Network anomaly classification by support vector classifiers ensemble and non-linear projection techniques
Network anomaly detection is currently a challenge due to the number of different attacks and the number of potential attackers. Intrusion detection systems aim to detect misuses or network anomalies in order to block ports or connections, whereas firewalls act according to a predefined set of rules...
- Autores:
-
De La Hoz, Eduardo
Ortiz, Andrés
Ortega, Julio
De-La-Hoz-Franco, Emiro
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2013
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/3236
- Acceso en línea:
- https://hdl.handle.net/11323/3236
https://repositorio.cuc.edu.co/
- Palabra clave:
- Classification rates
Dimensionality reduction techniques
Intrusion detection systems
Network anomaly detection
Network intrusions
Nonlinear projections
Support vector classifiers
Support vector classifiers ensemble
Tasas de clasificación
Técnicas de reducción de la dimensionalidad
Sistemas de detección de intrusos
Detección de anomalías de red
Intrusiones de red
Proyecciones no lineales
Vector de soporte clasificadores
Conjunto de clasificadores de vectores de apoyo
- Rights
- openAccess
- License
- Attribution-NonCommercial-ShareAlike 4.0 International
Summary: | Network anomaly detection is currently a challenge due to the number of different attacks and the number of potential attackers. Intrusion detection systems aim to detect misuses or network anomalies in order to block ports or connections, whereas firewalls act according to a predefined set of rules. However, detecting the specific anomaly provides valuable information about the attacker that may be used to further protect the system, or to react accordingly. This way, detecting network intrusions is a current challenge due to growth of the Internet and the number of potential intruders. In this paper we present an intrusion detection technique using an ensemble of support vector classifiers and dimensionality reduction techniques to generate a set of discriminant features. The results obtained using the NSL-KDD dataset outperforms previously obtained classification rates |
---|