Modelo predictivo para el reconocimiento de actividades humanas basado en técnicas de Machine Learning y de selección de características

Ambient assisted living (AAL), focus on generating innovative products and services in order to aid and medical attention to elderly people who suffer from neurodegenerative diseases or a disability. This research area is responsible for the development of activity recognition systems (ARS) which ar...

Full description

Autores:
Patiño Saucedo, Janns Álvaro
Tipo de recurso:
Fecha de publicación:
2019
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
spa
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/8249
Acceso en línea:
https://hdl.handle.net/11323/8249
https://repositorio.cuc.edu.co/
Palabra clave:
Human Activity Recognition (HAR)
Machine learning
Classification
Feature selection
Reconocimiento de Actividades Humanas (HAR)
Aprendizaje automático
Clasificación
Selección de características
Rights
openAccess
License
Attribution-NonCommercial-ShareAlike 4.0 International
id RCUC2_70fbe45af6dae93fcaf322bffa4d47b2
oai_identifier_str oai:repositorio.cuc.edu.co:11323/8249
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.spa.fl_str_mv Modelo predictivo para el reconocimiento de actividades humanas basado en técnicas de Machine Learning y de selección de características
title Modelo predictivo para el reconocimiento de actividades humanas basado en técnicas de Machine Learning y de selección de características
spellingShingle Modelo predictivo para el reconocimiento de actividades humanas basado en técnicas de Machine Learning y de selección de características
Human Activity Recognition (HAR)
Machine learning
Classification
Feature selection
Reconocimiento de Actividades Humanas (HAR)
Aprendizaje automático
Clasificación
Selección de características
title_short Modelo predictivo para el reconocimiento de actividades humanas basado en técnicas de Machine Learning y de selección de características
title_full Modelo predictivo para el reconocimiento de actividades humanas basado en técnicas de Machine Learning y de selección de características
title_fullStr Modelo predictivo para el reconocimiento de actividades humanas basado en técnicas de Machine Learning y de selección de características
title_full_unstemmed Modelo predictivo para el reconocimiento de actividades humanas basado en técnicas de Machine Learning y de selección de características
title_sort Modelo predictivo para el reconocimiento de actividades humanas basado en técnicas de Machine Learning y de selección de características
dc.creator.fl_str_mv Patiño Saucedo, Janns Álvaro
dc.contributor.advisor.spa.fl_str_mv De-La-Hoz-Franco, Emiro
Diaz Martínez, Jorge
dc.contributor.author.spa.fl_str_mv Patiño Saucedo, Janns Álvaro
dc.subject.eng.fl_str_mv Human Activity Recognition (HAR)
Machine learning
Classification
Feature selection
topic Human Activity Recognition (HAR)
Machine learning
Classification
Feature selection
Reconocimiento de Actividades Humanas (HAR)
Aprendizaje automático
Clasificación
Selección de características
dc.subject.spa.fl_str_mv Reconocimiento de Actividades Humanas (HAR)
Aprendizaje automático
Clasificación
Selección de características
description Ambient assisted living (AAL), focus on generating innovative products and services in order to aid and medical attention to elderly people who suffer from neurodegenerative diseases or a disability. This research area is responsible for the development of activity recognition systems (ARS) which are based on Human Activity Recognition (HAR), specifically in activities of daily life (ADL) in indoor environments. These systems make it possible to identify the type of activity that people carry out, offering a possibility of effective assistance that allows them to carry out daily activities with total normality. The performance of the ARS in the HAR process must be evaluated through the approach of experimental scenarios with data sets available by the scientific community in online repositories, this work proposes a variety of combinations of machine learning algorithms with feature selection algorithms, obtaining as a result a functional model for the HAR, which combines the classification algorithm Logistic model trees (LMT) and the feature selection algorithm One R.
publishDate 2019
dc.date.issued.none.fl_str_mv 2019
dc.date.accessioned.none.fl_str_mv 2021-05-12T18:22:03Z
dc.date.available.none.fl_str_mv 2021-05-12T18:22:03Z
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
status_str acceptedVersion
dc.identifier.uri.spa.fl_str_mv https://hdl.handle.net/11323/8249
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
url https://hdl.handle.net/11323/8249
https://repositorio.cuc.edu.co/
identifier_str_mv Corporación Universidad de la Costa
REDICUC - Repositorio CUC
dc.language.iso.none.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Aggarwal, J. K., & Ryoo, M. S. (2011). Human activity analysis: A review. ACM Computing Surveys, 43(3). https://doi.org/10.1145/1922649.1922653
Aha, D. W., Kibler, D., & Albert, M. K. (1991). Instance-Based Learning Algorithms. Machine Learning, 6(1), 37–66. https://doi.org/10.1023/A:1022689900470
Aluja, T. (2001). La minería de datos, entre la estadística y la inteligencia artificial. Questiio, 25(3), 479–498. Retrieved from https://www.scopus.com/inward/record.uri?eid=2-s2.0- 0035573389&partnerID=40&md5=2d59288d728bde451b4bf19d5855e4ba
Anderson, K. D., Bergés, M. E., Ocneanu, A., Benitez, D., & Moura, J. M. F. (2012). Event detection for Non Intrusive load monitoring. IECON 2012 - 38th Annual Conference on IEEE Industrial Electronics Society, 3312–3317. https://doi.org/10.1109/IECON.2012.6389367
Anguita, D., Ghio, A., Oneto, L., Parra, X., & Reyes-Ortiz, J. L. (2013). A public domain dataset for human activity recognition using smartphones. ESANN 2013 Proceedings, 21st European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, (April), 437–442.
