. Yoo, "Robust and reliable predictive routing strategy for flying ad-hoc networks", IEEE Access, vol. 5, pp. 643-654, 2017.
A. Pandey, P. K. Shukla and R. Agrawal, "An adaptive Flying Ad-hoc Network (FANET) for disaster response operations to improve quality of service (QoS)", Modern Physics Letters B, vol. 34, no. 10, 2020.
S. Kumar, A. Bansal and R. S. Raw, "Health Monitoring Planning for On-Board Ships Through Flying Ad Hoc Network" in Advanced Computing and Intelligent Engineering, Singapore:Springer, pp. 391-402, 2020.
D. S. Pereira, M. R. De Morais, L. B. Nascimento, P. J. Alsina, V. G. Santos, D. H. Fernandes, et al., "Zigbee Protocol-Based Communication Network for Multi-Unmanned Aerial Vehicle Networks", IEEE Access, vol. 8, pp. 57762-57771, 2020.
W. W. Greenwood, J. P. Lynch and D. Zekkos, "Applications of UAVs in Civil Infrastructure", Journal of Infrastructure Systems, vol. 25, no. 2, pp. 04019002, 2019.
S. Siebert and J. Teizer, "Mobile 3D mapping for surveying earthwork projects using an Unmanned Aerial Vehicle (UAV) system", Automation in construction, vol. 41, pp. 1-14, 2014.
T. Kersnovski, F. Gonzalez and K. Morton, "A UAV system for autonomous target detection and gas sensing", 2017 IEEE aerospace conference, pp. 1-12, March 2017.
X. Zhou, J. Aurell, W. Mitchell, D. Tabor and B. Gullett, "A small lightweight multipollutant sensor system for ground-mobile and aerial emission sampling from open area sources", Atmospheric environment, vol. 154, pp. 31-41, 2017.
M. Sokač, P. Durasek, I. Bačić and S. Puškarić, "UAV application in ecology: Data collecting with quad-copter equipped with Arduino based measurement platform", 2016 International Symposium ELMAR, pp. 233-236, September 2016.
A. Malaver, N. Motta, P. Corke and F. Gonzalez, "Development and integration of a solar powered unmanned aerial vehicle and a wireless sensor network to monitor greenhouse gases", Sensors, vol. 15, no. 2, pp. 4072-4096, 2015.
A. Boubrima and E. W. Knightly, "Robust mission planning of UAV networks for environmental sensing", DroNet@ MobiSys, pp. 2-1, June 2020.
C. Li, W. Han, M. Peng, M. Zhang, X. Yao, W. Liu, et al., "An Unmanned Aerial Vehicle-Based Gas Sampling System for Analyzing CO2 and Atmospheric Particulate Matter in Laboratory", Sensors, vol. 20, no. 4, 2020.
S. López- Torres, H. López- Torres, J. Rocha-Rocha, S. A. Butt, M. I. Tariq, C. Collazos-Morales, et al., "IoT Monitoring of Water Consumption for Irrigation Systems Using SEMMA Methodology", International Conference on Intelligent Human Computer Interaction, pp. 222-234, 2019, December.
J. G. Caicedo-Ortiz, E. De-la-Hoz-Franco, R. M. Ortega, G. Piñeres-Espitia, H. Combita-Niño, F. Estevez, et al., "Monitoring system for agronomic variables based in WSN technology on cassava crops", Computers and Electronics in Agriculture, vol. 145, pp. 275-281, 2018.
M. I. Tariq, J. Diaz-Martinez, S. A. Butt, M. Adeel, E. De-la-Hoz-Franco and A. M. Dicu, "A Learners Experience with the Games Education in Software Engineering", International Workshop Soft Computing Applications, pp. 379-395, 2018, September.
dc.rights.spa.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.source.spa.fl_str_mv 6th International Conference for Convergence in Technology, I2CT 2021
institution Corporación Universidad de la Costa
dc.source.url.spa.fl_str_mv https://ieeexplore.ieee.org/document/9418000/
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/e5be26a8-4f1c-4378-b860-b456bf0e3092/download
https://repositorio.cuc.edu.co/bitstreams/ebe3bba4-c0b4-4d31-870a-478d79b15692/download
https://repositorio.cuc.edu.co/bitstreams/51de77cd-72ec-41eb-b152-88d70ac82d08/download
https://repositorio.cuc.edu.co/bitstreams/78572254-c3f7-4939-b659-36c6214d174e/download
https://repositorio.cuc.edu.co/bitstreams/09248521-02a5-4a35-9897-eeadfd97ae17/download
bitstream.checksum.fl_str_mv ba55ad8ca180b686ab16738f49e7dee1
4460e5956bc1d1639be9ae6146a50347
e30e9215131d99561d40d6b0abbe9bad
fb3df94a7ef1af03a6f4b373085fe148
8a50c85b11413689a4bfc53ecc36cb57
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1811760672615170048
spelling Piñeres Espitia, Gabriel DarioAziz Butt, ShariqCañate-Masson, M.Alvarez-Navarro, A.Areeb Hassan, SyedGochhait, Saikat2021-06-29T21:42:25Z2021-06-29T21:42:25Z2021https://hdl.handle.net/11323/8438https://doi.org/10.1109/I2CT51068.2021.9418000Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/A prototype is designed for the analysis of CO2 concentration. In this paper, to evaluate its functionality, data sending tests are executed. A low cost E34-2G4H20D RF module installed in a UAV (unmanned aerial vehicle) is used for data transmission. CO2 concentration measurement were made at the “Universidad de la Costa” in Barranquilla - Colombia. For this, a device was built for monitor the concentration of CO2 using the Arduino UNO platform and the MQ135 gas sensor. Tests were carried out at different heights to analyze package loss and CO2 concentration levels. The results show the effectiveness of the RF module in all tests for data transmission. The concentration of CO2 is evaluated in three zones to determine the minimum and maximum levels in each of them.Piñeres Espitia, Gabriel Dario-will be generated-orcid-0000-0002-8165-2697-600Aziz Butt, ShariqCañate-Masson, M.Alvarez-Navarro, A.Areeb Hassan, SyedGochhait, Saikatapplication/pdfengAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf26th International Conference for Convergence in Technology, I2CT 2021https://ieeexplore.ieee.org/document/9418000/Wireless networkUnmanned Aerial Vehicle MonitoringMQ135 SensorDrone SensingGas sensing system using an unmanned aerial vehicleArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersionF. Hernández, T. Portolés, M. Ibáñez, M.C. Bustos-López, R. Díaz, A. M. Botero-Coy, et al., "Use of time-of-flight mass spectrometry for large screening of organic pollutants in surface waters and soils from a rice production area in Colombia", Science of the Total Environment, vol. 439, pp. 249-259, 2012.L. Gallardo, J. Escribano, L. Dawidowski, N. Rojas, M. de Fátima Andrade and M. Osses, "Evaluation of vehicle emission inventories for carbon monoxide and nitrogen oxides for Bogotá Buenos Aires Santiago and São Paulo", Atmospheric Environment, vol. 47, pp. 12-19, 2012.L. Gupta, R. Jain and G. Vaszkun, "Survey of important issues in UAV communication networks", IEEE Communications Surveys & Tutorials, vol. 18, no. 2, pp. 1123-1152, 2016.S. Hayat, E. Yanmaz and R. Muzaffar, "Survey on unmanned aerial vehicle networks for civil applications: A communications viewpoint", IEEE Communications Surveys & Tutorials, vol. 18, no. 4, pp. 2624-2661, 2016.N. H. Motlagh, T. Taleb and O. Arouk, "Low-altitude unmanned aerial vehicles-based internet of things services: Comprehensive survey and future perspectives", IEEE Internet of Things Journal, vol. 3, no. 6, pp. 899-922, 2016.R. Woellner and T. C. Wagner, "Saving species time and money: Application of unmanned aerial vehicles (UAVs) for monitoring of an endangered alpine river specialist in a small nature reserve", Biological Conservation, vol. 233, pp. 162-175, 2019.M. Maimaitijiang, V. Sagan, P. Sidike, M. Maimaitiyiming, S. Hartling, K. T. Peterson, et al., "Vegetation Index Weighted Canopy Volume Model (CVMVI) for soybean biomass estimation from Unmanned Aerial System-based RGB imagery", ISPRS Journal of Photogrammetry and Remote Sensing, vol. 151, pp. 27-41, 2019.A. Bertacchi, V. Giannini, C. Di Franco and N. Silvestri, "Using unmanned aerial vehicles for vegetation mapping and identification of botanical species in wetlands", Landscape and Ecological Engineering, pp. 1-10, 2019.J. A. J. Berni, P. J. Zarco-Tejada, L. Suarez and E. Fereres, "Thermal and Narrowband Multispectral Remote Sensing for Vegetation Monitoring From an Unmanned Aerial Vehicle" in IEEE Transactions on Geoscience and Remote Sensing, vol. 47, no. 3, pp. 722-738, March 2009.F. Ouyang, H. Cheng, Y. Lan, Y. Zhang, X. Yin, J. Hu, et al., "Automatic delivery and recovery system of Wireless Sensor Networks (WSN) nodes based on UAV for agricultural applications", Computers and Electronics in Agriculture, vol. 162, pp. 31-43, 2019.Y. Liu, N. Noguchi and L. Liang, "Development of a positioning system using UAV-based computer vision for an airboat navigation in paddy field", Computers and Electronics in Agriculture, vol. 162, pp. 126-133, 2019.J. Primicerio, S. F. Di Gennaro, E. Fiorillo, L. Genesio, E. Lugato, A. Matese, et al., "A flexible unmanned aerial vehicle for precision agriculture", Precision Agriculture, vol. 13, no. 4, pp. 517-523, 2012.S. Candiago, F. Remondino, M. De Giglio, M. Dubbini and M. Gattelli, "Evaluating multispectral images and vegetation indices for precision farming applications from UAV images", Remote sensing, vol. 7, no. 4, pp. 4026-4047, 2015.E. Salamí, C. Barrado and E. Pastor, "UAV flight experiments applied to the remote sensing of vegetated areas", Remote Sensing, vol. 6, no. 11, pp. 11051-11081, 2014.K. Li, R. C. Voicu, S. S. Kanhere, W. Ni and E. Tovar, "Energy Efficient Legitimate Wireless Surveillance of UAV Communications" in IEEE Transactions on Vehicular Technology, vol. 68, no. 3, pp. 2283-2293, 2019.J. Dong, G. Wu, T. Yang and Z. Jiang, "Battlefield situation awareness and networking based on agent distributed computing", Physical Communication, vol. 33, pp. 178-186, 2019.B. Bethke, J. P. How and J. Vian, "Group health management of UAV teams with applications to persistent surveillance", 2008 American Control Conference, pp. 3145-3150, 2008.Z. Sun, P. Wang, M. C. Vuran, M. A. Al-Rodhaan, A. M. Al-Dhelaan and I. F. Akyildiz, "BorderSense: Border patrol through advanced wireless sensor networks", Ad Hoc Networks, vol. 9, no. 3, pp. 468-477, 2011.J. Li, L. Wang and X. Shen, "Unmanned Aerial Vehicle Intelligent Patrol-Inspection System Applied to Transmission Grid", 2018 2nd IEEE Conference on Energy Internet and Energy System Integration (EI2), pp. 1-5, October 2018.I. Bekmezci, O. K. Sahingoz and S. Temel, "Flying ad-hoc networks (FANETs): A survey", Ad Hoc Networks, vol. 11, no. 3, pp. 1254-1270, 2013.W. Qingwen, L. Gang, L. Zhi and Q. Qian, "An adaptive forwarding protocol for three dimensional Flying Ad Hoc Networks", 2015 IEEE 5th International Conference on Electronics Information and Emergency Communication, pp. 142-145, May 2015.G. Gankhuyag, A. P. Shrestha and S. J. Yoo, "Robust and reliable predictive routing strategy for flying ad-hoc networks", IEEE Access, vol. 5, pp. 643-654, 2017.A. Pandey, P. K. Shukla and R. Agrawal, "An adaptive Flying Ad-hoc Network (FANET) for disaster response operations to improve quality of service (QoS)", Modern Physics Letters B, vol. 34, no. 10, 2020.S. Kumar, A. Bansal and R. S. Raw, "Health Monitoring Planning for On-Board Ships Through Flying Ad Hoc Network" in Advanced Computing and Intelligent Engineering, Singapore:Springer, pp. 391-402, 2020.D. S. Pereira, M. R. De Morais, L. B. Nascimento, P. J. Alsina, V. G. Santos, D. H. Fernandes, et al., "Zigbee Protocol-Based Communication Network for Multi-Unmanned Aerial Vehicle Networks", IEEE Access, vol. 8, pp. 57762-57771, 2020.W. W. Greenwood, J. P. Lynch and D. Zekkos, "Applications of UAVs in Civil Infrastructure", Journal of Infrastructure Systems, vol. 25, no. 2, pp. 04019002, 2019.S. Siebert and J. Teizer, "Mobile 3D mapping for surveying earthwork projects using an Unmanned Aerial Vehicle (UAV) system", Automation in construction, vol. 41, pp. 1-14, 2014.T. Kersnovski, F. Gonzalez and K. Morton, "A UAV system for autonomous target detection and gas sensing", 2017 IEEE aerospace conference, pp. 1-12, March 2017.X. Zhou, J. Aurell, W. Mitchell, D. Tabor and B. Gullett, "A small lightweight multipollutant sensor system for ground-mobile and aerial emission sampling from open area sources", Atmospheric environment, vol. 154, pp. 31-41, 2017.M. Sokač, P. Durasek, I. Bačić and S. Puškarić, "UAV application in ecology: Data collecting with quad-copter equipped with Arduino based measurement platform", 2016 International Symposium ELMAR, pp. 233-236, September 2016.A. Malaver, N. Motta, P. Corke and F. Gonzalez, "Development and integration of a solar powered unmanned aerial vehicle and a wireless sensor network to monitor greenhouse gases", Sensors, vol. 15, no. 2, pp. 4072-4096, 2015.A. Boubrima and E. W. Knightly, "Robust mission planning of UAV networks for environmental sensing", DroNet@ MobiSys, pp. 2-1, June 2020.C. Li, W. Han, M. Peng, M. Zhang, X. Yao, W. Liu, et al., "An Unmanned Aerial Vehicle-Based Gas Sampling System for Analyzing CO2 and Atmospheric Particulate Matter in Laboratory", Sensors, vol. 20, no. 4, 2020.S. López- Torres, H. López- Torres, J. Rocha-Rocha, S. A. Butt, M. I. Tariq, C. Collazos-Morales, et al., "IoT Monitoring of Water Consumption for Irrigation Systems Using SEMMA Methodology", International Conference on Intelligent Human Computer Interaction, pp. 222-234, 2019, December.J. G. Caicedo-Ortiz, E. De-la-Hoz-Franco, R. M. Ortega, G. Piñeres-Espitia, H. Combita-Niño, F. Estevez, et al., "Monitoring system for agronomic variables based in WSN technology on cassava crops", Computers and Electronics in Agriculture, vol. 145, pp. 275-281, 2018.M. I. Tariq, J. Diaz-Martinez, S. A. Butt, M. Adeel, E. De-la-Hoz-Franco and A. M. Dicu, "A Learners Experience with the Games Education in Software Engineering", International Workshop Soft Computing Applications, pp. 379-395, 2018, September.PublicationORIGINALGas Sensing System using An Unmanned Aerial Vehicle.pdfGas Sensing System using An Unmanned Aerial Vehicle.pdfapplication/pdf104518https://repositorio.cuc.edu.co/bitstreams/e5be26a8-4f1c-4378-b860-b456bf0e3092/downloadba55ad8ca180b686ab16738f49e7dee1MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.cuc.edu.co/bitstreams/ebe3bba4-c0b4-4d31-870a-478d79b15692/download4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/51de77cd-72ec-41eb-b152-88d70ac82d08/downloade30e9215131d99561d40d6b0abbe9badMD53THUMBNAILGas Sensing System using An Unmanned Aerial Vehicle.pdf.jpgGas Sensing System using An Unmanned Aerial Vehicle.pdf.jpgimage/jpeg33564https://repositorio.cuc.edu.co/bitstreams/78572254-c3f7-4939-b659-36c6214d174e/downloadfb3df94a7ef1af03a6f4b373085fe148MD54TEXTGas Sensing System using An Unmanned Aerial Vehicle.pdf.txtGas Sensing System using An Unmanned Aerial Vehicle.pdf.txttext/plain1178https://repositorio.cuc.edu.co/bitstreams/09248521-02a5-4a35-9897-eeadfd97ae17/download8a50c85b11413689a4bfc53ecc36cb57MD5511323/8438oai:repositorio.cuc.edu.co:11323/84382024-09-16 16:42:26.729http://creativecommons.org/licenses/by-nc-nd/4.0/Attribution-NonCommercial-NoDerivatives 4.0 Internationalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA==