Planificación energética para el ahorro de energía eléctrica en el proceso de formación en una fábrica de baterías

The objective of this research is to improve the energy performance in the electricity consumption for the battery charging process in a Colombian factory, considering energy planning strategies according to the procedure established by the standard ISO 50001. There were identified areas with its si...

Full description

Autores:
Noriega Angarita, Eliana Maria
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2018
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
spa
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/73
Acceso en línea:
https://hdl.handle.net/11323/73
https://repositorio.cuc.edu.co/
Palabra clave:
Planificación energética
Fábrica de baterías
Ahorro de energía
ISO 50001
Energy planning
Battery factory
Energy savings
Rights
openAccess
License
Atribución – No comercial – Compartir igual
id RCUC2_6fcfcd2441b4d7276036f4c3094dd68a
oai_identifier_str oai:repositorio.cuc.edu.co:11323/73
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.eng.fl_str_mv Planificación energética para el ahorro de energía eléctrica en el proceso de formación en una fábrica de baterías
title Planificación energética para el ahorro de energía eléctrica en el proceso de formación en una fábrica de baterías
spellingShingle Planificación energética para el ahorro de energía eléctrica en el proceso de formación en una fábrica de baterías
Planificación energética
Fábrica de baterías
Ahorro de energía
ISO 50001
Energy planning
Battery factory
Energy savings
title_short Planificación energética para el ahorro de energía eléctrica en el proceso de formación en una fábrica de baterías
title_full Planificación energética para el ahorro de energía eléctrica en el proceso de formación en una fábrica de baterías
title_fullStr Planificación energética para el ahorro de energía eléctrica en el proceso de formación en una fábrica de baterías
title_full_unstemmed Planificación energética para el ahorro de energía eléctrica en el proceso de formación en una fábrica de baterías
title_sort Planificación energética para el ahorro de energía eléctrica en el proceso de formación en una fábrica de baterías
dc.creator.fl_str_mv Noriega Angarita, Eliana Maria
dc.contributor.advisor.spa.fl_str_mv Cabello Eras, Juan José
dc.contributor.author.spa.fl_str_mv Noriega Angarita, Eliana Maria
dc.contributor.coasesor.spa.fl_str_mv Hernández Herrera, Hernán
dc.subject.eng.fl_str_mv Planificación energética
Fábrica de baterías
Ahorro de energía
ISO 50001
topic Planificación energética
Fábrica de baterías
Ahorro de energía
ISO 50001
Energy planning
Battery factory
Energy savings
dc.subject.none.fl_str_mv Energy planning
Battery factory
Energy savings
description The objective of this research is to improve the energy performance in the electricity consumption for the battery charging process in a Colombian factory, considering energy planning strategies according to the procedure established by the standard ISO 50001. There were identified areas with its significant uses of energy consumptions, an energy review is carried out which starts with the application of work group techniques, measurements and an energy performance indicator is designed and implemented in order to systematically evaluate the efficiency in the battery charging process. Also, it was developed a statistical analysis used to identify parameters with a significant influence in the process, a group of actions are proposed and applied at the end of 2015. During the first semester of 2016 an evaluation is realized providing successful results with a total energy saving of 201.934 kWh (3.48%), equivalent to $81.783.675 COP.
publishDate 2018
dc.date.accessioned.none.fl_str_mv 2018-11-02T20:56:24Z
dc.date.available.none.fl_str_mv 2018-11-02T20:56:24Z
dc.date.issued.none.fl_str_mv 2018-04-01
dc.type.spa.fl_str_mv Trabajo de grado - Pregrado
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TP
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_7a1f
status_str acceptedVersion
dc.identifier.uri.spa.fl_str_mv https://hdl.handle.net/11323/73
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
url https://hdl.handle.net/11323/73
https://repositorio.cuc.edu.co/
identifier_str_mv Corporación Universidad de la Costa
REDICUC - Repositorio CUC
dc.language.iso.none.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Abdelaziz, E. A., Saidur, R., & Mekhilef, S. (2011). A review on energy saving strategies in industrial sector. Renewable and Sustainable Energy Reviews, 15(1), 150–168. doi:10.1016/j.rser.2010.09.003
Alan P. Rossiter. (2015). Energy management and efficienty for the process industries.
ALAVA INGENIEROS. (2011). Guía de termografía para mantenimiento predictivo. Retrieved from http://www.alava-ing.es/repositorio/6769/pdf/3505/2/guia-de-termografia-para-mantenimiento-predictivo.pdf
Avella Campos, J. C., Caicedo Prías, O. F., Oqueña Quispe, E. C., Medina Vidal, J. R., & Figueroa Lora, E. D. (2008). Modelo de gestión energética para el sector productivo nacional. Prospectiva, 6(30), 18–31. Retrieved from https://www.uac.edu.co/images/stories/publicaciones/revistas_cientificas/prospectiva/volumen-6-no-1/
Azenha, M., Faria, R., & Figueiras, H. (2011). Thermography as a technique for monitoring early age temperatures of hardening concrete. Construction and Building Materials, 25(11), 4232–4240. doi:10.1016/j.conbuildmat.2011.04.065
Bunse, K., Vodicka, M., Schönsleben, P., Brülhart, M., & Ernst, F. O. (2011). Integrating energy efficiency performance in production management - Gap analysis between industrial needs and scientific literature. Journal of Cleaner Production, 19(6-7), 667–679. doi:10.1016/j.jclepro.2010.11.011
Cabello Eras, J. J., Sagastume Gutiérrez, A., García Lorenzo, D., Cogollos Martínez, J. B., Hens, L., & Vandecasteele, C. (2015). Bridging universities and industry through cleaner production activities. Experiences from the Cleaner Production Center at the University of Cienfuegos, Cuba. Journal of Cleaner Production, 108(2015), 1–10. doi:10.1016/j.jclepro.2014.11.063
Cabello, J., Sousa Santos, V., Sagastume Gutiérrez, A., Guerra Plasencia, M. Á., Haeseldonckx, D., & Vandecasteele, C. (2016). Tools to improve forecasting and control of the electricity consumption in hotels. Journal of Cleaner Production, 137, 803–812. doi:10.1016/j.jclepro.2016.07.192
Cagno, E., & Trianni, A. (2014). Evaluating the barriers to specific industrial energy efficiency measures: An exploratory study in small and medium-sized enterprises. Journal of Cleaner Production, 82, 70–83. doi:10.1016/j.jclepro.2014.06.057
Cataliotti, A., Genduso, F., Raciti, A., Member, S., & Galluzzo, G. R. (2007). Generalized PWM – VSI Control Algorithm Based on a Universal Duty-Cycle Expression : Theoretical Analysis , Simulation Results , and Experimental Validations, 54(3), 1569–1580.
Chan, Y., & Kantamaneni, R. (2015). Study on Energy Efficiency and Energy Saving Potential in Industry and on Possible Policy Mechanisms. London: ICF Consulting.
Chih-Chiang Hua, & Meng-Yu Lin. (2000). A study of charging control of lead-acid battery for electric vehicles. ISIE’2000. Proceedings of the 2000 IEEE International Symposium on Industrial Electronics (Cat. No.00TH8543), 1, 135–140. doi:10.1109/ISIE.2000.930500
Christoffersen, L. B., Larsen, A., & Togeby, M. (2006). Empirical analysis of energy management in Danish industry. Journal of Cleaner Production, 14(5), 516–526. doi:10.1016/j.jclepro.2005.03.017
Climaco-Pinto, R., Barros, A. S., Locquet, N., Schmidtke, L., & Rutledge, D. N. (2009). Improving the detection of significant factors using ANOVA-PCA by selective reduction of residual variability. Analytica Chimica Acta, 653(2), 131–142. doi:10.1016/j.aca.2009.09.016
Coleman, M., Hurley, W. G., & Lee, C. K. (2008). An Improved Battery Characterization Method Using a Two-Pulse Load Test, 23(2), 708–713. doi:10.1109/TEC.2007.914329
Dranezt. (n.d.). User ’ s Guide, (September 2006).
Duarte Forero, J., Guillín Estrada, W., & Sánchez Guerrero, J. (2018). Desarrollo de una metodología para la predicción del volumen real en la cámara de combustión de motores diésel utilizando elementos finitos. INGE CUC, 14(1), 122-132. https://doi.org/10.17981/ingecuc.14.1.2018.11
EnerSys. (2006). APPLICATION Genesis TM NP and NPX Series Genesis NP & NPX Series Application Manual.
European Commission (EC). (2014). Communication from the commission to the European parliament and the council energy efficiency and its contribution to energy security and the 2030 Framework for climate and energy policy. Brussels.
Fawkes, S., Oung, K., & Thorpe, D. (2016). Best Practices and Case Studies for Industrial Energy Efficiency Improvement – An introduction for policy makers (Copenhagen). Copenhagen.
Fluke. (2014). Nuevos productos de Fluke.
García Samper, M. A., Guiliany, J. G., & Eras, J. C. (2017). Eficiencia En El Uso De Los Recursos Y Producción Más Limpia (Recp) Para La Competitividad Del Sector Hotelero. Revista de Gestão Social E Ambiental, 11(2), 18. doi:10.24857/rgsa.v11i2.1252
García-León, R., Echavez Díaz, R., & Flórez Solano, E. (2018). Análisis termodinámico de un disco de freno automotriz con pilares de ventilación tipo NACA 66-209. INGE CUC, 14(2), 9-18. https://doi.org/10.17981/ingecuc.14.2.2018.01
Giacone, E., & Mancò, S. (2012). Energy efficiency measurement in industrial processes. Energy, 38(1), 331–345. doi:10.1016/j.energy.2011.11.054
Gielen, D., & Taylor, P. (2009). Indicators for industrial energy efficiency in India. Energy, 34(8), 962–969. doi:10.1016/j.energy.2008.11.008
Glowacz, A., & Glowacz, Z. (2017). Diagnosis of the three-phase induction motor using thermal imaging. Infrared Physics and Technology, 81, 7–16. doi:10.1016/j.infrared.2016.12.003
Hens, L., Block, C., Cabello-Eras, J. J., Sagastume-Gutierez, A., Garcia-Lorenzo, D., Chamorro, C., … Vandecasteele, C. (2018). On the evolution of “Cleaner Production” as a concept and a practice. Journal of Cleaner Production, 172, 3323–3333. doi:10.1016/j.jclepro.2017.11.082
Hens, L., Cabello-Eras, J. J., Sagastume-Guti??rez, A., Garcia-Lorenzo, D., Cogollos-Martinez, J. B., & Vandecasteele, C. (2017). University???industry interaction on cleaner production. The case of the Cleaner Production Center at the University of Cienfuegos in Cuba, a country in transition. Journal of Cleaner Production, 142, 63–68. doi:10.1016/j.jclepro.2015.10.105
Hou, S. J., Onishi, Y., Minami, S., Ikeda, H., Sugawara, M., & Kozawa, A. (2005). Charging and Discharging Method of Lead Acid Batteries Based on Internal Voltage Control. Journal of Asian Electric Vehicles, 3(1), 733–737. doi:10.4130/jaev.3.733
ISO. (2011). Traducción oficial Official translation Traduction officielle ISO. Order A Journal On The Theory Of Ordered Sets And Its Applications, 2009, 58.
ISO. (2014). ISO 50004: Energy management systems - Guidance for the implementation. maintenance an d improvement of an energy management system, 2014(50), 1–45.
Jossen, A., Garche, J., & Sauer, D. U. (2004). Operation conditions of batteries in PV applications. Solar Energy, 76(6), 759–769. doi:10.1016/j.solener.2003.12.013
Jung, J., Zhang, L., & Zhang, J. (2015). Lead-Acid Battery Technologies: Fundamentals, Materials, and Applications. doi:https://doi.org/10.1201/b18665-7
Jung, J., Zhang, L., & Zhang, J. (2016). Lead-acid Battery TechnoLogies. Fundamentals, Materials and Applications (CRC Press). Florida.
Jung, J., Zhang, L., & Zhang, J. (2016). Lead-acid Battery TechnoLogies. Fundamentals, Materials and Applications (CRC Press). Florida.
Kaygusuz, K. (2012). Energy for sustainable development: A case of developing countries. Renewable and Sustainable Energy Reviews, 16(2), 1116–1126. doi:10.1016/j.rser.2011.11.013
Kiessling, R. (1992). Lead Acid Battery Formation Techniques. Shelton.
Laborda, A., Robinson, A., Wang, S., Zhang, Y., & Reed, P. (2018). Fatigue assessment of multilayer coatings using lock-in thermography. Materials and Design, 141, 361–373. doi:10.1016/j.matdes.2018.01.004
Lin, B., Recke, B., Knudsen, J. K. H., & Jørgensen, S. B. (2007). A systematic approach for soft sensor development. Computers and Chemical Engineering, 31(5-6), 419–425. doi:10.1016/j.compchemeng.2006.05.030
Luo, X., Lu, Z., & Xu, X. (2014). Non-parametric kernel estimation for the ANOVA decomposition and sensitivity analysis. Reliability Engineering and System Safety, 130, 140–148. doi:10.1016/j.ress.2014.06.002
M. Nuñez, J. Correa, G. Herrera, P. Gómez, S. Morón & N. Fonseca “Study of Perceptions on Clean and SelfSustainable Energy”, IJMSOR, vol. 3, no. 1, pp. 11-15, 2018. https://doi.org/10.17981/ijmsor.03.01.02
Matson, N. E., & Piette, M. A. (2005). High Performance Commercial Building Systems: Review of California and National Benchmarking Methods. Working Draft. Berkeley.
Miloloza, I. (2013). Tendencies of Development of Global Battery Market with Emphasis on Republic of Croatia. Interdisciplinary Description of Complex Systems, 11(3), 318–333. doi:10.7906/indecs.11.3.3
Minipa. (n.d.). Digital Power Meter DIGITAL POWER METER Digital Power Meter, (Model 66202).
Morando, S., Jemei, S., Hissel, D., Gouriveau, R., & Zerhouni, N. (2017). ANOVA method applied to proton exchange membrane fuel cell ageing forecasting using an echo state network. Mathematics and Computers in Simulation, 131, 283–294. doi:10.1016/j.matcom.2015.06.009
Nishimura, K., Takasaki, T., & Sakai, T. (2013). Introduction of large-sized nickel-metal hydride battery GIGACELL?? for industrial applications. Journal of Alloys and Compounds, 580(SUPPL1), 353–358. doi:10.1016/j.jallcom.2013.01.166
Nuñez, M., Correa, J., Herrera, G., Gómez, P., Morón, S., & Fonseca, N. (2018). Estudio de percepción sobre energía limpia y auto sostenible. IJMSOR: International Journal of Management Science & Operation Research, 3(1), 11-15. Recuperado a partir de http://ijmsoridi.com/index.php/ijmsor/article/view/89
Ordóñez, C. P. (2011). Estudio de baterías para vehículos eléctricos. Enterprise.Uc3M.Es, 1–105. Retrieved from http://enterprise.uc3m.es/redmine/files/101115153006_CV_MDdelamata.pdf\nhttp://e-archivo.uc3m.es/handle/10016/11805
Ospino-Castro, A. (2010). Análisis del potencial energético solar en la Región Caribe para el diseño de un sistema fotovoltaico. INGECUC, 6(6), 0–8.
Palamutcu, S. (2010). Electric energy consumption in the cotton textile processing stages. Energy, 35(7), 2945–2952. doi:10.1016/j.energy.2010.03.029
Pavlov, D. (2011). and Technology and its Influence on the Product.
Pavlov, D. (2011). Lead-acid batteries: Science and technology. A handbook of lead-acid battery technology and its Influence on the product. Ámsterdam.
Payne, J. (2001). Communication; Applications.
Picazo-Ródenas, M. J., Royo, R., Antonino-Daviu, J., & Roger-Folch, J. (2013). Use of the infrared data for heating curve computation in induction motors: Application to fault diagnosis. Engineering Failure Analysis, 35, 178–192. doi:10.1016/j.engfailanal.2013.01.018
Ponce-Silva, M., & Moreno-Basaldúa, E. A. (2015). Alternative definitions of energy for power meters in non-sinusoidal systems. International Journal of Electrical Power and Energy Systems, 64, 1206–1213. doi:10.1016/j.ijepes.2014.09.019
Posch, A., Brudermann, T., Braschel, N., & Gabriel, M. (2015). Strategic energy management in energy-intensive enterprises: A quantitative analysis of relevant factors in the Austrian paper and pulp industry. Journal of Cleaner Production, 90, 291–299. doi:10.1016/j.jclepro.2014.11.044
Prout, L. (1993). Aspects of lead / acid battery technology 4. Plate Formation. Journal of Power Sources, 41(1), 117–138. doi:10.1016/0378-7753(93)85012-D
Putois, F. (1995). Market for nickel-cadmium batteries. Journal of Power Sources, 57(1-2), 67–70. doi:10.1016/0378-7753(95)02243-0
Report Buyer Ltd. (2015). Global and China Lead-acid Battery Industry Report, 2015-2018.
Rodríguez, L., Castellano, M., & Caridad, M. (2017). Planificación estratégica de recursos humanos en empresas de consumo masivo. IJMSOR: International Journal of Management Science & Operation Research, 2(1), 38-43. Recuperado a partir de http://ijmsoridi.com/index.php/ijmsor/article/view/84
Rudberg, M., Waldemarsson, M., & Lidestam, H. (2013). Strategic perspectives on energy management: A case study in the process industry. Applied Energy, 104, 487–496. doi:10.1016/j.apenergy.2012.11.027
Rydh, C. J. (1999). Environmental assessment of vanadium redox and lead-acid batteries for stationary energy storage. Journal of Power Sources, 80(1), 21–29. doi:10.1016/S0378-7753(98)00249-3
Rydh, C. J., & Sandén, B. A. (2005). Energy analysis of batteries in photovoltaic systems. Part I: Performance and energy requirements. Energy Conversion and Management, 46(11-12), 1957–1979. doi:10.1016/j.enconman.2004.10.003
Scrosati, B., & Garche, J. (2010). Lithium batteries: Status, prospects and future. Journal of Power Sources, 195(9), 2419–2430. doi:10.1016/j.jpowsour.2009.11.048
Soroko, M., & Howell, K. (2018). Infrared Thermography: Current Applications in Equine Medicine. Journal of Equine Veterinary Science, 60, 90–96.e2. doi:10.1016/j.jevs.2016.11.002
Soto, J., Borroto, A., Bah, M. A., González, R., Curbelo, M., & Díaz, A. M. (2014). Diseño y aplicación de un procedimiento para la planificación energética según la NC-ISO 50001: 2011. Ingeniería Energética, XXXV(1), 38–47.
Sullivan, J. L., & Gaines, L. (2012). Status of life cycle inventories for batteries. Energy Conversion and Management, 58, 134–148. doi:10.1016/j.enconman.2012.01.001
Tang, K., Congedo, P. M., & Abgrall, R. (2016). Adaptive surrogate modeling by ANOVA and sparse polynomial dimensional decomposition for global sensitivity analysis in fluid simulation. Journal of Computational Physics, 314, 557–589. doi:10.1016/j.jcp.2016.03.026
Vine, E. (2005). An international survey of the energy service company ESCO industry. Energy Policy, 33(5), 691–704. doi:10.1016/j.enpol.2003.09.014
Weinert, N., Chiotellis, S., & Seliger, G. (2011). Methodology for planning and operating energy-efficient production systems. CIRP Annals - Manufacturing Technology, 60(1), 41–44. doi:10.1016/j.cirp.2011.03.015
Wong, Y. S., Hurley, W. G., & Wölfle, W. H. (2008). Charge regimes for valve-regulated lead-acid batteries: Performance overview inclusive of temperature compensation. Journal of Power Sources, 183(2), 783–791. doi:10.1016/j.jpowsour.2008.05.069
Xu, C., Xie, J., Huang, W., Chen, G., & Gong, X. (2018). Improving defect visibility in square pulse thermography of metallic components using correlation analysis. Mechanical Systems and Signal Processing, 103, 162–173. doi:10.1016/j.ymssp.2017.09.030
Yuasa Battery Inc. (2009). NP / NPH / NPX SERIES SEALED RECHARGEABLE LEAD-ACID BATTERIES.
Y. De la Peña, G. Bordeth; H. Campo; & U. Murillo “Clean Energies: An Opportunity to Save the Planet”, IJMSOR, vol. 3, no. 1, pp. 21-25, 2018. https://doi.org/10.17981/ijmsor.03.01.04
dc.rights.spa.fl_str_mv Atribución – No comercial – Compartir igual
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Atribución – No comercial – Compartir igual
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.publisher.spa.fl_str_mv Universidad de la Costa
dc.publisher.program.spa.fl_str_mv Maestría en Ingeniería
institution Corporación Universidad de la Costa
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/13758ffd-ce89-4460-b79f-9aaea16781b5/download
https://repositorio.cuc.edu.co/bitstreams/e94ea9a8-abbe-4dbb-b798-a6a5ae685035/download
https://repositorio.cuc.edu.co/bitstreams/ba90bf45-8774-4654-9edc-9fe81eb56589/download
https://repositorio.cuc.edu.co/bitstreams/9e618f11-36e1-4974-94d2-783287be1e16/download
https://repositorio.cuc.edu.co/bitstreams/d467c2e8-675c-4b89-904c-934e2e8e999f/download
bitstream.checksum.fl_str_mv 8a4605be74aa9ea9d79846c1fba20a33
0081e218c0197e17a1b94ed814fa94c8
67be540531564182d2c68a247d4a470a
9327321fd9e655d9d05ee56a5f0f3f63
fff3a07a2dce63ba581d03bc3f3a4c41
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1811760847774547968
spelling Cabello Eras, Juan JoséNoriega Angarita, Eliana MariaHernández Herrera, Hernán2018-11-02T20:56:24Z2018-11-02T20:56:24Z2018-04-01https://hdl.handle.net/11323/73Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/The objective of this research is to improve the energy performance in the electricity consumption for the battery charging process in a Colombian factory, considering energy planning strategies according to the procedure established by the standard ISO 50001. There were identified areas with its significant uses of energy consumptions, an energy review is carried out which starts with the application of work group techniques, measurements and an energy performance indicator is designed and implemented in order to systematically evaluate the efficiency in the battery charging process. Also, it was developed a statistical analysis used to identify parameters with a significant influence in the process, a group of actions are proposed and applied at the end of 2015. During the first semester of 2016 an evaluation is realized providing successful results with a total energy saving of 201.934 kWh (3.48%), equivalent to $81.783.675 COP.La presente investigación tiene como objetivo la mejora del desempeño energético en el consumo de electricidad para el proceso de formación de baterías de una fábrica en Colombia, mediante la planificación energética según el procedimiento establecido por la norma ISO 50001. En el trabajo se identifican las áreas de uso significativo de la energía eléctrica, se realiza una revisión energética que inicia con la aplicación de técnicas de trabajo en grupo, mediciones de campo y se diseña e implementa un indicador de desempeño energético que permite evaluar sistemáticamente la eficiencia en el proceso de formación de baterías. Al mismo se le realiza un análisis estadístico, se identifican los parámetros con influencia significativa y se proponen un grupo de acciones que comienzan a aplicarse a finales del 2015. Durante el primer semestre del 2016 se realiza una evaluación que brinda excelentes resultados con un ahorro de energía total de 201 934kWh (3,48 %), equivalente a 81 783 675 COP.Noriega Angarita, Eliana Maria-0000-0003-4580-2050-600spaUniversidad de la CostaMaestría en IngenieríaAtribución – No comercial – Compartir igualinfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Planificación energéticaFábrica de bateríasAhorro de energíaISO 50001Energy planningBattery factoryEnergy savingsPlanificación energética para el ahorro de energía eléctrica en el proceso de formación en una fábrica de bateríasTrabajo de grado - Pregradohttp://purl.org/coar/resource_type/c_7a1fTextinfo:eu-repo/semantics/bachelorThesishttp://purl.org/redcol/resource_type/TPinfo:eu-repo/semantics/acceptedVersionAbdelaziz, E. A., Saidur, R., & Mekhilef, S. (2011). A review on energy saving strategies in industrial sector. Renewable and Sustainable Energy Reviews, 15(1), 150–168. doi:10.1016/j.rser.2010.09.003Alan P. Rossiter. (2015). Energy management and efficienty for the process industries.ALAVA INGENIEROS. (2011). Guía de termografía para mantenimiento predictivo. Retrieved from http://www.alava-ing.es/repositorio/6769/pdf/3505/2/guia-de-termografia-para-mantenimiento-predictivo.pdfAvella Campos, J. C., Caicedo Prías, O. F., Oqueña Quispe, E. C., Medina Vidal, J. R., & Figueroa Lora, E. D. (2008). Modelo de gestión energética para el sector productivo nacional. Prospectiva, 6(30), 18–31. Retrieved from https://www.uac.edu.co/images/stories/publicaciones/revistas_cientificas/prospectiva/volumen-6-no-1/Azenha, M., Faria, R., & Figueiras, H. (2011). Thermography as a technique for monitoring early age temperatures of hardening concrete. Construction and Building Materials, 25(11), 4232–4240. doi:10.1016/j.conbuildmat.2011.04.065Bunse, K., Vodicka, M., Schönsleben, P., Brülhart, M., & Ernst, F. O. (2011). Integrating energy efficiency performance in production management - Gap analysis between industrial needs and scientific literature. Journal of Cleaner Production, 19(6-7), 667–679. doi:10.1016/j.jclepro.2010.11.011Cabello Eras, J. J., Sagastume Gutiérrez, A., García Lorenzo, D., Cogollos Martínez, J. B., Hens, L., & Vandecasteele, C. (2015). Bridging universities and industry through cleaner production activities. Experiences from the Cleaner Production Center at the University of Cienfuegos, Cuba. Journal of Cleaner Production, 108(2015), 1–10. doi:10.1016/j.jclepro.2014.11.063Cabello, J., Sousa Santos, V., Sagastume Gutiérrez, A., Guerra Plasencia, M. Á., Haeseldonckx, D., & Vandecasteele, C. (2016). Tools to improve forecasting and control of the electricity consumption in hotels. Journal of Cleaner Production, 137, 803–812. doi:10.1016/j.jclepro.2016.07.192Cagno, E., & Trianni, A. (2014). Evaluating the barriers to specific industrial energy efficiency measures: An exploratory study in small and medium-sized enterprises. Journal of Cleaner Production, 82, 70–83. doi:10.1016/j.jclepro.2014.06.057Cataliotti, A., Genduso, F., Raciti, A., Member, S., & Galluzzo, G. R. (2007). Generalized PWM – VSI Control Algorithm Based on a Universal Duty-Cycle Expression : Theoretical Analysis , Simulation Results , and Experimental Validations, 54(3), 1569–1580.Chan, Y., & Kantamaneni, R. (2015). Study on Energy Efficiency and Energy Saving Potential in Industry and on Possible Policy Mechanisms. London: ICF Consulting.Chih-Chiang Hua, & Meng-Yu Lin. (2000). A study of charging control of lead-acid battery for electric vehicles. ISIE’2000. Proceedings of the 2000 IEEE International Symposium on Industrial Electronics (Cat. No.00TH8543), 1, 135–140. doi:10.1109/ISIE.2000.930500Christoffersen, L. B., Larsen, A., & Togeby, M. (2006). Empirical analysis of energy management in Danish industry. Journal of Cleaner Production, 14(5), 516–526. doi:10.1016/j.jclepro.2005.03.017Climaco-Pinto, R., Barros, A. S., Locquet, N., Schmidtke, L., & Rutledge, D. N. (2009). Improving the detection of significant factors using ANOVA-PCA by selective reduction of residual variability. Analytica Chimica Acta, 653(2), 131–142. doi:10.1016/j.aca.2009.09.016Coleman, M., Hurley, W. G., & Lee, C. K. (2008). An Improved Battery Characterization Method Using a Two-Pulse Load Test, 23(2), 708–713. doi:10.1109/TEC.2007.914329Dranezt. (n.d.). User ’ s Guide, (September 2006).Duarte Forero, J., Guillín Estrada, W., & Sánchez Guerrero, J. (2018). Desarrollo de una metodología para la predicción del volumen real en la cámara de combustión de motores diésel utilizando elementos finitos. INGE CUC, 14(1), 122-132. https://doi.org/10.17981/ingecuc.14.1.2018.11EnerSys. (2006). APPLICATION Genesis TM NP and NPX Series Genesis NP & NPX Series Application Manual.European Commission (EC). (2014). Communication from the commission to the European parliament and the council energy efficiency and its contribution to energy security and the 2030 Framework for climate and energy policy. Brussels.Fawkes, S., Oung, K., & Thorpe, D. (2016). Best Practices and Case Studies for Industrial Energy Efficiency Improvement – An introduction for policy makers (Copenhagen). Copenhagen.Fluke. (2014). Nuevos productos de Fluke.García Samper, M. A., Guiliany, J. G., & Eras, J. C. (2017). Eficiencia En El Uso De Los Recursos Y Producción Más Limpia (Recp) Para La Competitividad Del Sector Hotelero. Revista de Gestão Social E Ambiental, 11(2), 18. doi:10.24857/rgsa.v11i2.1252García-León, R., Echavez Díaz, R., & Flórez Solano, E. (2018). Análisis termodinámico de un disco de freno automotriz con pilares de ventilación tipo NACA 66-209. INGE CUC, 14(2), 9-18. https://doi.org/10.17981/ingecuc.14.2.2018.01Giacone, E., & Mancò, S. (2012). Energy efficiency measurement in industrial processes. Energy, 38(1), 331–345. doi:10.1016/j.energy.2011.11.054Gielen, D., & Taylor, P. (2009). Indicators for industrial energy efficiency in India. Energy, 34(8), 962–969. doi:10.1016/j.energy.2008.11.008Glowacz, A., & Glowacz, Z. (2017). Diagnosis of the three-phase induction motor using thermal imaging. Infrared Physics and Technology, 81, 7–16. doi:10.1016/j.infrared.2016.12.003Hens, L., Block, C., Cabello-Eras, J. J., Sagastume-Gutierez, A., Garcia-Lorenzo, D., Chamorro, C., … Vandecasteele, C. (2018). On the evolution of “Cleaner Production” as a concept and a practice. Journal of Cleaner Production, 172, 3323–3333. doi:10.1016/j.jclepro.2017.11.082Hens, L., Cabello-Eras, J. J., Sagastume-Guti??rez, A., Garcia-Lorenzo, D., Cogollos-Martinez, J. B., & Vandecasteele, C. (2017). University???industry interaction on cleaner production. The case of the Cleaner Production Center at the University of Cienfuegos in Cuba, a country in transition. Journal of Cleaner Production, 142, 63–68. doi:10.1016/j.jclepro.2015.10.105Hou, S. J., Onishi, Y., Minami, S., Ikeda, H., Sugawara, M., & Kozawa, A. (2005). Charging and Discharging Method of Lead Acid Batteries Based on Internal Voltage Control. Journal of Asian Electric Vehicles, 3(1), 733–737. doi:10.4130/jaev.3.733ISO. (2011). Traducción oficial Official translation Traduction officielle ISO. Order A Journal On The Theory Of Ordered Sets And Its Applications, 2009, 58.ISO. (2014). ISO 50004: Energy management systems - Guidance for the implementation. maintenance an d improvement of an energy management system, 2014(50), 1–45.Jossen, A., Garche, J., & Sauer, D. U. (2004). Operation conditions of batteries in PV applications. Solar Energy, 76(6), 759–769. doi:10.1016/j.solener.2003.12.013Jung, J., Zhang, L., & Zhang, J. (2015). Lead-Acid Battery Technologies: Fundamentals, Materials, and Applications. doi:https://doi.org/10.1201/b18665-7Jung, J., Zhang, L., & Zhang, J. (2016). Lead-acid Battery TechnoLogies. Fundamentals, Materials and Applications (CRC Press). Florida.Jung, J., Zhang, L., & Zhang, J. (2016). Lead-acid Battery TechnoLogies. Fundamentals, Materials and Applications (CRC Press). Florida.Kaygusuz, K. (2012). Energy for sustainable development: A case of developing countries. Renewable and Sustainable Energy Reviews, 16(2), 1116–1126. doi:10.1016/j.rser.2011.11.013Kiessling, R. (1992). Lead Acid Battery Formation Techniques. Shelton.Laborda, A., Robinson, A., Wang, S., Zhang, Y., & Reed, P. (2018). Fatigue assessment of multilayer coatings using lock-in thermography. Materials and Design, 141, 361–373. doi:10.1016/j.matdes.2018.01.004Lin, B., Recke, B., Knudsen, J. K. H., & Jørgensen, S. B. (2007). A systematic approach for soft sensor development. Computers and Chemical Engineering, 31(5-6), 419–425. doi:10.1016/j.compchemeng.2006.05.030Luo, X., Lu, Z., & Xu, X. (2014). Non-parametric kernel estimation for the ANOVA decomposition and sensitivity analysis. Reliability Engineering and System Safety, 130, 140–148. doi:10.1016/j.ress.2014.06.002M. Nuñez, J. Correa, G. Herrera, P. Gómez, S. Morón & N. Fonseca “Study of Perceptions on Clean and SelfSustainable Energy”, IJMSOR, vol. 3, no. 1, pp. 11-15, 2018. https://doi.org/10.17981/ijmsor.03.01.02Matson, N. E., & Piette, M. A. (2005). High Performance Commercial Building Systems: Review of California and National Benchmarking Methods. Working Draft. Berkeley.Miloloza, I. (2013). Tendencies of Development of Global Battery Market with Emphasis on Republic of Croatia. Interdisciplinary Description of Complex Systems, 11(3), 318–333. doi:10.7906/indecs.11.3.3Minipa. (n.d.). Digital Power Meter DIGITAL POWER METER Digital Power Meter, (Model 66202).Morando, S., Jemei, S., Hissel, D., Gouriveau, R., & Zerhouni, N. (2017). ANOVA method applied to proton exchange membrane fuel cell ageing forecasting using an echo state network. Mathematics and Computers in Simulation, 131, 283–294. doi:10.1016/j.matcom.2015.06.009Nishimura, K., Takasaki, T., & Sakai, T. (2013). Introduction of large-sized nickel-metal hydride battery GIGACELL?? for industrial applications. Journal of Alloys and Compounds, 580(SUPPL1), 353–358. doi:10.1016/j.jallcom.2013.01.166Nuñez, M., Correa, J., Herrera, G., Gómez, P., Morón, S., & Fonseca, N. (2018). Estudio de percepción sobre energía limpia y auto sostenible. IJMSOR: International Journal of Management Science & Operation Research, 3(1), 11-15. Recuperado a partir de http://ijmsoridi.com/index.php/ijmsor/article/view/89Ordóñez, C. P. (2011). Estudio de baterías para vehículos eléctricos. Enterprise.Uc3M.Es, 1–105. Retrieved from http://enterprise.uc3m.es/redmine/files/101115153006_CV_MDdelamata.pdf\nhttp://e-archivo.uc3m.es/handle/10016/11805Ospino-Castro, A. (2010). Análisis del potencial energético solar en la Región Caribe para el diseño de un sistema fotovoltaico. INGECUC, 6(6), 0–8.Palamutcu, S. (2010). Electric energy consumption in the cotton textile processing stages. Energy, 35(7), 2945–2952. doi:10.1016/j.energy.2010.03.029Pavlov, D. (2011). and Technology and its Influence on the Product.Pavlov, D. (2011). Lead-acid batteries: Science and technology. A handbook of lead-acid battery technology and its Influence on the product. Ámsterdam.Payne, J. (2001). Communication; Applications.Picazo-Ródenas, M. J., Royo, R., Antonino-Daviu, J., & Roger-Folch, J. (2013). Use of the infrared data for heating curve computation in induction motors: Application to fault diagnosis. Engineering Failure Analysis, 35, 178–192. doi:10.1016/j.engfailanal.2013.01.018Ponce-Silva, M., & Moreno-Basaldúa, E. A. (2015). Alternative definitions of energy for power meters in non-sinusoidal systems. International Journal of Electrical Power and Energy Systems, 64, 1206–1213. doi:10.1016/j.ijepes.2014.09.019Posch, A., Brudermann, T., Braschel, N., & Gabriel, M. (2015). Strategic energy management in energy-intensive enterprises: A quantitative analysis of relevant factors in the Austrian paper and pulp industry. Journal of Cleaner Production, 90, 291–299. doi:10.1016/j.jclepro.2014.11.044Prout, L. (1993). Aspects of lead / acid battery technology 4. Plate Formation. Journal of Power Sources, 41(1), 117–138. doi:10.1016/0378-7753(93)85012-DPutois, F. (1995). Market for nickel-cadmium batteries. Journal of Power Sources, 57(1-2), 67–70. doi:10.1016/0378-7753(95)02243-0Report Buyer Ltd. (2015). Global and China Lead-acid Battery Industry Report, 2015-2018.Rodríguez, L., Castellano, M., & Caridad, M. (2017). Planificación estratégica de recursos humanos en empresas de consumo masivo. IJMSOR: International Journal of Management Science & Operation Research, 2(1), 38-43. Recuperado a partir de http://ijmsoridi.com/index.php/ijmsor/article/view/84Rudberg, M., Waldemarsson, M., & Lidestam, H. (2013). Strategic perspectives on energy management: A case study in the process industry. Applied Energy, 104, 487–496. doi:10.1016/j.apenergy.2012.11.027Rydh, C. J. (1999). Environmental assessment of vanadium redox and lead-acid batteries for stationary energy storage. Journal of Power Sources, 80(1), 21–29. doi:10.1016/S0378-7753(98)00249-3Rydh, C. J., & Sandén, B. A. (2005). Energy analysis of batteries in photovoltaic systems. Part I: Performance and energy requirements. Energy Conversion and Management, 46(11-12), 1957–1979. doi:10.1016/j.enconman.2004.10.003Scrosati, B., & Garche, J. (2010). Lithium batteries: Status, prospects and future. Journal of Power Sources, 195(9), 2419–2430. doi:10.1016/j.jpowsour.2009.11.048Soroko, M., & Howell, K. (2018). Infrared Thermography: Current Applications in Equine Medicine. Journal of Equine Veterinary Science, 60, 90–96.e2. doi:10.1016/j.jevs.2016.11.002Soto, J., Borroto, A., Bah, M. A., González, R., Curbelo, M., & Díaz, A. M. (2014). Diseño y aplicación de un procedimiento para la planificación energética según la NC-ISO 50001: 2011. Ingeniería Energética, XXXV(1), 38–47.Sullivan, J. L., & Gaines, L. (2012). Status of life cycle inventories for batteries. Energy Conversion and Management, 58, 134–148. doi:10.1016/j.enconman.2012.01.001Tang, K., Congedo, P. M., & Abgrall, R. (2016). Adaptive surrogate modeling by ANOVA and sparse polynomial dimensional decomposition for global sensitivity analysis in fluid simulation. Journal of Computational Physics, 314, 557–589. doi:10.1016/j.jcp.2016.03.026Vine, E. (2005). An international survey of the energy service company ESCO industry. Energy Policy, 33(5), 691–704. doi:10.1016/j.enpol.2003.09.014Weinert, N., Chiotellis, S., & Seliger, G. (2011). Methodology for planning and operating energy-efficient production systems. CIRP Annals - Manufacturing Technology, 60(1), 41–44. doi:10.1016/j.cirp.2011.03.015Wong, Y. S., Hurley, W. G., & Wölfle, W. H. (2008). Charge regimes for valve-regulated lead-acid batteries: Performance overview inclusive of temperature compensation. Journal of Power Sources, 183(2), 783–791. doi:10.1016/j.jpowsour.2008.05.069Xu, C., Xie, J., Huang, W., Chen, G., & Gong, X. (2018). Improving defect visibility in square pulse thermography of metallic components using correlation analysis. Mechanical Systems and Signal Processing, 103, 162–173. doi:10.1016/j.ymssp.2017.09.030Yuasa Battery Inc. (2009). NP / NPH / NPX SERIES SEALED RECHARGEABLE LEAD-ACID BATTERIES.Y. De la Peña, G. Bordeth; H. Campo; & U. Murillo “Clean Energies: An Opportunity to Save the Planet”, IJMSOR, vol. 3, no. 1, pp. 21-25, 2018. https://doi.org/10.17981/ijmsor.03.01.04PublicationLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.cuc.edu.co/bitstreams/13758ffd-ce89-4460-b79f-9aaea16781b5/download8a4605be74aa9ea9d79846c1fba20a33MD53THUMBNAIL1122810357.pdf.jpg1122810357.pdf.jpgimage/jpeg27441https://repositorio.cuc.edu.co/bitstreams/e94ea9a8-abbe-4dbb-b798-a6a5ae685035/download0081e218c0197e17a1b94ed814fa94c8MD55PLANIFICACIÓN ENERGÉTICA PARA EL AHORRO DE ENERGÍA ELÉCTRICA EN EL PROCESO DE FORMACIÓN EN UNA FÁBRICA DE BATERÍAS.pdf.jpgPLANIFICACIÓN ENERGÉTICA PARA EL AHORRO DE ENERGÍA ELÉCTRICA EN EL PROCESO DE FORMACIÓN EN UNA FÁBRICA DE BATERÍAS.pdf.jpgimage/jpeg27424https://repositorio.cuc.edu.co/bitstreams/ba90bf45-8774-4654-9edc-9fe81eb56589/download67be540531564182d2c68a247d4a470aMD57ORIGINALPLANIFICACIÓN ENERGÉTICA PARA EL AHORRO DE ENERGÍA ELÉCTRICA EN EL PROCESO DE FORMACIÓN EN UNA FÁBRICA DE BATERÍAS.pdfPLANIFICACIÓN ENERGÉTICA PARA EL AHORRO DE ENERGÍA ELÉCTRICA EN EL PROCESO DE FORMACIÓN EN UNA FÁBRICA DE BATERÍAS.pdfapplication/pdf2720582https://repositorio.cuc.edu.co/bitstreams/9e618f11-36e1-4974-94d2-783287be1e16/download9327321fd9e655d9d05ee56a5f0f3f63MD56TEXTPLANIFICACIÓN ENERGÉTICA PARA EL AHORRO DE ENERGÍA ELÉCTRICA EN EL PROCESO DE FORMACIÓN EN UNA FÁBRICA DE BATERÍAS.pdf.txtPLANIFICACIÓN ENERGÉTICA PARA EL AHORRO DE ENERGÍA ELÉCTRICA EN EL PROCESO DE FORMACIÓN EN UNA FÁBRICA DE BATERÍAS.pdf.txttext/plain202241https://repositorio.cuc.edu.co/bitstreams/d467c2e8-675c-4b89-904c-934e2e8e999f/downloadfff3a07a2dce63ba581d03bc3f3a4c41MD5811323/73oai:repositorio.cuc.edu.co:11323/732024-09-17 14:10:19.654open.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=