Aprende Machine Learning - Qué es overfitting y underfitting y cómo solucionarlo. (2017). Retrieved from https://www.aprendemachinelearning.com/que-es-overfitting-y-underfittingy-como-solucionarlo/
Berges Gonzalez, M. E. (2010). A Framework for Enabling Energy-Aware Facilities through Minimally-Intrusive Approaches. Carnegie Mellon University, USA.
Breiman, L. (1996). Bagging predictors. Machine Learning, 24(2), 123–140. https://doi.org/10.1007/bf00058655
Breiman, L. (2001). Random Forests. Machine Learning, 45(1), 5–32. https://doi.org/10.1023/A:1010933404324
Camaré, L. J. M. (2008). Aprendizaje Automático a partir de Conjuntos de Datos No Balanceados y su Aplicación en el Diagnóstico y Pronóstico Médico.
Cessie, S. Le, & Houwelingen, J. C. Van. (1992). Ridge Estimators in Logistic Regression. Journal of the Royal Statistical Society. Series C (Applied Statistics), 41(1), 191–201. Retrieved from http://www.jstor.org/stable/2347628
Chen, L., Hoey, J., Nugent, C. D., Cook, D. J., Yu, Z., & Member, S. (2012). Sensor-Based Activity Recognition. 42(6), 790–808.
Chen, L., & Nugent, C. (2009). Ontology-based activity recognition in intelligent pervasive environments. International Journal of Web Information Systems.
Cleary, J. G., & Trigg, L. E. (1995). An Instance-based Learner Using an Entropic Distance Measure. Elsevier, 5, 1–14. https://doi.org/10.1016/B978-1-55860-377-6.50022-0
Cohen, W. W. (1995). Fast Effective Rule Induction. Differences.
Cook, D. J. (2012). Learning setting-generalized activity models for smart spaces. IEEE Intelligent Systems, 27(1), 32–38. https://doi.org/10.1109/MIS.2010.112
Cook, D. J., Crandall, A. S., Thomas, B. L., & Krishnan, N. C. (2013). CASAS: A smart home in a box. Computer, 46(7), 62–69. https://doi.org/10.1109/MC.2012.328
De-La-Hoz-Franco, E., Ariza-Colpas, P., Quero, J. M., & Espinilla, M. (2018). Sensor-based datasets for human activity recognition - A systematic review of literature. IEEE Access, 6, 59192–59210. https://doi.org/10.1109/ACCESS.2018.2873502
Detours, V., Dumont, J. E., Bersini, H., & Maenhaut, C. (2003). Integration and cross-validation of high-throughput gene expression data: Comparing heterogeneous data sets. FEBS Letters, 546(1), 98–102. https://doi.org/10.1016/S0014-5793(03)00522-2
Eibe, F., Holmes, G., & Witten, I. H. (2007). Weka 3 - Data Mining with Open Source Machine Learning Software in Java. Retrieved from https://www.cs.waikato.ac.nz/ml/weka/
Fayyad, U., Piatetsky-Shapiro, G., & Smyth, P. (1996). From data mining to knowledge discovery in databases. AI Magazine, 17(3), 37–53. Retrieved from https://www.scopus.com/inward/record.uri?eid=2-s2.0- 0002283033&partnerID=40&md5=266faf7bded790e22bc3754ab7e2caa1
Frank, E., Hall, M., & Pfahringer, B. (2003). Locally Weighted Naive Bayes. 249–256. Retrieved from http://arxiv.org/abs/1212.2487
Frank, E., Wang, Y., Inglis, S., Holmes, G., & Witten, I. H. (1998). Using model trees for classification. Machine Learning, 32(1), 63–76. https://doi.org/10.1023/A:1007421302149
Frank, E., & Witten, I. H. (1998). Generating accurate rule sets without global optimization. Proceedings of the Fifteenth International Conference on Machine Learning, 144–151. https://doi.org/1-55860-556-8
Freund, Y., & Schapire, R. E. (1996). Experiments with a New Boosting Algorithm. Proceedings of the 13th International Conference on Machine Learning, 148–156. https://doi.org/10.1.1.133.1040
Friedman, J., Hastie, T., & Tibshirani, R. (2000). Additive logistic regression: a statistical view of boosting (With discussion and a rejoinder by the authors). The Annals of Statistics, 28(2), 337–407. https://doi.org/10.1214/aos/1016218223
Fürnkranz, J., & Widmer, G. (1996). Incremental Reduced Error Pruning. Machine Learning Proceedings 1994, (January), 70–77. https://doi.org/10.1016/b978-1-55860-335-6.50017-9
García, J. A. (2016). Líneas de investigación en minería de datos en aplicaciones en ciencia e ingeniería: Estado del arte y perspectivas. Arxiv, Artificial Intelligence (Cs.AI), 1(1609.05401), 1–17. https://doi.org/10.1007/s003350010211
Guyon, I., & Elisseeff, A. (2003). An introduction to variable and feature selection. Journal of Machine Learning Research, 3(Mar), 1157–1182.
Hall, M. A., & Holmes, G. (2003). Benchmarking Attribute Selection Techniques for Discrete Class Data Mining. IEEE Transactions on Knowledge and Data Engineering, Vol. 15, pp. 1437–1447. https://doi.org/10.1109/TKDE.2003.1245283
Herrera, F., & Cano, J. R. (2006). Técnicas de reducción de datos en KDD. El uso de Algoritmos Evolutivos para la Selección de Instancias. Actas Del I Seminario Sobre Sistemas Inteligentes (SSI’06), Universidad Rey Juan Carlos, Madrid (Spain)., 165–181.
