Evaluation of bottom-up and top-down strategies for aggregated forecasts: state space models and arima applications
Abstract. In this research, we consider monthly series from the M4 competition to study the relative performance of top-down and bottom-up strategies by means of implementing forecast automation of state space and ARIMA models. For the bottomup strategy, the forecast for each series is developed ind...
- Autores:
-
Soto-Ferrari, Milton
Chams-Anturi, Odette
Escorcia-Caballero, Juan P.
Hussain, Namra
Khan, Muhammad
- Tipo de recurso:
- http://purl.org/coar/resource_type/c_816b
- Fecha de publicación:
- 2019
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/5809
- Acceso en línea:
- https://hdl.handle.net/11323/5809
https://repositorio.cuc.edu.co/
- Palabra clave:
- Top-down
Bottom-up
Forecast automation
Forecast performance
State space models
ARIMA
- Rights
- openAccess
- License
- CC0 1.0 Universal
id |
RCUC2_6e7ee92ffe2a41f40a0efa4e92df9dc7 |
---|---|
oai_identifier_str |
oai:repositorio.cuc.edu.co:11323/5809 |
network_acronym_str |
RCUC2 |
network_name_str |
REDICUC - Repositorio CUC |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Evaluation of bottom-up and top-down strategies for aggregated forecasts: state space models and arima applications |
title |
Evaluation of bottom-up and top-down strategies for aggregated forecasts: state space models and arima applications |
spellingShingle |
Evaluation of bottom-up and top-down strategies for aggregated forecasts: state space models and arima applications Top-down Bottom-up Forecast automation Forecast performance State space models ARIMA |
title_short |
Evaluation of bottom-up and top-down strategies for aggregated forecasts: state space models and arima applications |
title_full |
Evaluation of bottom-up and top-down strategies for aggregated forecasts: state space models and arima applications |
title_fullStr |
Evaluation of bottom-up and top-down strategies for aggregated forecasts: state space models and arima applications |
title_full_unstemmed |
Evaluation of bottom-up and top-down strategies for aggregated forecasts: state space models and arima applications |
title_sort |
Evaluation of bottom-up and top-down strategies for aggregated forecasts: state space models and arima applications |
dc.creator.fl_str_mv |
Soto-Ferrari, Milton Chams-Anturi, Odette Escorcia-Caballero, Juan P. Hussain, Namra Khan, Muhammad |
dc.contributor.author.spa.fl_str_mv |
Soto-Ferrari, Milton Chams-Anturi, Odette Escorcia-Caballero, Juan P. Hussain, Namra Khan, Muhammad |
dc.subject.spa.fl_str_mv |
Top-down Bottom-up Forecast automation Forecast performance State space models ARIMA |
topic |
Top-down Bottom-up Forecast automation Forecast performance State space models ARIMA |
description |
Abstract. In this research, we consider monthly series from the M4 competition to study the relative performance of top-down and bottom-up strategies by means of implementing forecast automation of state space and ARIMA models. For the bottomup strategy, the forecast for each series is developed individually and then these are combined to produce a cumulative forecast of the aggregated series. For the top-down strategy, the series or components values are first combined and then a single forecast is determined for the aggregated series. Based on our implementation, state space models showed a higher forecast performance when a top-down strategy is applied. ARIMA models had a higher forecast performance for the bottom-up strategy. For state space models the top-down strategy reduced the overall error significantly. ARIMA models showed to be more accurate when forecasts are first determined individually. As part of the development we also proposed an approach to improve the forecasting procedure of aggregation strategies. |
publishDate |
2019 |
dc.date.issued.none.fl_str_mv |
2019-09-20 |
dc.date.accessioned.none.fl_str_mv |
2020-01-13T19:11:46Z |
dc.date.available.none.fl_str_mv |
2020-01-13T19:11:46Z |
dc.type.spa.fl_str_mv |
Pre-Publicación |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_816b |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/preprint |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ARTOTR |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
format |
http://purl.org/coar/resource_type/c_816b |
status_str |
acceptedVersion |
dc.identifier.uri.spa.fl_str_mv |
https://hdl.handle.net/11323/5809 |
dc.identifier.instname.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.identifier.reponame.spa.fl_str_mv |
REDICUC - Repositorio CUC |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.cuc.edu.co/ |
url |
https://hdl.handle.net/11323/5809 https://repositorio.cuc.edu.co/ |
identifier_str_mv |
Corporación Universidad de la Costa REDICUC - Repositorio CUC |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.references.spa.fl_str_mv |
1. Mentzer, J., Bienstock, C.: Sales Forecasting Management: Understanding the Techniques. Syst. Manag. Sales Forecast. Process. Sage Publ. (1998). 2. Hyndman, R., Koehler, A., Snyder, R., Grose, S.: A state space framework for automatic forecasting using exponential smoothing methods. Int. J. Forecast. 18, 439–454 (2002). 3. Fildes, R., Petropoulos, F.: Simple versus complex selection rules for forecasting many time series. J. Bus. Res. 68, 1692–1701 (2015). 4. Hendry, D., Hubrich, K.: Combining disaggregate forecasts or combining disaggregate information to forecast an aggregate. J. Bus. Econ. Stat. 29, 216– 227 (2011). 5. Widiarta, H., Viswanathan, S.: Forecasting family demand with autoregressive item-level demands: Evaluation of top-downand bottom-up forecasting strategies. Work. Pap. (2005). 6. McLeavey, D., Narasimhan, S.: Production Planning and Inventory Control. Allyn Bacon, Inc., Bost. (1985). 7. Lutkepohl, H.: Forecasting With VARMA Processes. Handb. Eco nomic Forecast. eds. G. Elliott, C. W. J. Granger, A. Timmermann, Amsterdam, Netherlands Elsevier. (2006). 8. Seifert, M., Siemsen, E., Hadida, A., Eisingerich, A.: Effective judgmental forecasting in the context of fashion products. J. Oper. Manag. 36, 33–45 (2015). 9. Nenova, Z., May, J.: Determining an optimal hierarchical forecasting model based on the characteristics of the dataset: technical note. J. Oper. Manag. 44, 62–88 (2016). 10. Van der Laan, E., Van Dalen, J., Rohrmoser, M., Simpson, R.: Demand forecasting and order planning for humanitarian logistics: an empirical assessment. J. Oper. Manag. 45, 114–122 (2016). 11. Zotteri, G., Kalchschmidt, M., Caniato, F.: The impact of aggregation level on forecasting performance. Int. J. Prod. Econ. 93, 479–491 (2005). 12. Theil, H.: Linear Aggregation of Economic Relations. North-holl. Publ. Company, Amsterdam. (1954). 13. Y., G., Griliches, Z.: Is Aggregation Necessarily Bad? Rev. Econ. Stat. 42, 1– 13 (1960). 14. Schwarzkoph, A., Tersine, R., Morris, J.: Topdown versus bottom-up forecasting strategies. Int. J. Prod. Res. 26, 1833–1843 (1988). 15. Oller, L.: Aggregating problems when forecasting industrial production using business survey data. Discuss. Pap. No. 20, Minist. ofFinance, Econ. Dep. Helsinky. (1989). 16. Ilmakunnas, P.: Aggregation vs. disaggregation in forecasting construction activity. Barker, T.S., Pesaran, H. (Eds.), Disaggregation Econom. Model. Routledge, London. 73–86 (1990). 17. Kahn, K.: Revisiting top-down versus bottom-up forecasting. J. Bus. Forecast. 14–19 (1998). 18. Lapide, L.: New developments in business forecasting. J. Ofbus. Forecast. 28–29 (1998). 19. Orcutt, G., Watts, H., Edwards, J.: Data aggregation and information loss. Am. Econ. Rev. 58, 773–787 (1968). 20. Zellner, A., Tobias, J.: A note on aggregation, disaggregation and forecasting performance. J. Forecast. 19, 457–469 (2000). 21. Weatherford, L., Kimes, S., Scott, D.: Forecasting for hotel revenue management: Testing aggregation against disaggregation. Cornell Hotel Restaur. Adm. Q. 53–64 (2001). 22. Makridakis, S., Hibon, M.: The M3-competition: Results, conclusions and implications. Int. J. Forecast. 16, 451–476 (2000). 23. Chu, C., Zhang, P.: A comparative study of linear and nonlinear models for aggregate retail sales forecasting. Int. J. Prod. Econ. 86, 217–231 (2003). |
dc.rights.spa.fl_str_mv |
CC0 1.0 Universal |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/publicdomain/zero/1.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
CC0 1.0 Universal http://creativecommons.org/publicdomain/zero/1.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.publisher.spa.fl_str_mv |
Universidad de la Costa |
institution |
Corporación Universidad de la Costa |
bitstream.url.fl_str_mv |
https://repositorio.cuc.edu.co/bitstreams/67f3aa1c-c9a3-43a7-8249-b6aced0288ec/download https://repositorio.cuc.edu.co/bitstreams/8169b2f2-b4d0-497a-86be-2eb2db249b33/download https://repositorio.cuc.edu.co/bitstreams/a405fcd3-7325-43b1-907b-535aed501388/download https://repositorio.cuc.edu.co/bitstreams/63018953-3612-4c74-8b85-b40880077010/download https://repositorio.cuc.edu.co/bitstreams/cc547f0f-01e1-4a66-b65b-911237a89efd/download |
bitstream.checksum.fl_str_mv |
64044aec4f4af25cd031fb2f638e5825 42fd4ad1e89814f5e4a476b409eb708c 8a4605be74aa9ea9d79846c1fba20a33 bad6c8ea2d650d071f59678790d6b9c7 1f73577cc60e331bc25f924553942fc6 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad de la Costa CUC |
repository.mail.fl_str_mv |
repdigital@cuc.edu.co |
_version_ |
1811760755215695872 |
spelling |
Soto-Ferrari, MiltonChams-Anturi, OdetteEscorcia-Caballero, Juan P.Hussain, NamraKhan, Muhammad2020-01-13T19:11:46Z2020-01-13T19:11:46Z2019-09-20https://hdl.handle.net/11323/5809Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/Abstract. In this research, we consider monthly series from the M4 competition to study the relative performance of top-down and bottom-up strategies by means of implementing forecast automation of state space and ARIMA models. For the bottomup strategy, the forecast for each series is developed individually and then these are combined to produce a cumulative forecast of the aggregated series. For the top-down strategy, the series or components values are first combined and then a single forecast is determined for the aggregated series. Based on our implementation, state space models showed a higher forecast performance when a top-down strategy is applied. ARIMA models had a higher forecast performance for the bottom-up strategy. For state space models the top-down strategy reduced the overall error significantly. ARIMA models showed to be more accurate when forecasts are first determined individually. As part of the development we also proposed an approach to improve the forecasting procedure of aggregation strategies.Soto-Ferrari, Milton-will be generated-orcid-0000-0002-0255-968X-600Chams-Anturi, Odette-will be generated-orcid-0000-0002-8353-7326-600Escorcia-Caballero, Juan P.-will be generated-orcid-0000-0001-8425-0266-600Hussain, NamraKhan, MuhammadengUniversidad de la CostaCC0 1.0 Universalhttp://creativecommons.org/publicdomain/zero/1.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Top-downBottom-upForecast automationForecast performanceState space modelsARIMAEvaluation of bottom-up and top-down strategies for aggregated forecasts: state space models and arima applicationsPre-Publicaciónhttp://purl.org/coar/resource_type/c_816bTextinfo:eu-repo/semantics/preprinthttp://purl.org/redcol/resource_type/ARTOTRinfo:eu-repo/semantics/acceptedVersion1. Mentzer, J., Bienstock, C.: Sales Forecasting Management: Understanding the Techniques. Syst. Manag. Sales Forecast. Process. Sage Publ. (1998).2. Hyndman, R., Koehler, A., Snyder, R., Grose, S.: A state space framework for automatic forecasting using exponential smoothing methods. Int. J. Forecast. 18, 439–454 (2002).3. Fildes, R., Petropoulos, F.: Simple versus complex selection rules for forecasting many time series. J. Bus. Res. 68, 1692–1701 (2015).4. Hendry, D., Hubrich, K.: Combining disaggregate forecasts or combining disaggregate information to forecast an aggregate. J. Bus. Econ. Stat. 29, 216– 227 (2011).5. Widiarta, H., Viswanathan, S.: Forecasting family demand with autoregressive item-level demands: Evaluation of top-downand bottom-up forecasting strategies. Work. Pap. (2005).6. McLeavey, D., Narasimhan, S.: Production Planning and Inventory Control. Allyn Bacon, Inc., Bost. (1985).7. Lutkepohl, H.: Forecasting With VARMA Processes. Handb. Eco nomic Forecast. eds. G. Elliott, C. W. J. Granger, A. Timmermann, Amsterdam, Netherlands Elsevier. (2006).8. Seifert, M., Siemsen, E., Hadida, A., Eisingerich, A.: Effective judgmental forecasting in the context of fashion products. J. Oper. Manag. 36, 33–45 (2015).9. Nenova, Z., May, J.: Determining an optimal hierarchical forecasting model based on the characteristics of the dataset: technical note. J. Oper. Manag. 44, 62–88 (2016).10. Van der Laan, E., Van Dalen, J., Rohrmoser, M., Simpson, R.: Demand forecasting and order planning for humanitarian logistics: an empirical assessment. J. Oper. Manag. 45, 114–122 (2016).11. Zotteri, G., Kalchschmidt, M., Caniato, F.: The impact of aggregation level on forecasting performance. Int. J. Prod. Econ. 93, 479–491 (2005).12. Theil, H.: Linear Aggregation of Economic Relations. North-holl. Publ. Company, Amsterdam. (1954).13. Y., G., Griliches, Z.: Is Aggregation Necessarily Bad? Rev. Econ. Stat. 42, 1– 13 (1960).14. Schwarzkoph, A., Tersine, R., Morris, J.: Topdown versus bottom-up forecasting strategies. Int. J. Prod. Res. 26, 1833–1843 (1988).15. Oller, L.: Aggregating problems when forecasting industrial production using business survey data. Discuss. Pap. No. 20, Minist. ofFinance, Econ. Dep. Helsinky. (1989).16. Ilmakunnas, P.: Aggregation vs. disaggregation in forecasting construction activity. Barker, T.S., Pesaran, H. (Eds.), Disaggregation Econom. Model. Routledge, London. 73–86 (1990).17. Kahn, K.: Revisiting top-down versus bottom-up forecasting. J. Bus. Forecast. 14–19 (1998).18. Lapide, L.: New developments in business forecasting. J. Ofbus. Forecast. 28–29 (1998).19. Orcutt, G., Watts, H., Edwards, J.: Data aggregation and information loss. Am. Econ. Rev. 58, 773–787 (1968).20. Zellner, A., Tobias, J.: A note on aggregation, disaggregation and forecasting performance. J. Forecast. 19, 457–469 (2000).21. Weatherford, L., Kimes, S., Scott, D.: Forecasting for hotel revenue management: Testing aggregation against disaggregation. Cornell Hotel Restaur. Adm. Q. 53–64 (2001).22. Makridakis, S., Hibon, M.: The M3-competition: Results, conclusions and implications. Int. J. Forecast. 16, 451–476 (2000).23. Chu, C., Zhang, P.: A comparative study of linear and nonlinear models for aggregate retail sales forecasting. Int. J. Prod. Econ. 86, 217–231 (2003).PublicationORIGINALEvaluation of Bottom-up and Top-down Strategies for aggregated foreasts.pdfEvaluation of Bottom-up and Top-down Strategies for aggregated foreasts.pdfapplication/pdf1373206https://repositorio.cuc.edu.co/bitstreams/67f3aa1c-c9a3-43a7-8249-b6aced0288ec/download64044aec4f4af25cd031fb2f638e5825MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8701https://repositorio.cuc.edu.co/bitstreams/8169b2f2-b4d0-497a-86be-2eb2db249b33/download42fd4ad1e89814f5e4a476b409eb708cMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.cuc.edu.co/bitstreams/a405fcd3-7325-43b1-907b-535aed501388/download8a4605be74aa9ea9d79846c1fba20a33MD53THUMBNAILEvaluation of Bottom-up and Top-down Strategies for aggregated foreasts.pdf.jpgEvaluation of Bottom-up and Top-down Strategies for aggregated foreasts.pdf.jpgimage/jpeg45205https://repositorio.cuc.edu.co/bitstreams/63018953-3612-4c74-8b85-b40880077010/downloadbad6c8ea2d650d071f59678790d6b9c7MD55TEXTEvaluation of Bottom-up and Top-down Strategies for aggregated foreasts.pdf.txtEvaluation of Bottom-up and Top-down Strategies for aggregated foreasts.pdf.txttext/plain37796https://repositorio.cuc.edu.co/bitstreams/cc547f0f-01e1-4a66-b65b-911237a89efd/download1f73577cc60e331bc25f924553942fc6MD5611323/5809oai:repositorio.cuc.edu.co:11323/58092024-09-17 10:59:41.647http://creativecommons.org/publicdomain/zero/1.0/CC0 1.0 Universalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |