On An Operational Matrix Method Based On Generalized Bernoulli Polynomials Of Level M

An operational matrix method based on generalized Bernoulli polynomials of level m is introduced and analyzed in order to obtain numerical solutions of initial value problems. The most innovative component of our method comes, essentially, from the introduction of the generalized Bernoulli polynomia...

Full description

Autores:
Quintana, Yamilet
Ramirez Quiroga, William David
Urieles Guerrero, Alejandro
Tipo de recurso:
Article of journal
Fecha de publicación:
2018
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/1060
Acceso en línea:
https://hdl.handle.net/11323/1060
https://repositorio.cuc.edu.co/
Palabra clave:
Bernoulli Polynomials
Galerkin Method
Generalized Bernoulli Polynomials Of Level M
Ill-Conditioned Linear Systems
Operational Matrix
Rights
openAccess
License
Atribución – No comercial – Compartir igual
id RCUC2_702897939175d7ef2a950c69630bdebe
oai_identifier_str oai:repositorio.cuc.edu.co:11323/1060
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.eng.fl_str_mv On An Operational Matrix Method Based On Generalized Bernoulli Polynomials Of Level M
title On An Operational Matrix Method Based On Generalized Bernoulli Polynomials Of Level M
spellingShingle On An Operational Matrix Method Based On Generalized Bernoulli Polynomials Of Level M
Bernoulli Polynomials
Galerkin Method
Generalized Bernoulli Polynomials Of Level M
Ill-Conditioned Linear Systems
Operational Matrix
title_short On An Operational Matrix Method Based On Generalized Bernoulli Polynomials Of Level M
title_full On An Operational Matrix Method Based On Generalized Bernoulli Polynomials Of Level M
title_fullStr On An Operational Matrix Method Based On Generalized Bernoulli Polynomials Of Level M
title_full_unstemmed On An Operational Matrix Method Based On Generalized Bernoulli Polynomials Of Level M
title_sort On An Operational Matrix Method Based On Generalized Bernoulli Polynomials Of Level M
dc.creator.fl_str_mv Quintana, Yamilet
Ramirez Quiroga, William David
Urieles Guerrero, Alejandro
dc.contributor.author.spa.fl_str_mv Quintana, Yamilet
Ramirez Quiroga, William David
Urieles Guerrero, Alejandro
dc.subject.eng.fl_str_mv Bernoulli Polynomials
Galerkin Method
Generalized Bernoulli Polynomials Of Level M
Ill-Conditioned Linear Systems
Operational Matrix
topic Bernoulli Polynomials
Galerkin Method
Generalized Bernoulli Polynomials Of Level M
Ill-Conditioned Linear Systems
Operational Matrix
description An operational matrix method based on generalized Bernoulli polynomials of level m is introduced and analyzed in order to obtain numerical solutions of initial value problems. The most innovative component of our method comes, essentially, from the introduction of the generalized Bernoulli polynomials of level m, which generalize the classical Bernoulli polynomials. Computational results demonstrate that such operational matrix method can lead to very ill-conditioned matrix equations.
publishDate 2018
dc.date.accessioned.none.fl_str_mv 2018-11-15T20:31:10Z
dc.date.available.none.fl_str_mv 2018-11-15T20:31:10Z
dc.date.issued.none.fl_str_mv 2018-09-01
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_6501
status_str acceptedVersion
dc.identifier.issn.spa.fl_str_mv 00080624
dc.identifier.uri.spa.fl_str_mv https://hdl.handle.net/11323/1060
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
identifier_str_mv 00080624
Corporación Universidad de la Costa
REDICUC - Repositorio CUC
url https://hdl.handle.net/11323/1060
https://repositorio.cuc.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.rights.spa.fl_str_mv Atribución – No comercial – Compartir igual
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Atribución – No comercial – Compartir igual
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.publisher.spa.fl_str_mv Calcolo
institution Corporación Universidad de la Costa
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/c8148d4e-6b6f-479a-b633-c79744eb2d1e/download
https://repositorio.cuc.edu.co/bitstreams/69f6d3dd-8ef7-43de-8a48-425544c5ca5c/download
https://repositorio.cuc.edu.co/bitstreams/1ebe1a3b-4b3a-4ff2-96bc-cf7d438fff6e/download
https://repositorio.cuc.edu.co/bitstreams/7c17094d-e983-45b3-a9e1-042615a3a4c0/download
bitstream.checksum.fl_str_mv 20ed4c73d9659ae82b1d05c9d67d5608
8a4605be74aa9ea9d79846c1fba20a33
9df263d9b1a77fcfda0695e6d824fa09
4134cb8dab722f960798e2a026d1029e
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1828166900452950016
spelling Quintana, YamiletRamirez Quiroga, William DavidUrieles Guerrero, Alejandro2018-11-15T20:31:10Z2018-11-15T20:31:10Z2018-09-0100080624https://hdl.handle.net/11323/1060Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/An operational matrix method based on generalized Bernoulli polynomials of level m is introduced and analyzed in order to obtain numerical solutions of initial value problems. The most innovative component of our method comes, essentially, from the introduction of the generalized Bernoulli polynomials of level m, which generalize the classical Bernoulli polynomials. Computational results demonstrate that such operational matrix method can lead to very ill-conditioned matrix equations.Quintana, Yamilet-adcedc58-9a26-45ca-ba1f-6b0f837871d8-600Ramirez Quiroga, William David-bf4bc42b-26df-4138-a148-817eeed985d3-600Urieles Guerrero, Alejandro-86e8e84b-825d-4379-8d1a-137aa1342376-600engCalcoloAtribución – No comercial – Compartir igualinfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Bernoulli PolynomialsGalerkin MethodGeneralized Bernoulli Polynomials Of Level MIll-Conditioned Linear SystemsOperational MatrixOn An Operational Matrix Method Based On Generalized Bernoulli Polynomials Of Level MArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersionPublicationORIGINALOn an operational matrix method.pdfOn an operational matrix method.pdfapplication/pdf241725https://repositorio.cuc.edu.co/bitstreams/c8148d4e-6b6f-479a-b633-c79744eb2d1e/download20ed4c73d9659ae82b1d05c9d67d5608MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.cuc.edu.co/bitstreams/69f6d3dd-8ef7-43de-8a48-425544c5ca5c/download8a4605be74aa9ea9d79846c1fba20a33MD52THUMBNAILOn an operational matrix method.pdf.jpgOn an operational matrix method.pdf.jpgimage/jpeg48508https://repositorio.cuc.edu.co/bitstreams/1ebe1a3b-4b3a-4ff2-96bc-cf7d438fff6e/download9df263d9b1a77fcfda0695e6d824fa09MD54TEXTOn an operational matrix method.pdf.txtOn an operational matrix method.pdf.txttext/plain46227https://repositorio.cuc.edu.co/bitstreams/7c17094d-e983-45b3-a9e1-042615a3a4c0/download4134cb8dab722f960798e2a026d1029eMD5511323/1060oai:repositorio.cuc.edu.co:11323/10602024-09-17 14:23:47.321open.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=