Holte, R. C. (1993). Very Simple Classification Rules Perform Well on Most Commonly Used Datasets. Machine Learning, 11, 63–91. https://doi.org/10.1023/A:1022631118932
Hota, H. S., & Shrivas, A. K. (2014). Decision tree techniques applied on NSL-KDD data and its comparison with various feature selection techniques. In Advanced Computing, Networking and Informatics-Volume 1 (pp. 205–211). https://doi.org/http://doi.org/10.1007/978-3-319- 07353-8
KDnuggets. (2014). What main methodology are you using for your analytics, data mining, or data science projects? Poll. Retrieved from https://www.kdnuggets.com/polls/2014/analytics-data-mining-data-sciencemethodology.html
Kim, Won and Choi, Byoung-Ju and Hong, Eui and Kim, Soo-Kyung and Lee, D. (2003). A Taxonomy of Dirty Data. Data Min. Knowl. Discov., 7, 81–99. https://doi.org/10.1023/A:1021564703268
Kira, K., & Rendell, L. A. (1992). The Feature Selection Problem: Traditional Methods and a New Algorithm. Proceedings of the Tenth National Conference on Artificial Intelligence, 129– 134. AAAI Press.
Kittler, J., Hatef, M., Duin, R. P. W., & Matas, J. (1998). On combining classifiers. IEEE Transactions on Pattern Analysis and Machine Intelligence, 20(3), 226–239. https://doi.org/10.1109/34.667881
Kohavi, R. (1995). Wrappers for performance enhancement and obvious decision graphs. (November). Retrieved from https://dl.acm.org/citation.cfm?id=241090
Kohavi, Ron, & John, G. H. (1997). Wrappers for feature subset selection. Artificial Intelligence, 97(1), 273–324. https://doi.org/https://doi.org/10.1016/S0004-3702(97)00043-X
Kohavi, Ron, & Provost, F. (1998). Glossary of Terms. Machine Learning, 2, 271–274. https://doi.org/10.1023/A:1017181826899
Kwon, B., Kim, J., & Lee, S. (2017). An enhanced multi-view human action recognition system for virtual training simulator. 2016 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference, APSIPA 2016, 1–4. https://doi.org/10.1109/APSIPA.2016.7820895
Landwehr, N., Hall, M., & Frank, E. (2003). Logistic model trees. Lecture Notes in Artificial Intelligence (Subseries of Lecture Notes in Computer Science), 2837, 241–252. https://doi.org/10.1007/s10994-005-0466-3
Lara, Ó. D., & Labrador, M. A. (2013). A survey on human activity recognition using wearable sensors. IEEE Communications Surveys and Tutorials, 15(3), 1192–1209. https://doi.org/10.1109/SURV.2012.110112.00192
Li, C., Lin, M., Yang, L. T., & Ding, C. (2014). Integrating the enriched feature with machine learning algorithms for human movement and fall detection. The Journal of Supercomputing, 67(3), 854–865. https://doi.org/https://doi.org/10.1007/s11227-013-1056-y
Li, R., Lu, B., & McDonald-Maier, K. D. (2015). Cognitive assisted living ambient system: a survey. Digital Communications and Networks, 1(4), 229–252. https://doi.org/10.1016/j.dcan.2015.10.003
Lin, T. Y. (2002). Attribute transformations for data mining I: Theoretical explorations. International Journal of Intelligent Systems, 17(2), 213–222.
Liu, H., & Motoda, H. (2012). Feature selection for knowledge discovery and data mining (Vol. 454). Springer Science & Business Media.
Liu, H., & Motoda, H. (2013). Instance selection and construction for data mining (Vol. 608). Springer Science & Business Media.
Liu, H., Motoda, H., Setiono, R., & Zhao, Z. (2010). Feature Selection : An Ever Evolving Frontier in Data Mining. Journal of Machine Learning Research: Workshop and Conference Proceedings 10: The Fourth Workshop on Feature Selection in Data Mining, 4–13.
Marks Hall, G. H. (1994). WEKA: Practical Machine Learning Tools and Techniques with JAva Implementations. Retrieved from https://researchcommons.waikato.ac.nz/bitstream/handle/10289/1040/uow-cs-wp-1999-11.pdf?sequence=1&isAllowed=y
Memon, M., Wagner, S. R., Pedersen, C. F., Aysha Beevi, F. H., & Hansen, F. O. (2014). Ambient Assisted Living healthcare frameworks, platforms, standards, and quality attributes. Sensors (Switzerland), 14(3), 4312–4341. https://doi.org/10.3390/s140304312
Milley, A. H., Seabolt, J. D., & Williams, J. S. (1998). Data Mining and the Case for Sampling. A SAS Institute Best Practices. 1–36. Retrieved from http://sceweb.uhcl.edu/boetticher/ML_DataMining/SAS-SEMMA.pdf
Ministerio de Salud y Protección Social. (2017). Boletín de salud mental - Demencia. Retrieved from Ministerio de Salud website: https://www.minsalud.gov.co/sites/rid/Lists/BibliotecaDigital/RIDE/VS/PP/ENT/boletindepresion-marzo-2017.pdf
Mitra, S., & Acharya, T. (2003). Data Mining: Multimedia, Soft Computing, and Bioinformatics. In Technometrics (Vol. 46). https://doi.org/10.1198/tech.2004.s207
Moine, J. Mi., Haedo, A., & Gordillo, S. (2011). Estudio comparativo de metodologías para minería de datos. XIII Workshop de Investigadores En Ciencias de La Computación, 278– 281. Retrieved from http://sedici.unlp.edu.ar/handle/10915/20034
Pete, C., Julian, C., Randy, K., Thomas, K., Thomas, R., Colin, S., & Wirth, R. (2000). Crisp-Dm 1.0. CRISP-DM Consortium, 76.
PRADENA, P. C. P. A. (2013). VISUALIZACIÓN ESPACIO/TEMPORAL DE EVENTOS NOTICIOSOS (UNIVERSIDAD DE CHILE). https://doi.org/10.1787/9789264197565-3-es
Provost, F., & Fawcett, T. (2001). Robust Classification for Imprecise Environments. Machine Learning, 42, 203–231. https://doi.org/10.1023/A:1007601015854
Pyle, D. (1999). Data preparation for data mining. Morgan Kaufmann.
Quinlan, J. R. (1994). C4.5: Programs for Machine Learning by J. Ross Quinlan. Morgan Kaufmann Publishers, Inc., 1993. In Machine Learning (Vol. 16). https://doi.org/10.1007/BF00993309
Read, J., Puurula, A., & Bifet, A. (2015). Multi-label Classification with Meta-Labels. Proceedings - IEEE International Conference on Data Mining, ICDM, 2015-Janua(January), 941–946. https://doi.org/10.1109/ICDM.2014.38
Reed, K. L., & Sanderson, S. N. (1999). Concepts of occupational therapy. Retrieved from https://books.google.com.co/books?hl=es&lr=&id=1ZE47g_IRTwC&oi=fnd&pg=PR7&dq =Concepts+of+Occupational+Therapy.&ots=sMksfVhmYK&sig=wlabmL9W01HtUuzpA Raj6BUDtHI#v=onepage&q=Concepts of Occupational Therapy.&f=false
Rice, J. A. (2006). Mathematical statistics and data analysis. Cengage Learning.
Robnik-Šikonja, M., & Kononenko, I. (1997). An adaptation of {R}elief for attribute estimation in regression. Proceedings of the Fourteenth International Conference on Machine Learning (ICML’97), 5, 296–304. Retrieved from http://dl.acm.org/citation.cfm?id=645526.657141
Shahi, A., Woodford, B. J., & Lin, H. (2017). Dynamic real-time segmentation and recognition of activities using a multi-feature windowing approach. Pacific-Asia Conference on Knowledge Discovery and Data Mining, 26–38. https://doi.org/https://doi.org/10.1007/978-3-319- 67274-8_3
Shaltout, N., Elhefnawi, M., Rafea, A., & Moustafa, A. (2014). Information Gain as a Feature Selection Method for the Efficient Classification of Influenza Based on Viral Hosts. Lecture Notes in Engineering and Computer Science, 1, 625–631.
Singla, G., Cook, D. J., & Schmitter-Edgecombe, M. (2010). Recognizing independent and joint activities among multiple residents in smart environments. Journal of Ambient Intelligence and Humanized Computing, 1(1), 57–63. https://doi.org/10.1007/s12652-009-0007-1
T.K. Ho. (1998). The Random Subspace Method for Constructing Decision Forests. IEEE Transactions on Pattern Analysis and Machine Intelligence, 20(8), 832–844. https://doi.org/10.1109/34.709601
U.S. National Library of Medicine. (2019). Enfermedades neurodegenerativas: MedlinePlus en español. Retrieved January 13, 2020, from Medlineplus website: https://medlineplus.gov/spanish/degenerativenervediseases.html
Van Der Malsburg, C. (1986). Frank Rosenblatt: Principles of Neurodynamics: Perceptrons and the Theory of Brain Mechanisms. Brain Theory, (February), 245–248. https://doi.org/10.1007/978-3-642-70911-1_20
Van Kasteren, T. L. M., Englebienne, G., & Kröse, B. J. A. (2010). Activity recognition using semi-Markov models on real world smart home datasets. Journal of Ambient Intelligence and Smart Environments, 2(3), 311–325. https://doi.org/10.3233/AIS-2010-0070
Weiss, S. M., & Kulikowski, C. A. (1991). Computer systems that learn: classification and prediction methods from statistics, neural nets, machine learning, and expert systems. Morgan Kaufmann Publishers Inc.
Witten, I. H., Frank, E., & Hall, M. a. (2011). Data Mining: Practical Machine Learning Tools and Techniques. In Complementary literature None. Retrieved from http://books.google.com/books?id=bDtLM8CODsQC&pgis=1
Wolpert, D. H. (1992). Stacked generalization. Neural Networks, 5(2), 241–259. https://doi.org/10.1016/S0893-6080(05)80023-1
World Health Organization. (2019). Dementia. Retrieved January 13, 2020, from https://www.who.int/news-room/fact-sheets/detail/dementia
Zhang, S., Zhang, C., & Yang, Q. (2003). Data preparation for data mining. Applied Artificial Intelligence, 17(5–6), 375–381. https://doi.org/10.1080/713827180
dc.rights.spa.fl_str_mv Attribution-NonCommercial-ShareAlike 4.0 International
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Attribution-NonCommercial-ShareAlike 4.0 International
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Corporación Universidad de la Costa
dc.publisher.program.spa.fl_str_mv Maestría en Ingeniería con Énfasis en Sistemas
institution Corporación Universidad de la Costa
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/6280126f-aef8-4ca7-9d98-48d6fda8ed34/download
https://repositorio.cuc.edu.co/bitstreams/3f28dddf-9714-41da-8f4f-c701883bee19/download
https://repositorio.cuc.edu.co/bitstreams/fb911261-c983-4422-bd31-b2c5c8f77a28/download
https://repositorio.cuc.edu.co/bitstreams/6af19f16-0a22-4448-80f3-319c0c98d6b3/download
https://repositorio.cuc.edu.co/bitstreams/d9cc324c-1c20-4e74-9778-328f412adfce/download
bitstream.checksum.fl_str_mv 934f4ca17e109e0a05eaeaba504d7ce4
e30e9215131d99561d40d6b0abbe9bad
48e3c0c607da980b94f09dbdc02bd5e6
1345c37301a6c3a184cba67284a556e4
9d05f1a80def09f4b0ad354a3ad0f00c
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1811760803793076224
spelling De-La-Hoz-Franco, EmiroDiaz Martínez, JorgePatiño Saucedo, Janns Álvaro2021-05-12T18:22:03Z2021-05-12T18:22:03Z2019https://hdl.handle.net/11323/8249Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/Ambient assisted living (AAL), focus on generating innovative products and services in order to aid and medical attention to elderly people who suffer from neurodegenerative diseases or a disability. This research area is responsible for the development of activity recognition systems (ARS) which are based on Human Activity Recognition (HAR), specifically in activities of daily life (ADL) in indoor environments. These systems make it possible to identify the type of activity that people carry out, offering a possibility of effective assistance that allows them to carry out daily activities with total normality. The performance of the ARS in the HAR process must be evaluated through the approach of experimental scenarios with data sets available by the scientific community in online repositories, this work proposes a variety of combinations of machine learning algorithms with feature selection algorithms, obtaining as a result a functional model for the HAR, which combines the classification algorithm Logistic model trees (LMT) and the feature selection algorithm One R.Los ambientes asistidos para la vida - AAL por sus siglas en inglés (Ambient Assisted Living), se enfocan en generar productos y servicios innovadores en aras de proporcionar asistencia y atención médica a personas de avanzada edad que padezcan enfermedades neurodegenerativas o alguna discapacidad. Esta área de investigación se encarga del desarrollo de sistemas para el reconocimiento de actividad - ARS (Activity Recognition Systems) los cuales están basados en el reconocimiento de actividades humanas - HAR (Human Activity Recognition), específicamente en actividades de la vida diaria - ADL (Activities of Daily Living) en ambientes interiores (indoor). Estos sistemas permiten identificar el tipo de actividad que realizan las personas, ofreciendo una posibilidad de asistencia efectiva que les permita llevar a cabo actividades cotidianas con total normalidad. El desempeño de los ARS en el proceso de HAR, debe ser evaluado a través del planteamiento de escenarios experimentales con conjuntos de datos dispuestos por la comunidad científica en repositorios en linea, este trabajo plantea una variedad de combinaciones de técnicas de machine learning con técnicas de selección de características, obteniendo como resultado un modelo funcional para el HAR, que combina la técnica de clasificación árboles para el modelamiento logístico - LMT por sus siglas en inglés (Logistic Model Trees) y la técnica de selección de características One R.Patiño Saucedo, Janns Álvaroapplication/pdfspaCorporación Universidad de la CostaMaestría en Ingeniería con Énfasis en SistemasAttribution-NonCommercial-ShareAlike 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Human Activity Recognition (HAR)Machine learningClassificationFeature selectionReconocimiento de Actividades Humanas (HAR)Aprendizaje automáticoClasificaciónSelección de característicasModelo predictivo para el reconocimiento de actividades humanas basado en técnicas de Machine Learning y de selección de característicasTrabajo de grado - MaestríaTextinfo:eu-repo/semantics/masterThesishttp://purl.org/redcol/resource_type/TMinfo:eu-repo/semantics/acceptedVersionAggarwal, J. K., & Ryoo, M. S. (2011). Human activity analysis: A review. ACM Computing Surveys, 43(3). https://doi.org/10.1145/1922649.1922653Aha, D. W., Kibler, D., & Albert, M. K. (1991). Instance-Based Learning Algorithms. Machine Learning, 6(1), 37–66. https://doi.org/10.1023/A:1022689900470Aluja, T. (2001). La minería de datos, entre la estadística y la inteligencia artificial. Questiio, 25(3), 479–498. Retrieved from https://www.scopus.com/inward/record.uri?eid=2-s2.0- 0035573389&partnerID=40&md5=2d59288d728bde451b4bf19d5855e4baAnderson, K. D., Bergés, M. E., Ocneanu, A., Benitez, D., & Moura, J. M. F. (2012). Event detection for Non Intrusive load monitoring. IECON 2012 - 38th Annual Conference on IEEE Industrial Electronics Society, 3312–3317. https://doi.org/10.1109/IECON.2012.6389367Anguita, D., Ghio, A., Oneto, L., Parra, X., & Reyes-Ortiz, J. L. (2013). A public domain dataset for human activity recognition using smartphones. ESANN 2013 Proceedings, 21st European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, (April), 437–442.Aprende Machine Learning - Qué es overfitting y underfitting y cómo solucionarlo. (2017). Retrieved from https://www.aprendemachinelearning.com/que-es-overfitting-y-underfittingy-como-solucionarlo/Berges Gonzalez, M. E. (2010). A Framework for Enabling Energy-Aware Facilities through Minimally-Intrusive Approaches. Carnegie Mellon University, USA.Breiman, L. (1996). Bagging predictors. Machine Learning, 24(2), 123–140. https://doi.org/10.1007/bf00058655Breiman, L. (2001). Random Forests. Machine Learning, 45(1), 5–32. https://doi.org/10.1023/A:1010933404324Camaré, L. J. M. (2008). Aprendizaje Automático a partir de Conjuntos de Datos No Balanceados y su Aplicación en el Diagnóstico y Pronóstico Médico.Cessie, S. Le, & Houwelingen, J. C. Van. (1992). Ridge Estimators in Logistic Regression. Journal of the Royal Statistical Society. Series C (Applied Statistics), 41(1), 191–201. Retrieved from http://www.jstor.org/stable/2347628Chen, L., Hoey, J., Nugent, C. D., Cook, D. J., Yu, Z., & Member, S. (2012). Sensor-Based Activity Recognition. 42(6), 790–808.Chen, L., & Nugent, C. (2009). Ontology-based activity recognition in intelligent pervasive environments. International Journal of Web Information Systems.Cleary, J. G., & Trigg, L. E. (1995). An Instance-based Learner Using an Entropic Distance Measure. Elsevier, 5, 1–14. https://doi.org/10.1016/B978-1-55860-377-6.50022-0Cohen, W. W. (1995). Fast Effective Rule Induction. Differences.Cook, D. J. (2012). Learning setting-generalized activity models for smart spaces. IEEE Intelligent Systems, 27(1), 32–38. https://doi.org/10.1109/MIS.2010.112Cook, D. J., Crandall, A. S., Thomas, B. L., & Krishnan, N. C. (2013). CASAS: A smart home in a box. Computer, 46(7), 62–69. https://doi.org/10.1109/MC.2012.328De-La-Hoz-Franco, E., Ariza-Colpas, P., Quero, J. M., & Espinilla, M. (2018). Sensor-based datasets for human activity recognition - A systematic review of literature. IEEE Access, 6, 59192–59210. https://doi.org/10.1109/ACCESS.2018.2873502Detours, V., Dumont, J. E., Bersini, H., & Maenhaut, C. (2003). Integration and cross-validation of high-throughput gene expression data: Comparing heterogeneous data sets. FEBS Letters, 546(1), 98–102. https://doi.org/10.1016/S0014-5793(03)00522-2Eibe, F., Holmes, G., & Witten, I. H. (2007). Weka 3 - Data Mining with Open Source Machine Learning Software in Java. Retrieved from https://www.cs.waikato.ac.nz/ml/weka/Fayyad, U., Piatetsky-Shapiro, G., & Smyth, P. (1996). From data mining to knowledge discovery in databases. AI Magazine, 17(3), 37–53. Retrieved from https://www.scopus.com/inward/record.uri?eid=2-s2.0- 0002283033&partnerID=40&md5=266faf7bded790e22bc3754ab7e2caa1Frank, E., Hall, M., & Pfahringer, B. (2003). Locally Weighted Naive Bayes. 249–256. Retrieved from http://arxiv.org/abs/1212.2487Frank, E., Wang, Y., Inglis, S., Holmes, G., & Witten, I. H. (1998). Using model trees for classification. Machine Learning, 32(1), 63–76. https://doi.org/10.1023/A:1007421302149Frank, E., & Witten, I. H. (1998). Generating accurate rule sets without global optimization. Proceedings of the Fifteenth International Conference on Machine Learning, 144–151. https://doi.org/1-55860-556-8Freund, Y., & Schapire, R. E. (1996). Experiments with a New Boosting Algorithm. Proceedings of the 13th International Conference on Machine Learning, 148–156. https://doi.org/10.1.1.133.1040Friedman, J., Hastie, T., & Tibshirani, R. (2000). Additive logistic regression: a statistical view of boosting (With discussion and a rejoinder by the authors). The Annals of Statistics, 28(2), 337–407. https://doi.org/10.1214/aos/1016218223Fürnkranz, J., & Widmer, G. (1996). Incremental Reduced Error Pruning. Machine Learning Proceedings 1994, (January), 70–77. https://doi.org/10.1016/b978-1-55860-335-6.50017-9García, J. A. (2016). Líneas de investigación en minería de datos en aplicaciones en ciencia e ingeniería: Estado del arte y perspectivas. Arxiv, Artificial Intelligence (Cs.AI), 1(1609.05401), 1–17. https://doi.org/10.1007/s003350010211Guyon, I., & Elisseeff, A. (2003). An introduction to variable and feature selection. Journal of Machine Learning Research, 3(Mar), 1157–1182.Hall, M. A., & Holmes, G. (2003). Benchmarking Attribute Selection Techniques for Discrete Class Data Mining. IEEE Transactions on Knowledge and Data Engineering, Vol. 15, pp. 1437–1447. https://doi.org/10.1109/TKDE.2003.1245283Herrera, F., & Cano, J. R. (2006). Técnicas de reducción de datos en KDD. El uso de Algoritmos Evolutivos para la Selección de Instancias. Actas Del I Seminario Sobre Sistemas Inteligentes (SSI’06), Universidad Rey Juan Carlos, Madrid (Spain)., 165–181.Holte, R. C. (1993). Very Simple Classification Rules Perform Well on Most Commonly Used Datasets. Machine Learning, 11, 63–91. https://doi.org/10.1023/A:1022631118932Hota, H. S., & Shrivas, A. K. (2014). Decision tree techniques applied on NSL-KDD data and its comparison with various feature selection techniques. In Advanced Computing, Networking and Informatics-Volume 1 (pp. 205–211). https://doi.org/http://doi.org/10.1007/978-3-319- 07353-8KDnuggets. (2014). What main methodology are you using for your analytics, data mining, or data science projects? Poll. Retrieved from https://www.kdnuggets.com/polls/2014/analytics-data-mining-data-sciencemethodology.htmlKim, Won and Choi, Byoung-Ju and Hong, Eui and Kim, Soo-Kyung and Lee, D. (2003). A Taxonomy of Dirty Data. Data Min. Knowl. Discov., 7, 81–99. https://doi.org/10.1023/A:1021564703268Kira, K., & Rendell, L. A. (1992). The Feature Selection Problem: Traditional Methods and a New Algorithm. Proceedings of the Tenth National Conference on Artificial Intelligence, 129– 134. AAAI Press.Kittler, J., Hatef, M., Duin, R. P. W., & Matas, J. (1998). On combining classifiers. IEEE Transactions on Pattern Analysis and Machine Intelligence, 20(3), 226–239. https://doi.org/10.1109/34.667881Kohavi, R. (1995). Wrappers for performance enhancement and obvious decision graphs. (November). Retrieved from https://dl.acm.org/citation.cfm?id=241090Kohavi, Ron, & John, G. H. (1997). Wrappers for feature subset selection. Artificial Intelligence, 97(1), 273–324. https://doi.org/https://doi.org/10.1016/S0004-3702(97)00043-XKohavi, Ron, & Provost, F. (1998). Glossary of Terms. Machine Learning, 2, 271–274. https://doi.org/10.1023/A:1017181826899Kwon, B., Kim, J., & Lee, S. (2017). An enhanced multi-view human action recognition system for virtual training simulator. 2016 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference, APSIPA 2016, 1–4. https://doi.org/10.1109/APSIPA.2016.7820895Landwehr, N., Hall, M., & Frank, E. (2003). Logistic model trees. Lecture Notes in Artificial Intelligence (Subseries of Lecture Notes in Computer Science), 2837, 241–252. https://doi.org/10.1007/s10994-005-0466-3Lara, Ó. D., & Labrador, M. A. (2013). A survey on human activity recognition using wearable sensors. IEEE Communications Surveys and Tutorials, 15(3), 1192–1209. https://doi.org/10.1109/SURV.2012.110112.00192Li, C., Lin, M., Yang, L. T., & Ding, C. (2014). Integrating the enriched feature with machine learning algorithms for human movement and fall detection. The Journal of Supercomputing, 67(3), 854–865. https://doi.org/https://doi.org/10.1007/s11227-013-1056-yLi, R., Lu, B., & McDonald-Maier, K. D. (2015). Cognitive assisted living ambient system: a survey. Digital Communications and Networks, 1(4), 229–252. https://doi.org/10.1016/j.dcan.2015.10.003Lin, T. Y. (2002). Attribute transformations for data mining I: Theoretical explorations. International Journal of Intelligent Systems, 17(2), 213–222.Liu, H., & Motoda, H. (2012). Feature selection for knowledge discovery and data mining (Vol. 454). Springer Science & Business Media.Liu, H., & Motoda, H. (2013). Instance selection and construction for data mining (Vol. 608). Springer Science & Business Media.Liu, H., Motoda, H., Setiono, R., & Zhao, Z. (2010). Feature Selection : An Ever Evolving Frontier in Data Mining. Journal of Machine Learning Research: Workshop and Conference Proceedings 10: The Fourth Workshop on Feature Selection in Data Mining, 4–13.Marks Hall, G. H. (1994). WEKA: Practical Machine Learning Tools and Techniques with JAva Implementations. Retrieved from https://researchcommons.waikato.ac.nz/bitstream/handle/10289/1040/uow-cs-wp-1999-11.pdf?sequence=1&isAllowed=yMemon, M., Wagner, S. R., Pedersen, C. F., Aysha Beevi, F. H., & Hansen, F. O. (2014). Ambient Assisted Living healthcare frameworks, platforms, standards, and quality attributes. Sensors (Switzerland), 14(3), 4312–4341. https://doi.org/10.3390/s140304312Milley, A. H., Seabolt, J. D., & Williams, J. S. (1998). Data Mining and the Case for Sampling. A SAS Institute Best Practices. 1–36. Retrieved from http://sceweb.uhcl.edu/boetticher/ML_DataMining/SAS-SEMMA.pdfMinisterio de Salud y Protección Social. (2017). Boletín de salud mental - Demencia. Retrieved from Ministerio de Salud website: https://www.minsalud.gov.co/sites/rid/Lists/BibliotecaDigital/RIDE/VS/PP/ENT/boletindepresion-marzo-2017.pdfMitra, S., & Acharya, T. (2003). Data Mining: Multimedia, Soft Computing, and Bioinformatics. In Technometrics (Vol. 46). https://doi.org/10.1198/tech.2004.s207Moine, J. Mi., Haedo, A., & Gordillo, S. (2011). Estudio comparativo de metodologías para minería de datos. XIII Workshop de Investigadores En Ciencias de La Computación, 278– 281. Retrieved from http://sedici.unlp.edu.ar/handle/10915/20034Pete, C., Julian, C., Randy, K., Thomas, K., Thomas, R., Colin, S., & Wirth, R. (2000). Crisp-Dm 1.0. CRISP-DM Consortium, 76.PRADENA, P. C. P. A. (2013). VISUALIZACIÓN ESPACIO/TEMPORAL DE EVENTOS NOTICIOSOS (UNIVERSIDAD DE CHILE). https://doi.org/10.1787/9789264197565-3-esProvost, F., & Fawcett, T. (2001). Robust Classification for Imprecise Environments. Machine Learning, 42, 203–231. https://doi.org/10.1023/A:1007601015854Pyle, D. (1999). Data preparation for data mining. Morgan Kaufmann.Quinlan, J. R. (1994). C4.5: Programs for Machine Learning by J. Ross Quinlan. Morgan Kaufmann Publishers, Inc., 1993. In Machine Learning (Vol. 16). https://doi.org/10.1007/BF00993309Read, J., Puurula, A., & Bifet, A. (2015). Multi-label Classification with Meta-Labels. Proceedings - IEEE International Conference on Data Mining, ICDM, 2015-Janua(January), 941–946. https://doi.org/10.1109/ICDM.2014.38Reed, K. L., & Sanderson, S. N. (1999). Concepts of occupational therapy. Retrieved from https://books.google.com.co/books?hl=es&lr=&id=1ZE47g_IRTwC&oi=fnd&pg=PR7&dq =Concepts+of+Occupational+Therapy.&ots=sMksfVhmYK&sig=wlabmL9W01HtUuzpA Raj6BUDtHI#v=onepage&q=Concepts of Occupational Therapy.&f=falseRice, J. A. (2006). Mathematical statistics and data analysis. Cengage Learning.Robnik-Šikonja, M., & Kononenko, I. (1997). An adaptation of {R}elief for attribute estimation in regression. Proceedings of the Fourteenth International Conference on Machine Learning (ICML’97), 5, 296–304. Retrieved from http://dl.acm.org/citation.cfm?id=645526.657141Shahi, A., Woodford, B. J., & Lin, H. (2017). Dynamic real-time segmentation and recognition of activities using a multi-feature windowing approach. Pacific-Asia Conference on Knowledge Discovery and Data Mining, 26–38. https://doi.org/https://doi.org/10.1007/978-3-319- 67274-8_3Shaltout, N., Elhefnawi, M., Rafea, A., & Moustafa, A. (2014). Information Gain as a Feature Selection Method for the Efficient Classification of Influenza Based on Viral Hosts. Lecture Notes in Engineering and Computer Science, 1, 625–631.Singla, G., Cook, D. J., & Schmitter-Edgecombe, M. (2010). Recognizing independent and joint activities among multiple residents in smart environments. Journal of Ambient Intelligence and Humanized Computing, 1(1), 57–63. https://doi.org/10.1007/s12652-009-0007-1T.K. Ho. (1998). The Random Subspace Method for Constructing Decision Forests. IEEE Transactions on Pattern Analysis and Machine Intelligence, 20(8), 832–844. https://doi.org/10.1109/34.709601U.S. National Library of Medicine. (2019). Enfermedades neurodegenerativas: MedlinePlus en español. Retrieved January 13, 2020, from Medlineplus website: https://medlineplus.gov/spanish/degenerativenervediseases.htmlVan Der Malsburg, C. (1986). Frank Rosenblatt: Principles of Neurodynamics: Perceptrons and the Theory of Brain Mechanisms. Brain Theory, (February), 245–248. https://doi.org/10.1007/978-3-642-70911-1_20Van Kasteren, T. L. M., Englebienne, G., & Kröse, B. J. A. (2010). Activity recognition using semi-Markov models on real world smart home datasets. Journal of Ambient Intelligence and Smart Environments, 2(3), 311–325. https://doi.org/10.3233/AIS-2010-0070Weiss, S. M., & Kulikowski, C. A. (1991). Computer systems that learn: classification and prediction methods from statistics, neural nets, machine learning, and expert systems. Morgan Kaufmann Publishers Inc.Witten, I. H., Frank, E., & Hall, M. a. (2011). Data Mining: Practical Machine Learning Tools and Techniques. In Complementary literature None. Retrieved from http://books.google.com/books?id=bDtLM8CODsQC&pgis=1Wolpert, D. H. (1992). Stacked generalization. Neural Networks, 5(2), 241–259. https://doi.org/10.1016/S0893-6080(05)80023-1World Health Organization. (2019). Dementia. Retrieved January 13, 2020, from https://www.who.int/news-room/fact-sheets/detail/dementiaZhang, S., Zhang, C., & Yang, Q. (2003). Data preparation for data mining. Applied Artificial Intelligence, 17(5–6), 375–381. https://doi.org/10.1080/713827180PublicationCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81031https://repositorio.cuc.edu.co/bitstreams/6280126f-aef8-4ca7-9d98-48d6fda8ed34/download934f4ca17e109e0a05eaeaba504d7ce4MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/3f28dddf-9714-41da-8f4f-c701883bee19/downloade30e9215131d99561d40d6b0abbe9badMD53ORIGINALMODELO PREDICTIVO PARA EL RECONOCIMIENTO DE ACTIVIDADES HUMANAS BASADO EN TÉCNICAS DE MACHINE LEARNING Y DE SELECCIÓN DE CARACTERÍSTICAS.pdfMODELO PREDICTIVO PARA EL RECONOCIMIENTO DE ACTIVIDADES HUMANAS BASADO EN TÉCNICAS DE MACHINE LEARNING Y DE SELECCIÓN DE CARACTERÍSTICAS.pdfapplication/pdf1728674https://repositorio.cuc.edu.co/bitstreams/fb911261-c983-4422-bd31-b2c5c8f77a28/download48e3c0c607da980b94f09dbdc02bd5e6MD51THUMBNAILMODELO PREDICTIVO PARA EL RECONOCIMIENTO DE ACTIVIDADES HUMANAS BASADO EN TÉCNICAS DE MACHINE LEARNING Y DE SELECCIÓN DE CARACTERÍSTICAS.pdf.jpgMODELO PREDICTIVO PARA EL RECONOCIMIENTO DE ACTIVIDADES HUMANAS BASADO EN TÉCNICAS DE MACHINE LEARNING Y DE SELECCIÓN DE CARACTERÍSTICAS.pdf.jpgimage/jpeg29819https://repositorio.cuc.edu.co/bitstreams/6af19f16-0a22-4448-80f3-319c0c98d6b3/download1345c37301a6c3a184cba67284a556e4MD54TEXTMODELO PREDICTIVO PARA EL RECONOCIMIENTO DE ACTIVIDADES HUMANAS BASADO EN TÉCNICAS DE MACHINE LEARNING Y DE SELECCIÓN DE CARACTERÍSTICAS.pdf.txtMODELO PREDICTIVO PARA EL RECONOCIMIENTO DE ACTIVIDADES HUMANAS BASADO EN TÉCNICAS DE MACHINE LEARNING Y DE SELECCIÓN DE CARACTERÍSTICAS.pdf.txttext/plain145821https://repositorio.cuc.edu.co/bitstreams/d9cc324c-1c20-4e74-9778-328f412adfce/download9d05f1a80def09f4b0ad354a3ad0f00cMD5511323/8249oai:repositorio.cuc.edu.co:11323/82492024-09-17 12:46:32.168http://creativecommons.org/licenses/by-nc-sa/4.0/Attribution-NonCommercial-ShareAlike 4.0 Internationalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA==