On An Operational Matrix Method Based On Generalized Bernoulli Polynomials Of Level M
An operational matrix method based on generalized Bernoulli polynomials of level m is introduced and analyzed in order to obtain numerical solutions of initial value problems. The most innovative component of our method comes, essentially, from the introduction of the generalized Bernoulli polynomia...
- Autores:
-
Quintana, Yamilet
Ramirez Quiroga, William David
Urieles Guerrero, Alejandro
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2018
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/1060
- Acceso en línea:
- https://hdl.handle.net/11323/1060
https://repositorio.cuc.edu.co/
- Palabra clave:
- Bernoulli Polynomials
Galerkin Method
Generalized Bernoulli Polynomials Of Level M
Ill-Conditioned Linear Systems
Operational Matrix
- Rights
- openAccess
- License
- Atribución – No comercial – Compartir igual
id |
RCUC2_702897939175d7ef2a950c69630bdebe |
---|---|
oai_identifier_str |
oai:repositorio.cuc.edu.co:11323/1060 |
network_acronym_str |
RCUC2 |
network_name_str |
REDICUC - Repositorio CUC |
repository_id_str |
|
dc.title.eng.fl_str_mv |
On An Operational Matrix Method Based On Generalized Bernoulli Polynomials Of Level M |
title |
On An Operational Matrix Method Based On Generalized Bernoulli Polynomials Of Level M |
spellingShingle |
On An Operational Matrix Method Based On Generalized Bernoulli Polynomials Of Level M Bernoulli Polynomials Galerkin Method Generalized Bernoulli Polynomials Of Level M Ill-Conditioned Linear Systems Operational Matrix |
title_short |
On An Operational Matrix Method Based On Generalized Bernoulli Polynomials Of Level M |
title_full |
On An Operational Matrix Method Based On Generalized Bernoulli Polynomials Of Level M |
title_fullStr |
On An Operational Matrix Method Based On Generalized Bernoulli Polynomials Of Level M |
title_full_unstemmed |
On An Operational Matrix Method Based On Generalized Bernoulli Polynomials Of Level M |
title_sort |
On An Operational Matrix Method Based On Generalized Bernoulli Polynomials Of Level M |
dc.creator.fl_str_mv |
Quintana, Yamilet Ramirez Quiroga, William David Urieles Guerrero, Alejandro |
dc.contributor.author.spa.fl_str_mv |
Quintana, Yamilet Ramirez Quiroga, William David Urieles Guerrero, Alejandro |
dc.subject.eng.fl_str_mv |
Bernoulli Polynomials Galerkin Method Generalized Bernoulli Polynomials Of Level M Ill-Conditioned Linear Systems Operational Matrix |
topic |
Bernoulli Polynomials Galerkin Method Generalized Bernoulli Polynomials Of Level M Ill-Conditioned Linear Systems Operational Matrix |
description |
An operational matrix method based on generalized Bernoulli polynomials of level m is introduced and analyzed in order to obtain numerical solutions of initial value problems. The most innovative component of our method comes, essentially, from the introduction of the generalized Bernoulli polynomials of level m, which generalize the classical Bernoulli polynomials. Computational results demonstrate that such operational matrix method can lead to very ill-conditioned matrix equations. |
publishDate |
2018 |
dc.date.accessioned.none.fl_str_mv |
2018-11-15T20:31:10Z |
dc.date.available.none.fl_str_mv |
2018-11-15T20:31:10Z |
dc.date.issued.none.fl_str_mv |
2018-09-01 |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
acceptedVersion |
dc.identifier.issn.spa.fl_str_mv |
00080624 |
dc.identifier.uri.spa.fl_str_mv |
https://hdl.handle.net/11323/1060 |
dc.identifier.instname.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.identifier.reponame.spa.fl_str_mv |
REDICUC - Repositorio CUC |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.cuc.edu.co/ |
identifier_str_mv |
00080624 Corporación Universidad de la Costa REDICUC - Repositorio CUC |
url |
https://hdl.handle.net/11323/1060 https://repositorio.cuc.edu.co/ |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.rights.spa.fl_str_mv |
Atribución – No comercial – Compartir igual |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Atribución – No comercial – Compartir igual http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.publisher.spa.fl_str_mv |
Calcolo |
institution |
Corporación Universidad de la Costa |
bitstream.url.fl_str_mv |
https://repositorio.cuc.edu.co/bitstreams/c8148d4e-6b6f-479a-b633-c79744eb2d1e/download https://repositorio.cuc.edu.co/bitstreams/69f6d3dd-8ef7-43de-8a48-425544c5ca5c/download https://repositorio.cuc.edu.co/bitstreams/1ebe1a3b-4b3a-4ff2-96bc-cf7d438fff6e/download https://repositorio.cuc.edu.co/bitstreams/7c17094d-e983-45b3-a9e1-042615a3a4c0/download |
bitstream.checksum.fl_str_mv |
20ed4c73d9659ae82b1d05c9d67d5608 8a4605be74aa9ea9d79846c1fba20a33 9df263d9b1a77fcfda0695e6d824fa09 4134cb8dab722f960798e2a026d1029e |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad de la Costa CUC |
repository.mail.fl_str_mv |
repdigital@cuc.edu.co |
_version_ |
1828166900452950016 |
spelling |
Quintana, YamiletRamirez Quiroga, William DavidUrieles Guerrero, Alejandro2018-11-15T20:31:10Z2018-11-15T20:31:10Z2018-09-0100080624https://hdl.handle.net/11323/1060Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/An operational matrix method based on generalized Bernoulli polynomials of level m is introduced and analyzed in order to obtain numerical solutions of initial value problems. The most innovative component of our method comes, essentially, from the introduction of the generalized Bernoulli polynomials of level m, which generalize the classical Bernoulli polynomials. Computational results demonstrate that such operational matrix method can lead to very ill-conditioned matrix equations.Quintana, Yamilet-adcedc58-9a26-45ca-ba1f-6b0f837871d8-600Ramirez Quiroga, William David-bf4bc42b-26df-4138-a148-817eeed985d3-600Urieles Guerrero, Alejandro-86e8e84b-825d-4379-8d1a-137aa1342376-600engCalcoloAtribución – No comercial – Compartir igualinfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Bernoulli PolynomialsGalerkin MethodGeneralized Bernoulli Polynomials Of Level MIll-Conditioned Linear SystemsOperational MatrixOn An Operational Matrix Method Based On Generalized Bernoulli Polynomials Of Level MArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersionPublicationORIGINALOn an operational matrix method.pdfOn an operational matrix method.pdfapplication/pdf241725https://repositorio.cuc.edu.co/bitstreams/c8148d4e-6b6f-479a-b633-c79744eb2d1e/download20ed4c73d9659ae82b1d05c9d67d5608MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.cuc.edu.co/bitstreams/69f6d3dd-8ef7-43de-8a48-425544c5ca5c/download8a4605be74aa9ea9d79846c1fba20a33MD52THUMBNAILOn an operational matrix method.pdf.jpgOn an operational matrix method.pdf.jpgimage/jpeg48508https://repositorio.cuc.edu.co/bitstreams/1ebe1a3b-4b3a-4ff2-96bc-cf7d438fff6e/download9df263d9b1a77fcfda0695e6d824fa09MD54TEXTOn an operational matrix method.pdf.txtOn an operational matrix method.pdf.txttext/plain46227https://repositorio.cuc.edu.co/bitstreams/7c17094d-e983-45b3-a9e1-042615a3a4c0/download4134cb8dab722f960798e2a026d1029eMD5511323/1060oai:repositorio.cuc.edu.co:11323/10602024-09-17 14:23:47.321open.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |