Gas sensing system using an unmanned aerial vehicle
A prototype is designed for the analysis of CO2 concentration. In this paper, to evaluate its functionality, data sending tests are executed. A low cost E34-2G4H20D RF module installed in a UAV (unmanned aerial vehicle) is used for data transmission. CO2 concentration measurement were made at the “U...
- Autores:
-
Piñeres Espitia, Gabriel Dario
Aziz Butt, Shariq
Cañate-Masson, M.
Alvarez-Navarro, A.
Areeb Hassan, Syed
Gochhait, Saikat
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2021
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/8438
- Acceso en línea:
- https://hdl.handle.net/11323/8438
https://doi.org/10.1109/I2CT51068.2021.9418000
https://repositorio.cuc.edu.co/
- Palabra clave:
- Wireless network
Unmanned Aerial Vehicle Monitoring
MQ135 Sensor
Drone Sensing
- Rights
- openAccess
- License
- Attribution-NonCommercial-NoDerivatives 4.0 International
id |
RCUC2_7127ca51635701fb6ff537d46a3e88e6 |
---|---|
oai_identifier_str |
oai:repositorio.cuc.edu.co:11323/8438 |
network_acronym_str |
RCUC2 |
network_name_str |
REDICUC - Repositorio CUC |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Gas sensing system using an unmanned aerial vehicle |
title |
Gas sensing system using an unmanned aerial vehicle |
spellingShingle |
Gas sensing system using an unmanned aerial vehicle Wireless network Unmanned Aerial Vehicle Monitoring MQ135 Sensor Drone Sensing |
title_short |
Gas sensing system using an unmanned aerial vehicle |
title_full |
Gas sensing system using an unmanned aerial vehicle |
title_fullStr |
Gas sensing system using an unmanned aerial vehicle |
title_full_unstemmed |
Gas sensing system using an unmanned aerial vehicle |
title_sort |
Gas sensing system using an unmanned aerial vehicle |
dc.creator.fl_str_mv |
Piñeres Espitia, Gabriel Dario Aziz Butt, Shariq Cañate-Masson, M. Alvarez-Navarro, A. Areeb Hassan, Syed Gochhait, Saikat |
dc.contributor.author.spa.fl_str_mv |
Piñeres Espitia, Gabriel Dario Aziz Butt, Shariq Cañate-Masson, M. Alvarez-Navarro, A. Areeb Hassan, Syed Gochhait, Saikat |
dc.subject.spa.fl_str_mv |
Wireless network Unmanned Aerial Vehicle Monitoring MQ135 Sensor Drone Sensing |
topic |
Wireless network Unmanned Aerial Vehicle Monitoring MQ135 Sensor Drone Sensing |
description |
A prototype is designed for the analysis of CO2 concentration. In this paper, to evaluate its functionality, data sending tests are executed. A low cost E34-2G4H20D RF module installed in a UAV (unmanned aerial vehicle) is used for data transmission. CO2 concentration measurement were made at the “Universidad de la Costa” in Barranquilla - Colombia. For this, a device was built for monitor the concentration of CO2 using the Arduino UNO platform and the MQ135 gas sensor. Tests were carried out at different heights to analyze package loss and CO2 concentration levels. The results show the effectiveness of the RF module in all tests for data transmission. The concentration of CO2 is evaluated in three zones to determine the minimum and maximum levels in each of them. |
publishDate |
2021 |
dc.date.accessioned.none.fl_str_mv |
2021-06-29T21:42:25Z |
dc.date.available.none.fl_str_mv |
2021-06-29T21:42:25Z |
dc.date.issued.none.fl_str_mv |
2021 |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
acceptedVersion |
dc.identifier.uri.spa.fl_str_mv |
https://hdl.handle.net/11323/8438 |
dc.identifier.doi.spa.fl_str_mv |
https://doi.org/10.1109/I2CT51068.2021.9418000 |
dc.identifier.instname.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.identifier.reponame.spa.fl_str_mv |
REDICUC - Repositorio CUC |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.cuc.edu.co/ |
url |
https://hdl.handle.net/11323/8438 https://doi.org/10.1109/I2CT51068.2021.9418000 https://repositorio.cuc.edu.co/ |
identifier_str_mv |
Corporación Universidad de la Costa REDICUC - Repositorio CUC |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.references.spa.fl_str_mv |
F. Hernández, T. Portolés, M. Ibáñez, M.C. Bustos-López, R. Díaz, A. M. Botero-Coy, et al., "Use of time-of-flight mass spectrometry for large screening of organic pollutants in surface waters and soils from a rice production area in Colombia", Science of the Total Environment, vol. 439, pp. 249-259, 2012. L. Gallardo, J. Escribano, L. Dawidowski, N. Rojas, M. de Fátima Andrade and M. Osses, "Evaluation of vehicle emission inventories for carbon monoxide and nitrogen oxides for Bogotá Buenos Aires Santiago and São Paulo", Atmospheric Environment, vol. 47, pp. 12-19, 2012. L. Gupta, R. Jain and G. Vaszkun, "Survey of important issues in UAV communication networks", IEEE Communications Surveys & Tutorials, vol. 18, no. 2, pp. 1123-1152, 2016. S. Hayat, E. Yanmaz and R. Muzaffar, "Survey on unmanned aerial vehicle networks for civil applications: A communications viewpoint", IEEE Communications Surveys & Tutorials, vol. 18, no. 4, pp. 2624-2661, 2016. N. H. Motlagh, T. Taleb and O. Arouk, "Low-altitude unmanned aerial vehicles-based internet of things services: Comprehensive survey and future perspectives", IEEE Internet of Things Journal, vol. 3, no. 6, pp. 899-922, 2016. R. Woellner and T. C. Wagner, "Saving species time and money: Application of unmanned aerial vehicles (UAVs) for monitoring of an endangered alpine river specialist in a small nature reserve", Biological Conservation, vol. 233, pp. 162-175, 2019. M. Maimaitijiang, V. Sagan, P. Sidike, M. Maimaitiyiming, S. Hartling, K. T. Peterson, et al., "Vegetation Index Weighted Canopy Volume Model (CVMVI) for soybean biomass estimation from Unmanned Aerial System-based RGB imagery", ISPRS Journal of Photogrammetry and Remote Sensing, vol. 151, pp. 27-41, 2019. A. Bertacchi, V. Giannini, C. Di Franco and N. Silvestri, "Using unmanned aerial vehicles for vegetation mapping and identification of botanical species in wetlands", Landscape and Ecological Engineering, pp. 1-10, 2019. J. A. J. Berni, P. J. Zarco-Tejada, L. Suarez and E. Fereres, "Thermal and Narrowband Multispectral Remote Sensing for Vegetation Monitoring From an Unmanned Aerial Vehicle" in IEEE Transactions on Geoscience and Remote Sensing, vol. 47, no. 3, pp. 722-738, March 2009. F. Ouyang, H. Cheng, Y. Lan, Y. Zhang, X. Yin, J. Hu, et al., "Automatic delivery and recovery system of Wireless Sensor Networks (WSN) nodes based on UAV for agricultural applications", Computers and Electronics in Agriculture, vol. 162, pp. 31-43, 2019. Y. Liu, N. Noguchi and L. Liang, "Development of a positioning system using UAV-based computer vision for an airboat navigation in paddy field", Computers and Electronics in Agriculture, vol. 162, pp. 126-133, 2019. J. Primicerio, S. F. Di Gennaro, E. Fiorillo, L. Genesio, E. Lugato, A. Matese, et al., "A flexible unmanned aerial vehicle for precision agriculture", Precision Agriculture, vol. 13, no. 4, pp. 517-523, 2012. S. Candiago, F. Remondino, M. De Giglio, M. Dubbini and M. Gattelli, "Evaluating multispectral images and vegetation indices for precision farming applications from UAV images", Remote sensing, vol. 7, no. 4, pp. 4026-4047, 2015. E. Salamí, C. Barrado and E. Pastor, "UAV flight experiments applied to the remote sensing of vegetated areas", Remote Sensing, vol. 6, no. 11, pp. 11051-11081, 2014. K. Li, R. C. Voicu, S. S. Kanhere, W. Ni and E. Tovar, "Energy Efficient Legitimate Wireless Surveillance of UAV Communications" in IEEE Transactions on Vehicular Technology, vol. 68, no. 3, pp. 2283-2293, 2019. J. Dong, G. Wu, T. Yang and Z. Jiang, "Battlefield situation awareness and networking based on agent distributed computing", Physical Communication, vol. 33, pp. 178-186, 2019. B. Bethke, J. P. How and J. Vian, "Group health management of UAV teams with applications to persistent surveillance", 2008 American Control Conference, pp. 3145-3150, 2008. Z. Sun, P. Wang, M. C. Vuran, M. A. Al-Rodhaan, A. M. Al-Dhelaan and I. F. Akyildiz, "BorderSense: Border patrol through advanced wireless sensor networks", Ad Hoc Networks, vol. 9, no. 3, pp. 468-477, 2011. J. Li, L. Wang and X. Shen, "Unmanned Aerial Vehicle Intelligent Patrol-Inspection System Applied to Transmission Grid", 2018 2nd IEEE Conference on Energy Internet and Energy System Integration (EI2), pp. 1-5, October 2018. I. Bekmezci, O. K. Sahingoz and S. Temel, "Flying ad-hoc networks (FANETs): A survey", Ad Hoc Networks, vol. 11, no. 3, pp. 1254-1270, 2013. W. Qingwen, L. Gang, L. Zhi and Q. Qian, "An adaptive forwarding protocol for three dimensional Flying Ad Hoc Networks", 2015 IEEE 5th International Conference on Electronics Information and Emergency Communication, pp. 142-145, May 2015. G. Gankhuyag, A. P. Shrestha and S. J. Yoo, "Robust and reliable predictive routing strategy for flying ad-hoc networks", IEEE Access, vol. 5, pp. 643-654, 2017. A. Pandey, P. K. Shukla and R. Agrawal, "An adaptive Flying Ad-hoc Network (FANET) for disaster response operations to improve quality of service (QoS)", Modern Physics Letters B, vol. 34, no. 10, 2020. S. Kumar, A. Bansal and R. S. Raw, "Health Monitoring Planning for On-Board Ships Through Flying Ad Hoc Network" in Advanced Computing and Intelligent Engineering, Singapore:Springer, pp. 391-402, 2020. D. S. Pereira, M. R. De Morais, L. B. Nascimento, P. J. Alsina, V. G. Santos, D. H. Fernandes, et al., "Zigbee Protocol-Based Communication Network for Multi-Unmanned Aerial Vehicle Networks", IEEE Access, vol. 8, pp. 57762-57771, 2020. W. W. Greenwood, J. P. Lynch and D. Zekkos, "Applications of UAVs in Civil Infrastructure", Journal of Infrastructure Systems, vol. 25, no. 2, pp. 04019002, 2019. S. Siebert and J. Teizer, "Mobile 3D mapping for surveying earthwork projects using an Unmanned Aerial Vehicle (UAV) system", Automation in construction, vol. 41, pp. 1-14, 2014. T. Kersnovski, F. Gonzalez and K. Morton, "A UAV system for autonomous target detection and gas sensing", 2017 IEEE aerospace conference, pp. 1-12, March 2017. X. Zhou, J. Aurell, W. Mitchell, D. Tabor and B. Gullett, "A small lightweight multipollutant sensor system for ground-mobile and aerial emission sampling from open area sources", Atmospheric environment, vol. 154, pp. 31-41, 2017. M. Sokač, P. Durasek, I. Bačić and S. Puškarić, "UAV application in ecology: Data collecting with quad-copter equipped with Arduino based measurement platform", 2016 International Symposium ELMAR, pp. 233-236, September 2016. A. Malaver, N. Motta, P. Corke and F. Gonzalez, "Development and integration of a solar powered unmanned aerial vehicle and a wireless sensor network to monitor greenhouse gases", Sensors, vol. 15, no. 2, pp. 4072-4096, 2015. A. Boubrima and E. W. Knightly, "Robust mission planning of UAV networks for environmental sensing", DroNet@ MobiSys, pp. 2-1, June 2020. C. Li, W. Han, M. Peng, M. Zhang, X. Yao, W. Liu, et al., "An Unmanned Aerial Vehicle-Based Gas Sampling System for Analyzing CO2 and Atmospheric Particulate Matter in Laboratory", Sensors, vol. 20, no. 4, 2020. S. López- Torres, H. López- Torres, J. Rocha-Rocha, S. A. Butt, M. I. Tariq, C. Collazos-Morales, et al., "IoT Monitoring of Water Consumption for Irrigation Systems Using SEMMA Methodology", International Conference on Intelligent Human Computer Interaction, pp. 222-234, 2019, December. J. G. Caicedo-Ortiz, E. De-la-Hoz-Franco, R. M. Ortega, G. Piñeres-Espitia, H. Combita-Niño, F. Estevez, et al., "Monitoring system for agronomic variables based in WSN technology on cassava crops", Computers and Electronics in Agriculture, vol. 145, pp. 275-281, 2018. M. I. Tariq, J. Diaz-Martinez, S. A. Butt, M. Adeel, E. De-la-Hoz-Franco and A. M. Dicu, "A Learners Experience with the Games Education in Software Engineering", International Workshop Soft Computing Applications, pp. 379-395, 2018, September. |
dc.rights.spa.fl_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.source.spa.fl_str_mv |
6th International Conference for Convergence in Technology, I2CT 2021 |
institution |
Corporación Universidad de la Costa |
dc.source.url.spa.fl_str_mv |
https://ieeexplore.ieee.org/document/9418000/ |
bitstream.url.fl_str_mv |
https://repositorio.cuc.edu.co/bitstreams/e5be26a8-4f1c-4378-b860-b456bf0e3092/download https://repositorio.cuc.edu.co/bitstreams/ebe3bba4-c0b4-4d31-870a-478d79b15692/download https://repositorio.cuc.edu.co/bitstreams/51de77cd-72ec-41eb-b152-88d70ac82d08/download https://repositorio.cuc.edu.co/bitstreams/78572254-c3f7-4939-b659-36c6214d174e/download https://repositorio.cuc.edu.co/bitstreams/09248521-02a5-4a35-9897-eeadfd97ae17/download |
bitstream.checksum.fl_str_mv |
ba55ad8ca180b686ab16738f49e7dee1 4460e5956bc1d1639be9ae6146a50347 e30e9215131d99561d40d6b0abbe9bad fb3df94a7ef1af03a6f4b373085fe148 8a50c85b11413689a4bfc53ecc36cb57 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad de la Costa CUC |
repository.mail.fl_str_mv |
repdigital@cuc.edu.co |
_version_ |
1811760672615170048 |
spelling |
Piñeres Espitia, Gabriel DarioAziz Butt, ShariqCañate-Masson, M.Alvarez-Navarro, A.Areeb Hassan, SyedGochhait, Saikat2021-06-29T21:42:25Z2021-06-29T21:42:25Z2021https://hdl.handle.net/11323/8438https://doi.org/10.1109/I2CT51068.2021.9418000Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/A prototype is designed for the analysis of CO2 concentration. In this paper, to evaluate its functionality, data sending tests are executed. A low cost E34-2G4H20D RF module installed in a UAV (unmanned aerial vehicle) is used for data transmission. CO2 concentration measurement were made at the “Universidad de la Costa” in Barranquilla - Colombia. For this, a device was built for monitor the concentration of CO2 using the Arduino UNO platform and the MQ135 gas sensor. Tests were carried out at different heights to analyze package loss and CO2 concentration levels. The results show the effectiveness of the RF module in all tests for data transmission. The concentration of CO2 is evaluated in three zones to determine the minimum and maximum levels in each of them.Piñeres Espitia, Gabriel Dario-will be generated-orcid-0000-0002-8165-2697-600Aziz Butt, ShariqCañate-Masson, M.Alvarez-Navarro, A.Areeb Hassan, SyedGochhait, Saikatapplication/pdfengAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf26th International Conference for Convergence in Technology, I2CT 2021https://ieeexplore.ieee.org/document/9418000/Wireless networkUnmanned Aerial Vehicle MonitoringMQ135 SensorDrone SensingGas sensing system using an unmanned aerial vehicleArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersionF. Hernández, T. Portolés, M. Ibáñez, M.C. Bustos-López, R. Díaz, A. M. Botero-Coy, et al., "Use of time-of-flight mass spectrometry for large screening of organic pollutants in surface waters and soils from a rice production area in Colombia", Science of the Total Environment, vol. 439, pp. 249-259, 2012.L. Gallardo, J. Escribano, L. Dawidowski, N. Rojas, M. de Fátima Andrade and M. Osses, "Evaluation of vehicle emission inventories for carbon monoxide and nitrogen oxides for Bogotá Buenos Aires Santiago and São Paulo", Atmospheric Environment, vol. 47, pp. 12-19, 2012.L. Gupta, R. Jain and G. Vaszkun, "Survey of important issues in UAV communication networks", IEEE Communications Surveys & Tutorials, vol. 18, no. 2, pp. 1123-1152, 2016.S. Hayat, E. Yanmaz and R. Muzaffar, "Survey on unmanned aerial vehicle networks for civil applications: A communications viewpoint", IEEE Communications Surveys & Tutorials, vol. 18, no. 4, pp. 2624-2661, 2016.N. H. Motlagh, T. Taleb and O. Arouk, "Low-altitude unmanned aerial vehicles-based internet of things services: Comprehensive survey and future perspectives", IEEE Internet of Things Journal, vol. 3, no. 6, pp. 899-922, 2016.R. Woellner and T. C. Wagner, "Saving species time and money: Application of unmanned aerial vehicles (UAVs) for monitoring of an endangered alpine river specialist in a small nature reserve", Biological Conservation, vol. 233, pp. 162-175, 2019.M. Maimaitijiang, V. Sagan, P. Sidike, M. Maimaitiyiming, S. Hartling, K. T. Peterson, et al., "Vegetation Index Weighted Canopy Volume Model (CVMVI) for soybean biomass estimation from Unmanned Aerial System-based RGB imagery", ISPRS Journal of Photogrammetry and Remote Sensing, vol. 151, pp. 27-41, 2019.A. Bertacchi, V. Giannini, C. Di Franco and N. Silvestri, "Using unmanned aerial vehicles for vegetation mapping and identification of botanical species in wetlands", Landscape and Ecological Engineering, pp. 1-10, 2019.J. A. J. Berni, P. J. Zarco-Tejada, L. Suarez and E. Fereres, "Thermal and Narrowband Multispectral Remote Sensing for Vegetation Monitoring From an Unmanned Aerial Vehicle" in IEEE Transactions on Geoscience and Remote Sensing, vol. 47, no. 3, pp. 722-738, March 2009.F. Ouyang, H. Cheng, Y. Lan, Y. Zhang, X. Yin, J. Hu, et al., "Automatic delivery and recovery system of Wireless Sensor Networks (WSN) nodes based on UAV for agricultural applications", Computers and Electronics in Agriculture, vol. 162, pp. 31-43, 2019.Y. Liu, N. Noguchi and L. Liang, "Development of a positioning system using UAV-based computer vision for an airboat navigation in paddy field", Computers and Electronics in Agriculture, vol. 162, pp. 126-133, 2019.J. Primicerio, S. F. Di Gennaro, E. Fiorillo, L. Genesio, E. Lugato, A. Matese, et al., "A flexible unmanned aerial vehicle for precision agriculture", Precision Agriculture, vol. 13, no. 4, pp. 517-523, 2012.S. Candiago, F. Remondino, M. De Giglio, M. Dubbini and M. Gattelli, "Evaluating multispectral images and vegetation indices for precision farming applications from UAV images", Remote sensing, vol. 7, no. 4, pp. 4026-4047, 2015.E. Salamí, C. Barrado and E. Pastor, "UAV flight experiments applied to the remote sensing of vegetated areas", Remote Sensing, vol. 6, no. 11, pp. 11051-11081, 2014.K. Li, R. C. Voicu, S. S. Kanhere, W. Ni and E. Tovar, "Energy Efficient Legitimate Wireless Surveillance of UAV Communications" in IEEE Transactions on Vehicular Technology, vol. 68, no. 3, pp. 2283-2293, 2019.J. Dong, G. Wu, T. Yang and Z. Jiang, "Battlefield situation awareness and networking based on agent distributed computing", Physical Communication, vol. 33, pp. 178-186, 2019.B. Bethke, J. P. How and J. Vian, "Group health management of UAV teams with applications to persistent surveillance", 2008 American Control Conference, pp. 3145-3150, 2008.Z. Sun, P. Wang, M. C. Vuran, M. A. Al-Rodhaan, A. M. Al-Dhelaan and I. F. Akyildiz, "BorderSense: Border patrol through advanced wireless sensor networks", Ad Hoc Networks, vol. 9, no. 3, pp. 468-477, 2011.J. Li, L. Wang and X. Shen, "Unmanned Aerial Vehicle Intelligent Patrol-Inspection System Applied to Transmission Grid", 2018 2nd IEEE Conference on Energy Internet and Energy System Integration (EI2), pp. 1-5, October 2018.I. Bekmezci, O. K. Sahingoz and S. Temel, "Flying ad-hoc networks (FANETs): A survey", Ad Hoc Networks, vol. 11, no. 3, pp. 1254-1270, 2013.W. Qingwen, L. Gang, L. Zhi and Q. Qian, "An adaptive forwarding protocol for three dimensional Flying Ad Hoc Networks", 2015 IEEE 5th International Conference on Electronics Information and Emergency Communication, pp. 142-145, May 2015.G. Gankhuyag, A. P. Shrestha and S. J. Yoo, "Robust and reliable predictive routing strategy for flying ad-hoc networks", IEEE Access, vol. 5, pp. 643-654, 2017.A. Pandey, P. K. Shukla and R. Agrawal, "An adaptive Flying Ad-hoc Network (FANET) for disaster response operations to improve quality of service (QoS)", Modern Physics Letters B, vol. 34, no. 10, 2020.S. Kumar, A. Bansal and R. S. Raw, "Health Monitoring Planning for On-Board Ships Through Flying Ad Hoc Network" in Advanced Computing and Intelligent Engineering, Singapore:Springer, pp. 391-402, 2020.D. S. Pereira, M. R. De Morais, L. B. Nascimento, P. J. Alsina, V. G. Santos, D. H. Fernandes, et al., "Zigbee Protocol-Based Communication Network for Multi-Unmanned Aerial Vehicle Networks", IEEE Access, vol. 8, pp. 57762-57771, 2020.W. W. Greenwood, J. P. Lynch and D. Zekkos, "Applications of UAVs in Civil Infrastructure", Journal of Infrastructure Systems, vol. 25, no. 2, pp. 04019002, 2019.S. Siebert and J. Teizer, "Mobile 3D mapping for surveying earthwork projects using an Unmanned Aerial Vehicle (UAV) system", Automation in construction, vol. 41, pp. 1-14, 2014.T. Kersnovski, F. Gonzalez and K. Morton, "A UAV system for autonomous target detection and gas sensing", 2017 IEEE aerospace conference, pp. 1-12, March 2017.X. Zhou, J. Aurell, W. Mitchell, D. Tabor and B. Gullett, "A small lightweight multipollutant sensor system for ground-mobile and aerial emission sampling from open area sources", Atmospheric environment, vol. 154, pp. 31-41, 2017.M. Sokač, P. Durasek, I. Bačić and S. Puškarić, "UAV application in ecology: Data collecting with quad-copter equipped with Arduino based measurement platform", 2016 International Symposium ELMAR, pp. 233-236, September 2016.A. Malaver, N. Motta, P. Corke and F. Gonzalez, "Development and integration of a solar powered unmanned aerial vehicle and a wireless sensor network to monitor greenhouse gases", Sensors, vol. 15, no. 2, pp. 4072-4096, 2015.A. Boubrima and E. W. Knightly, "Robust mission planning of UAV networks for environmental sensing", DroNet@ MobiSys, pp. 2-1, June 2020.C. Li, W. Han, M. Peng, M. Zhang, X. Yao, W. Liu, et al., "An Unmanned Aerial Vehicle-Based Gas Sampling System for Analyzing CO2 and Atmospheric Particulate Matter in Laboratory", Sensors, vol. 20, no. 4, 2020.S. López- Torres, H. López- Torres, J. Rocha-Rocha, S. A. Butt, M. I. Tariq, C. Collazos-Morales, et al., "IoT Monitoring of Water Consumption for Irrigation Systems Using SEMMA Methodology", International Conference on Intelligent Human Computer Interaction, pp. 222-234, 2019, December.J. G. Caicedo-Ortiz, E. De-la-Hoz-Franco, R. M. Ortega, G. Piñeres-Espitia, H. Combita-Niño, F. Estevez, et al., "Monitoring system for agronomic variables based in WSN technology on cassava crops", Computers and Electronics in Agriculture, vol. 145, pp. 275-281, 2018.M. I. Tariq, J. Diaz-Martinez, S. A. Butt, M. Adeel, E. De-la-Hoz-Franco and A. M. Dicu, "A Learners Experience with the Games Education in Software Engineering", International Workshop Soft Computing Applications, pp. 379-395, 2018, September.PublicationORIGINALGas Sensing System using An Unmanned Aerial Vehicle.pdfGas Sensing System using An Unmanned Aerial Vehicle.pdfapplication/pdf104518https://repositorio.cuc.edu.co/bitstreams/e5be26a8-4f1c-4378-b860-b456bf0e3092/downloadba55ad8ca180b686ab16738f49e7dee1MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.cuc.edu.co/bitstreams/ebe3bba4-c0b4-4d31-870a-478d79b15692/download4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/51de77cd-72ec-41eb-b152-88d70ac82d08/downloade30e9215131d99561d40d6b0abbe9badMD53THUMBNAILGas Sensing System using An Unmanned Aerial Vehicle.pdf.jpgGas Sensing System using An Unmanned Aerial Vehicle.pdf.jpgimage/jpeg33564https://repositorio.cuc.edu.co/bitstreams/78572254-c3f7-4939-b659-36c6214d174e/downloadfb3df94a7ef1af03a6f4b373085fe148MD54TEXTGas Sensing System using An Unmanned Aerial Vehicle.pdf.txtGas Sensing System using An Unmanned Aerial Vehicle.pdf.txttext/plain1178https://repositorio.cuc.edu.co/bitstreams/09248521-02a5-4a35-9897-eeadfd97ae17/download8a50c85b11413689a4bfc53ecc36cb57MD5511323/8438oai:repositorio.cuc.edu.co:11323/84382024-09-16 16:42:26.729http://creativecommons.org/licenses/by-nc-nd/4.0/Attribution-NonCommercial-NoDerivatives 4.0 Internationalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA== |